Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 526
Filter
1.
Mol Cancer Ther ; 23(5): 662-671, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38224566

ABSTRACT

Radioresistance of melanoma brain metastases limits the clinical utility of conventionally fractionated brain radiation in this disease, and strategies to improve radiation response could have significant clinical impact. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is critical for repair of radiation-induced DNA damage, and inhibitors of this kinase can have potent effects on radiation sensitivity. In this study, the radiosensitizing effects of the DNA-PKcs inhibitor peposertib were evaluated in patient-derived xenografts of melanoma brain metastases (M12, M15, M27). In clonogenic survival assays, peposertib augmented radiation-induced killing of M12 cells at concentrations ≥100 nmol/L, and a minimum of 16 hours exposure allowed maximal sensitization. This information was integrated with pharmacokinetic modeling to define an optimal dosing regimen for peposertib of 125 mpk dosed just prior to and 7 hours after irradiation. Using this drug dosing regimen in combination with 2.5 Gy × 5 fractions of radiation, significant prolongation in median survival was observed in M12-eGFP (104%; P = 0.0015) and M15 (50%; P = 0.03), while more limited effects were seen in M27 (16%, P = 0.04). These data support the concept of developing peposertib as a radiosensitizer for brain metastases and provide a paradigm for integrating in vitro and pharmacokinetic data to define an optimal radiosensitizing regimen for potent DNA repair inhibitors.


Subject(s)
Brain Neoplasms , DNA-Activated Protein Kinase , Melanoma , Radiation-Sensitizing Agents , Xenograft Model Antitumor Assays , Animals , Humans , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Mice , DNA-Activated Protein Kinase/antagonists & inhibitors , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/pharmacokinetics , Radiation-Sensitizing Agents/therapeutic use , Melanoma/drug therapy , Melanoma/pathology , Cell Line, Tumor , Sulfones/pharmacology , Female , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use
2.
J Nanobiotechnology ; 19(1): 438, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34930279

ABSTRACT

BACKGROUND: As cancer is one of the main leading causes of mortality, a series of monotherapies such as chemotherapy, gene therapy and radiotherapy have been developed to overcome this thorny problem. However, a single treatment approach could not achieve satisfactory effect in many experimental explorations. RESULTS: In this study, we report the fabrication of cyclic RGD peptide (cRGD) modified Au4-iron oxide nanoparticle (Au4-IO NP-cRGD) based on aggregation-induced emission (AIE) as a multifunctional theranostic system. Besides Au4 cluster-based fluorescence imaging and enhanced radiotherapy, iron oxide (IO) nanocluster could realize magnetic resonance (MR) imaging and Fenton reaction-based chemotherapy. Abundant toxic reactive oxygen species generated from X-ray irradiation and in situ tumor-specific Fenton reaction under acidic microenvironment leads to the apoptotic and necrotic death of cancer cells. In vivo studies demonstrated good biocompatibility of Au4-IO NP-cRGD and a high tumor suppression rate of 81.1% in the synergistic therapy group. CONCLUSIONS: The successful dual-modal imaging and combined tumor therapy demonstrated AIE as a promising strategy for constructing multifunctional cancer theranostic platform.


Subject(s)
Gold/chemistry , Nanoparticles/chemistry , Radiation-Sensitizing Agents/chemistry , Animals , Cell Line, Tumor , Cell Survival/drug effects , Female , Ferric Compounds/chemistry , Humans , Hydrogen Peroxide/chemistry , Iron/chemistry , Magnetic Resonance Imaging , Mice , Mice, Inbred BALB C , Nanoparticles/toxicity , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Oligopeptides/chemistry , Photochemotherapy , Radiation-Sensitizing Agents/pharmacokinetics , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Theranostic Nanomedicine , Tissue Distribution
3.
Drug Deliv ; 28(1): 2301-2309, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34730060

ABSTRACT

Radiotherapy (RT) is a frequently used means in clinical tumor treatment. The outcome of RT varies, however, to a great extent, due to RT resistance or intolerable dose, which might be resolved by the development of radio-sensitizing strategies. Here, we report redox-sensitive iodinated polymersomes (RIP) carrying histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA, vorinostat), as a new dual-functional nano-radiosensitizer for breast cancer radiotherapy. SAHA-loaded RIP (RIP-SAHA) with a size of about 101 nm exhibited good colloidal stability while the reduction-activated release of SAHA, giving rise to better antitumor effect to 4T1 breast carcinoma cells than free SAHA. Accordingly, RIP-SAHA combined with a 4 Gy dose of X-ray radiation led to significantly enhanced suppression of 4T1 cells compared with SAHA combined 4 Gy of X-ray radiation, as a result of enhanced DNA damage and impeded DNA damage repair. The pharmacokinetics and biodistribution studies by single-photon emission computed tomography (SPECT) with 125I-labeled SAHA (125I-SAHA) showed a 17.3-fold longer circulation and 237.7-fold better tumor accumulation of RIP-SAHA over SAHA. The systemic administration of RIP-SAHA greatly sensitized radiotherapy of subcutaneous 4T1 breast tumors and brought about significant inhibition of tumor growth, without causing damages to major organs, compared with radiotherapy alone. RIP not only enhanced SAHA delivery but also acted as a radiosensitizer. RIP-SAHA emerges as a smart dual-functional nano-radiosensitizer to effectively enhance tumor radiotherapy.


