Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 696
Filter
1.
Langmuir ; 40(33): 17613-17621, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39120008

ABSTRACT

Dopamine (DA), a neurotransmitter, plays a crucial role in regulating motor functions and emotions and can serve as a marker for several diseases. In this study, we report a highly sensitive polydiacetylenes (PDA)-based dual-output sensor for dopamine detection in both solution and solid phases that was developed by modifying PDA liposomes with boronic acid groups at the termini. This sensor exploits the high affinity between the catechol residue of dopamine and the -B(OH)2 group of the PDA-based probe (PDA-PhBA) to form boronate ester bonds, causing a stress-induced blue-to-red color change along with a steady increase in fluorescence response at λmax 622 nm. The PDA-PhBA-based sensor displays high sensitivity toward dopamine with low limit of detection of 6.2 ppb in colorimetric analysis and 0.6 ppb in fluorimetric measurements, demonstrating its dual optical output ability. The sensor works well for adrenaline, another catecholamine, with similar efficacy. Its practical applicability was validated by the successful recovery of trace level dopamine in blood serum and real water samples. Additionally, immobilizing PDA-PhBA liposomes in sodium alginate produced PDA beads for the solid-phase detection of dopamine with an limit of detection (LOD) of 59 nM (9.0 ppb) in colorimetric detection using a smartphone for capturing images and ImageJ software for analysis.


Subject(s)
Dopamine , Liposomes , Polyacetylene Polymer , Liposomes/chemistry , Dopamine/analysis , Dopamine/blood , Polyacetylene Polymer/chemistry , Limit of Detection , Colorimetry/methods , Polymers/chemistry , Polyynes/chemistry , Solutions
2.
Molecules ; 29(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39124952

ABSTRACT

Human DNA topoisomerase I (Topo I) is an essential enzyme in regulating DNA supercoiling during transcription and replication, and it is an important therapeutic target for anti-tumor agents. Bidens pilosa L. is a medicinal herb that is used as a folk medicine for cancers in China. A new flavonoid (1) and a new polyacetylene (20), along with eighteen flavonoids (2-19) and nine polyacetylenes (21-29), were isolated and identified from the methanol extract of the whole plant of B. pilosa, and some of the compounds (4, 5, 6 and 7) exhibited potent cytotoxicity against a panel of five human cancer cell lines. The DNA relaxation assay revealed that some flavonoids and polyacetylenes exerted inhibitory activities on human DNA Topo I, among them compounds 1, 2, 5, 6, 7, 8, 15, 19, 20, 22, and 24 were the most active ones, with IC50 values of 393.5, 328.98, 145.57, 239.27, 224.38, 189.84, 89.91, 47.5, 301.32, 178.03, and 218.27 µM, respectively. The structure-activity analysis of flavonoids was performed according to the results from the Topo I inhibition assay. The DNA content analysis revealed that 5, 6, and 7 potently arrested cell cycle at the G1/S and G2/M phases in human colon cancer cell DLD-1 depending on the concentration of the inhibitors. The levels of protein expression related to the G1/S and G2/M cell cycle checkpoints were in accordance with the results from the DNA content analysis. These findings suggest that flavonoids are one of the key active ingredients accounting for the anti-tumor effect of B. pilosa.


Subject(s)
Bidens , DNA Topoisomerases, Type I , Flavonoids , Polyynes , Topoisomerase I Inhibitors , Humans , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Bidens/chemistry , DNA Topoisomerases, Type I/metabolism , Cell Line, Tumor , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/isolation & purification , Polyynes/pharmacology , Polyynes/chemistry , Polyynes/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification
3.
Phytochemistry ; 225: 114191, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38901625

ABSTRACT

Herein, 17 previously undescribed polyacetylenes and 9 known ones were isolated from Tridax procumbens L. Their structures were identified using spectroscopic techniques (NMR, UV, IR, MS and optical rotation), the modified Mosher method, electronic circular dichroism (ECD) data and ECD calculation. The cytotoxicity of polyacetylenes on six human tumour cell lines (K562, K562/ADR, AGS, MGC-803, SPC-A-1 and MDA-MB-231) was evaluated. (3S,10R)-tridaxin B (2a), (3S,10S)-tridaxin B (2b) and tridaxin F (8) demonstrated substantial cytotoxic effects against the K562 cell line, with half-maximal inhibitory concentration (IC50) values of 2.62, 14.43 and 17.91 µM, respectively. Cell and nucleus morphology assessments and Western blot analysis confirmed that the cytotoxicity of the three polyacetylenes on K562 cells was mediated through a dose-dependent apoptosis pathway. Furthermore, (3S,10R)-tridaxin A (1a) and tridaxin G (9) exhibited considerable inhibitory effects on lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 macrophages, with IC50 values of 15.92 and 20.35 µM, respectively. Further investigations revealed that 9 exerted anti-inflammatory activities by impeding the nuclear translocation of NF-κB and down-regulating the expression of pro-inflammatory factors, including those of iNOS, COX-2, IL-1ß and IL-6, in a concentration-dependent manner. The study provides evidence that polyacetylenes from T. procumbens may serve as a potential source of anti-tumour or anti-inflammatory agents for treating related diseases.


Subject(s)
Anti-Inflammatory Agents , Antineoplastic Agents, Phytogenic , Polyynes , Humans , Polyynes/pharmacology , Polyynes/chemistry , Polyynes/isolation & purification , Mice , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Apoptosis/drug effects , Drug Screening Assays, Antitumor , RAW 264.7 Cells , Molecular Structure , Dose-Response Relationship, Drug , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Asteraceae/chemistry , K562 Cells , Structure-Activity Relationship , Cell Proliferation/drug effects , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Cell Line, Tumor
4.
Mikrochim Acta ; 191(7): 397, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877314

ABSTRACT

A fluorescence biosensor for determination of aflatoxin B1 (AFB1) based on polydiacetylene (PDA) liposomes and exonuclease III (EXO III)-assisted recycling amplification was developed. The AFB1 aptamer partially hybridizes with complementary DNA (cDNA), which is released upon recognition of AFB1 by the aptamer. Subsequently, the cDNA hybridizes with hairpin H to form double-stranded DNA that undergoes digestion by EXO III, resulting in the cyclic release of cDNA and generation of capture DNA for further reaction. The capture DNA then hybridizes with probe modified on PDA liposomes, leading to aggregation of liposomes and subsequent fluorescence production. This strategy exhibited a limit of detection of 0.18 ng/mL within the linear range 1-100 ng/mL with a determination coefficient > 0.99. The recovery ranged from 92.81 to 106.45%, with relative standard deviations (RSD) between 1.73 and 4.26%, for corn, brown rice, peanut butter, and wheat samples. The stability, accuracy, and specificity of the method demonstrated the applicability for real sample analysis.


Subject(s)
Aflatoxin B1 , Biosensing Techniques , Exodeoxyribonucleases , Limit of Detection , Liposomes , Polyacetylene Polymer , Polyacetylene Polymer/chemistry , Liposomes/chemistry , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Biosensing Techniques/methods , Aflatoxin B1/analysis , Aptamers, Nucleotide/chemistry , Nucleic Acid Amplification Techniques/methods , Polyynes/chemistry , Spectrometry, Fluorescence/methods , Zea mays/chemistry , Triticum/chemistry , Oryza/chemistry , Polymers/chemistry , Food Contamination/analysis
5.
J Org Chem ; 89(8): 5715-5725, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38593068

ABSTRACT

Some bacteria produce "bacterial polyynes" bearing a conjugated C≡C bond that starts with a terminal alkyne. Ergoynes A and B have been reported as sulfur-containing metabolites from Gynuella sunshinyii YC6258. These compounds were thought to be formed by cycloaddition between a bacterial polyyne (named Gs-polyyne) and l-ergothioneine. The biosynthetic gene clusters (BGCs), which may contribute to their synthesis, were present in the YC6258 genome. The biosynthetic origin of Gs-polyyne is interesting considering its rare 2-isopentyl fatty acyl skeleton. Here, the structures and biosynthesis of Gs-polyyne and ergoynes were verified by analytical, chemical, and genetic techniques. In the YC6258 extract, which was prepared considering their instability, Gs-polyyne was detected as a major LC peak, and ergoynes were not detected. The NMR data of the isolated Gs-polyyne contradicted the proposed structure and identified it as the previously reported protegenin A. The expression of Gs-polyyne BGC in Escherichia coli BL21(DE3) also yielded protegenin A. The cyclization between protegenin A and l-ergothioneine did not proceed during sample preparation; a base, such as potassium carbonate, was required. Overall, Gs-polyyne was identified as protegenin A, while ergoynes were determined to be artifacts. This cyclization may provide a derivatization to stabilize polyynes or create new chemical space.


Subject(s)
Ergothioneine , Gammaproteobacteria , Polyynes , Alkynes , Bacteria
6.
Fitoterapia ; 175: 105909, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38479615

ABSTRACT

Artemdubosides A-E (1-5), the first examples of natural polyacetylenes substituted by 6'-O-crotonyl ß-glucopyranoside, and artemdubosides F-G (6-7) that were two unusual polyacetylenes featuring a 6'-O-acetyl ß-glucopyranoside moiety, were isolated from Artemisia dubia var. subdigitata. Their structures were elucidated based on the spectral data including HRESIMS, UV, IR, 1D and 2D NMR, and ECD calculations. Antihepatoma assay suggested that compound 1 exhibited activity against HepG2, Huh7, and SK-Hep-1 cells with inhibitory ratios of 77.1%, 90.8%, and 73.1% at 200.0 µM, respectively.


Subject(s)
Artemisia , Phytochemicals , Artemisia/chemistry , Humans , Molecular Structure , Cell Line, Tumor , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Polyynes/pharmacology , Polyynes/isolation & purification , Polyynes/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , China
7.
Fitoterapia ; 174: 105876, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431027

ABSTRACT

Nine polyacetylenes, including five new compounds named sadivaethynes E-I (1-5), were isolated from the roots of Saposhnikovia divaricata. Structural elucidation of compounds 1-5 was established by extensive spectroscopic analysis, quantum chemical calculations and DP4+ probability analysis. Among them, the absolute configuration of compound 1-2, 4-5 was unambiguous determined by ECD. Also, all compounds were evaluated for cytotoxicity against two human cancer cell lines (A549, HEPG2) in vitro, compound 9 showed moderate inhibitory effect with an IC50 value of 11.66 µM against HEPG2.


Subject(s)
Apiaceae , Polyynes , Humans , Molecular Structure , Polyynes/pharmacology , Polyynes/analysis , Polyynes/chemistry , Plant Roots/chemistry , Plant Extracts/chemistry , Apiaceae/chemistry
8.
Nat Prod Rep ; 41(7): 977-989, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38284321

ABSTRACT

Covering: up to 2023Conjugated polyynes are natural compounds characterized by alternating single and triple carbon-carbon bonds, endowing them with distinct physicochemical traits and a range of biological activities. While traditionally sourced mainly from plants, recent investigations have revealed many compounds originating from bacterial strains. This review synthesizes current research on bacterial-derived conjugated polyynes, delving into their biosynthetic routes, underscoring the variety in their molecular structures, and examining their potential applications in biotechnology. Additionally, we outline future directions for metabolic and protein engineering to establish more robust and stable platforms for their production.


Subject(s)
Bacteria , Polyynes , Bacteria/metabolism , Polyynes/chemistry , Polyynes/metabolism , Polyynes/pharmacology , Molecular Structure , Biological Products/chemistry , Biological Products/metabolism , Biological Products/pharmacology , Biosynthetic Pathways , Biotechnology/methods
9.
Chem Biodivers ; 21(3): e202301762, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38263615

ABSTRACT

Artemisia pallens Wall. ex DC (Asteraceae) is cultivated for the production of high-value essential oil from its aerial biomass. In this study, the chemical composition of the root (crop-residue) essential oil was investigated for the first time, using column-chromatography, GC-FID, GC-MS, LC-QTOF, and NMR techniques, which led to the identification of twenty constituents, with isolation of (E)-2-(2',4'-hexadiynylidene)-1,6-dioxaspiro [4.5]dec-3-ene (D6). The D6 was evaluated in vitro for neuroinflammation and acetylcholinesterase inhibitory potential. It showed inhibition of neuroinflammation in a concentration-dependent manner with significant inhibition of pro-inflammatory cytokines (TNF-α and IL-6) in LPS-stimulated BV2 microglial cells. D6 did not have any significant effect on the viability of the cells at the therapeutic concentrations. D6 also has shown acetylcholinesterase inhibitory potential (51.90±1.19 %) at the concentration of log 106  nM. The results showed that D6 has a potential role in the resolution of neuroinflammation, and its acetylcholinesterase inhibitory potential directs further investigation of its role in the management of Alzheimer's disease-related pathogenesis.


Subject(s)
Artemisia , Furans , Oils, Volatile , Spiro Compounds , Acetylcholinesterase , Ether , Polyynes , Neuroinflammatory Diseases , Oils, Volatile/chemistry , Artemisia/chemistry
10.
Macromol Rapid Commun ; 45(6): e2300628, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38227809

ABSTRACT

A rare asymmetric bicyclic polymer containing different length of conjugated polyacetylene segments is synthesized by metathesis cyclopolymerization-mediated blocking-cyclization technique. The size of each single ring differs from each other, and the unique cyclic polymer topology is controlled by adjusting the feed ratio of monofunctional monomer to catalyst. The topological difference between linear and bicyclic polymers is confirmed by several techniques, and the visualized morphology of asymmetric bicyclic polymer is directly observed without tedious post-modification process. The photoelectric and thermal properties of polymers are investigated. This work expands the pathway for the derivation of cyclic polymers, and such unique topological structure enriches the diversity of cyclic polymer classes.


Subject(s)
Polymers , Polyynes , Polyacetylene Polymer , Cyclization , Polymers/chemistry , Catalysis
11.
Nat Commun ; 14(1): 8142, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38065964

ABSTRACT

To ameliorate or even prevent signatures of aging in ultimately humans, we here report the identification of a previously undescribed polyacetylene contained in the root of carrots (Daucus carota), hereafter named isofalcarintriol, which we reveal as potent promoter of longevity in the nematode C. elegans. We assign the absolute configuration of the compound as (3 S,8 R,9 R,E)-heptadeca-10-en-4,6-diyne-3,8,9-triol, and develop a modular asymmetric synthesis route for all E-isofalcarintriol stereoisomers. At the molecular level, isofalcarintriol affects cellular respiration in mammalian cells, C. elegans, and mice, and interacts with the α-subunit of the mitochondrial ATP synthase to promote mitochondrial biogenesis. Phenotypically, this also results in decreased mammalian cancer cell growth, as well as improved motility and stress resistance in C. elegans, paralleled by reduced protein accumulation in nematodal models of neurodegeneration. In addition, isofalcarintriol supplementation to both wild-type C57BL/6NRj mice on high-fat diet, and aged mice on chow diet results in improved glucose metabolism, increased exercise endurance, and attenuated parameters of frailty at an advanced age. Given these diverse effects on health parameters in both nematodes and mice, isofalcarintriol might become a promising mitohormesis-inducing compound to delay, ameliorate, or prevent aging-associated diseases in humans.


Subject(s)
Caenorhabditis elegans , Daucus carota , Humans , Animals , Mice , Caenorhabditis elegans/metabolism , Mitochondria/metabolism , Mice, Inbred C57BL , Aging , Longevity , Polyynes/metabolism , Mammals
12.
Int J Med Mushrooms ; 25(12): 43-53, 2023.
Article in English | MEDLINE | ID: mdl-37947063

ABSTRACT

Chemical investigation of the polypore fungus Fistulina hepatica resulted in the isolation of five compounds, including four new polyacetylenic fatty acid derivatives - isocinnatriacetin B (1), isocinnatriacetin A (2), cinna-triacetin C (3) and ethylcinnatriacetin A (4) together with one known polyacetylene fatty acid derivative - cinnatriacetin A (5). The structures were elucidated using spectroscopic methods (UV, NMR, HR-ESIMS) along with comparison to literature data. Antibacterial activity screening of compounds 1-5 against ESKAPE bacterial strains in vitro with zones of inhibition (ZOI) was performed and MIC values were established for the most active compounds (3 and 4). Together with that morphological and growth parameters under solid-phase cultivation were also researched.


Subject(s)
Agaricales , Basidiomycota , Polyacetylene Polymer/pharmacology , Basidiomycota/chemistry , Anti-Bacterial Agents , Polyynes/pharmacology , Fatty Acids , Molecular Structure
13.
J Org Chem ; 88(23): 16280-16291, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37947517

ABSTRACT

Bacteria in certain genera can produce "bacterial polyynes" that contain a conjugated C≡C bond starting from a terminal alkyne. Protegenin A is a derivative of octadecanoic acid that contains an ene-tetrayne moiety. It was discovered in Pseudomonas protegens Cab57 and exhibits strong antioomycete and moderate antifungal activity. By introducing cayG, a cytochrome P450 gene from Burkholderia caryophylli, into P. protegens Cab57, protegenin A was converted into more complex polyynes, caryoynencins A-E. A purification method that minimized the degradation and isomerization of caryoynencins was established. For the first time, as far as we know, the 1H and 13C{1H} NMR signals of caryoynencins were completely assigned by analyzing the NMR data of the isolated compounds and protegenin A enriched with [1-13C]- or [2-13C]-acetate. Through the structural analysis of caryoynencins D/E and bioconversion experiments, we observed that CayG constructs the allyl alcohol moiety of caryoynencins A-C through sequential hydroxylation, dehydration, and hydroxylation. The recombinant strain exhibited a stronger antioomycete activity compared to the wild-type strain. This paper proposes a stable purification and structural determination method for various bacterial polyynes, and P. protegens Cab57 holds promise as an engineering host for the production of biologically active polyynes.


Subject(s)
Bacteria , Polyynes , Polyynes/metabolism , Antifungal Agents/metabolism , Pseudomonas/genetics , Pseudomonas/chemistry , Pseudomonas/metabolism
14.
Biomacromolecules ; 24(9): 4051-4063, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37552220

ABSTRACT

The tunability of chromatic phases adapted by chromogenic polymers such as polydiacetylene (PDA) is key to their utility for robust sensing applications. Here, we investigated the influence of charged peptide interactions on the structure-dependent thermochromicity of amphiphilic PDAs. Solid-state NMR and circular dichroism analyses show that our oppositely charged peptide-PDA samples have distinct degrees of structural order, with the coassembled sample being in between the ß-sheet-like positive peptide-PDA and the relatively disordered negative peptide-PDA. All solutions exhibit thermochromicity between 20 and 80 °C, whereby the hysteresis of the blue, planar phase is much larger than that of the red, twisted phase. Resonance Raman spectroscopy of films demonstrates that only coassemblies with electrostatic complementarity stabilize coexisting blue and red PDA phases. This work reveals the nature of the structural changes responsible for the thermally responsive chromatic transitions of biomolecule-functionalized polymeric materials and how this process can be directed by sequence-dictated electrostatic interactions.


Subject(s)
Nanostructures , Polyynes , Polyynes/chemistry , Polyacetylene Polymer , Polymers/chemistry , Peptides
15.
Fitoterapia ; 170: 105631, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37536472

ABSTRACT

Five new polyacetylene derivatives (1-5), cyclocodonlandiynosides A-E, and eight known analogues (6-13) were isolated and identified from the fruits of Cyclocodon lancifolius. Their structures were established via spectroscopic and chemical methods, including NMR, HRESIMS, enzymatic hydrolysis, Mo2(OAc)4-induced circular dichroism and sugar derivatization. Compound 1 contains a nitrogenous fragment, which was rarely found in C14 polyacetylenes. Compounds 3 and 4 are polyacetylene glucosides possessing novel aglycones. All the isolated polyacetylenes (except 12) were screened for their xanthine oxidase (XO) inhibitory activity. All the tested compounds, at the concentration of 62.5 µg/mL, showed XO inhibiting effects. Among them, 13 and 3 showed the most potent XO inhibitory activity with IC50 values of 87.65 and 96.32 µM, compared to the positive control allopurinol with an IC50 value of 19.25 µM.


Subject(s)
Fruit , Xanthine Oxidase , Polyacetylene Polymer , Xanthine Oxidase/chemistry , Molecular Structure , Plant Extracts/chemistry , Polyynes/chemistry , Polyynes/pharmacology , Enzyme Inhibitors/pharmacology
16.
J Agric Food Chem ; 71(25): 9753-9761, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37261403

ABSTRACT

Falcarindiol is active against phytopathogenic fungi. In the present study, racemic falcarindiol analogs (8a-8q) were designed, synthesized, and tested for their activities against eight economically significant phytopathogenic fungal species. The compound 8o displayed the best antifungal activities and up to 54.6-fold in vitro potency improvement against Phytophthora capsici than the natural product stipudiol. Its half-maximum effective concentrations ranged from 4 to 23 µg/mL against all tested fungal species. Racemic 8o was 195-fold more potent than the fungicide carbendazim against P. capsici in vitro. The isomer (1S, 6S)-8o exhibited an EC50 of 1.10 and 2.70 µg/mL against Monilia fructigena and P. capsici, respectively, which was 47 and 11 times lower than (1R, 6S)-8o and (1S, 6R)-8o. In addition, in vivo bioassay results showed that (1S, 6S)-8o had high antifungal activity against infection of M. fructigena and P. capsici to apricot and pepper fruits and pepper plants, which the efficacy was similar or better than carbendazim. The high potency and selectivity of 8o stereoisomers against the phytopathogens warrant an interest in elucidating the molecular target for fungicide development.


Subject(s)
Antifungal Agents , Fungicides, Industrial , Antifungal Agents/pharmacology , Fungicides, Industrial/pharmacology , Polyacetylene Polymer , Stereoisomerism , Polyynes , Fungi , Structure-Activity Relationship
17.
J Org Chem ; 88(13): 7940-7952, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37267218

ABSTRACT

The substituent effect (SE) is one of the most important topics in organic chemistry and related fields, and Hammett constants (σ) are commonly used to describe it. The results of the computational studies carried out for Y-R-X systems (reaction sites Y = NO2, O-; substituents X = NO2, CN, Cl, H, OH, NH2; spacers R = polyene, polyyne, acene with n = 1-5 repeatable units) show that the substituent properties depend significantly on n, the type of R, and Y. Results of the analysis of the substituent effect stabilization energy and geometrical parameters of the Y-R-X systems reveal that (i) the SE strength and its inductive and resonance components decay with the increase in spacer length, its weakening depends on the Y and R type; quantitative relations describing decay are presented; (ii) the ratio between inductive and resonance effect strength changes with n and depends on Y; (iii) differences in the substituents' properties are examples of reverse SE; (iv) in general, structural parameters are mutually well correlated as well as with the SE descriptors; (v) due to the strong O- resonance effect, the changes in π-electron delocalization within R are well correlated with the SE strength only for Y = O- systems.


Subject(s)
Electrons , Nitrogen Dioxide , Polyynes
18.
Molecules ; 28(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37110760

ABSTRACT

Diverse secondary metabolites are biosynthesized by plants via various enzymatic cascades. These have the capacity to interact with various human receptors, particularly enzymes implicated in the etiology of several diseases. The n-hexane fraction of the whole plant extract of the wild edible plant, Launaea capitata (Spreng.) Dandy was purified by column chromatography. Five polyacetylene derivatives were identified, including (3S,8E)-deca-8-en-4,6-diyne-1,3-diol (1A), (3S)-deca-4,6,8-triyne-1,3-diol (1B), (3S)-(6E,12E)-tetradecadiene-8,10-diyne-1,3-diol (2), bidensyneoside (3), and (3S)-(6E,12E)-tetradecadiene-8,10-diyne-1-ol-3-O-ß-D-glucopyranoside (4). These compounds were investigated for their in vitro inhibitory activity against enzymes involved in neuroinflammatory disorders, including cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), and butyrylcholinesterase (BchE) enzymes. All isolates recorded weak-moderate activities against COX-2. However, the polyacetylene glycoside (4) showed dual inhibition against BchE (IC50 14.77 ± 1.55 µM) and 5-LOX (IC50 34.59 ± 4.26 µM). Molecular docking experiments were conducted to explain these results, which showed that compound 4 exhibited greater binding affinity to 5-LOX (-8.132 kcal/mol) compared to the cocrystallized ligand (-6.218 kcal/mol). Similarly, 4 showed a good binding affinity to BchE (-7.305 kcal/mol), which was comparable to the cocrystallized ligand (-8.049 kcal/mol). Simultaneous docking was used to study the combinatorial affinity of the unresolved mixture 1A/1B to the active sites of the tested enzymes. Generally, the individual molecules showed lower docking scores against all the investigated targets compared to their combination, which was consistent with the in vitro results. This study demonstrated that the presence of a sugar moiety (in 3 and 4) resulted in dual inhibition of 5-LOX and BchE enzymes compared to their free polyacetylenes analogs. Thus, polyacetylene glycosides could be suggested as potential leads for developing new inhibitors against the enzymes involved in neuroinflammation.


Subject(s)
Asteraceae , Butyrylcholinesterase , Humans , Cyclooxygenase 2/metabolism , Polyacetylene Polymer/pharmacology , Molecular Docking Simulation , Ligands , Cholinesterase Inhibitors/pharmacology , Asteraceae/metabolism , Polyynes/chemistry , Glycosides/chemistry , Diynes , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/chemistry
19.
Chem Biodivers ; 20(3): e202200196, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36879423

ABSTRACT

The chemical investigation of the methanol extract of the whole plant of Gymnanthemum theophrastifolium (Schweinf. ex Oliv. & Hiern) H.Rob. (Asteraceae) led to the isolation of a new elemane-type sesquiterpene (1), a new acetonide derived polyacetylene (2) and a naturally occurring compound (3) from the plant kingdom along with sixteen known compounds (4-19). Their structures were elucidated by extensive NMR and MS analysis. This is the first report on the chemical constituents of G. theophrastifolium. Furthermore, compounds 12, 13, and 14 are reported for the first time from the family Asteraceae, while compound 9 is reported for the first time from the genus Gymnanthemum. Thus, the present results provide valuable insights to the chemophenetic knowledge of G. theophrastifolium, which is also discussed in this work.


Subject(s)
Asteraceae , Sesquiterpenes , Polyacetylene Polymer , Monocyclic Sesquiterpenes , Molecular Structure , Asteraceae/chemistry , Sesquiterpenes/chemistry , Polyynes/pharmacology , Plant Extracts/chemistry
20.
Molecules ; 28(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36838824

ABSTRACT

(E)-7-Phenyl-2-hepten-4,6-diyn-1-ol (1) and (Z)-7-Phenyl-2-hepten-4,6-diyn-1-ol (2) are isomeric natural polyacetylenes isolated from the Chinese medicinal plant Bidens pilosa L. This study first revealed the excellent anti-metastasis potential of these two polyacetylenes on human gastric cancer HGC-27 cells and the distinctive molecular mechanisms underlying their activities. Polyacetylenes 1 and 2 significantly inhibited the migration, invasion, and adhesion of HGC-27 cells at their non-toxic concentrations in a dose-dependent manner. The results of a further mechanism investigation showed that polyacetylene 1 inhibited the expressions of Vimentin, Snail, ß-catenin, GSK3ß, MST1, YAP, YAP/TAZ, and their phosphorylation, and upregulated the expression of E-cadherin and p-LATS1. In addition, the expressions of various downstream metastasis-related proteins, such as MMP2/7/9/14, c-Myc, ICAM-1, VCAM-1, MAPK, p-MAPK, Sox2, Cox2, and Cyr61, were also suppressed in a dose-dependent manner. These findings suggested that polyacetylene 1 exhibited its anti-metastasis activities on HGC-27 cells through the reversal of the EMT process and the suppression of the Wnt/ß-catenin and Hippo/YAP signaling pathways.


Subject(s)
Bidens , Stomach Neoplasms , Humans , beta Catenin/metabolism , Polyacetylene Polymer , Hippo Signaling Pathway , Polyynes , Wnt Signaling Pathway
SELECTION OF CITATIONS
SEARCH DETAIL