Subject(s)
Breast Neoplasms/pathology , Histone Deacetylase Inhibitors/administration & dosage , Oxidation-Reduction/radiation effects , Radiation-Sensitizing Agents/administration & dosage , Vorinostat/administration & dosage , Animals , Cell Line, Tumor , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Chemistry, Pharmaceutical , DNA Damage/radiation effects , Drug Carriers/chemistry , Drug Liberation , Female , Histone Deacetylase Inhibitors/pharmacokinetics , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Polymers/chemistry , Radiation-Sensitizing Agents/pharmacokinetics , Tissue Distribution , Vorinostat/pharmacokinetics
4.
Molecules ; 26(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34361793

ABSTRACT

The pretargeting strategy has recently emerged in order to overcome the limitations of direct targeting, mainly in the field of radioimmunotherapy (RIT). This strategy is directly dependent on chemical reactions, namely bioorthogonal reactions, which have been developed for their ability to occur under physiological conditions. The Staudinger ligation, the copper catalyzed azide-alkyne cycloaddition (CuAAC) and the strain-promoted [3 + 2] azide-alkyne cycloaddition (SPAAC) were the first bioorthogonal reactions introduced in the literature. However, due to their incomplete biocompatibility and slow kinetics, the inverse-electron demand Diels-Alder (IEDDA) reaction was advanced in 2008 by Blackman et al. as an optimal bioorthogonal reaction. The IEDDA is the fastest bioorthogonal reaction known so far. Its biocompatibility and ideal kinetics are very appealing for pretargeting applications. The use of a trans-cyclooctene (TCO) and a tetrazine (Tz) in the reaction encouraged researchers to study them deeply. It was found that both reagents are sensitive to acidic or basic conditions. Furthermore, TCO is photosensitive and can be isomerized to its cis-conformation via a radical catalyzed reaction. Unfortunately, the cis-conformer is significantly less reactive toward tetrazine than the trans-conformation. Therefore, extensive research has been carried out to optimize both click reagents and to employ the IEDDA bioorthogonal reaction in biomedical applications.


Subject(s)
Antineoplastic Agents/chemistry , Click Chemistry/methods , Molecular Targeted Therapy/methods , Neoplasms/therapy , Radiation-Sensitizing Agents/chemistry , Radioimmunotherapy/methods , Alkynes/chemistry , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Azides/chemistry , Cycloaddition Reaction/methods , Cyclooctanes/chemistry , Electrons , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Hydrogen-Ion Concentration , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Immunoconjugates/pharmacology , Neoplasms/chemistry , Neoplasms/immunology , Neoplasms/pathology , Photochemotherapy/methods , Radiation-Sensitizing Agents/pharmacokinetics , Radiation-Sensitizing Agents/pharmacology
5.
Clin Cancer Res ; 27(11): 3224-3233, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34074654

ABSTRACT

PURPOSE: We recently discovered that anti-TIP1 antibody activates endocytosis in cancer cells, which facilitates retention of antibody and dissociation of a conjugated drug. To improve the pharmacokinetics and cancer specificity of radiosensitizing drugs, we utilized antibody-drug conjugates (ADCs) that bind specifically to radiation-inducible antigen, TIP1, on non-small cell lung cancer (NSCLC). This approach exploits the long circulation time of antibodies to deliver a radiosensitizing drug to cancer each day during radiotherapy. EXPERIMENTAL DESIGN: Antibodies to TIP1 were prioritized based on affinity, cancer-specific binding, and internalization. The lead antibody, 7H5, was conjugated with a cytotoxic drug MMAE because of its ability to radiosensitize cancer. Cytotoxicity, colony formation, and tumor growth studies were performed with 7H5-VcMMAE in combination with radiation. RESULTS: 7H5 showed a high affinity to recombinant TIP1 protein and radiation-inducible TIP1 on the cancer cell surface. 7H5 undergoes endocytosis in NSCLC cells in vitro. We obtained an average drug-to-antibody ratio (DAR) of 4.25 for 7H5-VcMMAE. A 70% reduction in viable cells was observed following 7H5-VcMMAE treatment compared with 7H5 alone in both A549 and H1299 cells. 7H5-VcMMAE sensitized NSCLC cells to radiation, thereby significantly decreasing the surviving fraction. The ADC combined with radiation showed a prolonged delay in tumor growth and improved survival in A549 and H1299 tumor models. CONCLUSIONS: Targeting radiation-inducible TIP1 with a radiosensitizing ADC is a promising strategy to enhance the therapeutic efficacy of NSCLC. This novel approach of targeting with ADCs to radiation-inducible antigens will lead to clinical trials in lung cancer patients treated with radiotherapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/radiotherapy , Immunoconjugates/therapeutic use , Lung Neoplasms/radiotherapy , Radiation-Sensitizing Agents/pharmacokinetics , Radiation-Sensitizing Agents/therapeutic use , A549 Cells , Antineoplastic Agents/pharmacokinetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Combined Modality Therapy , Human Umbilical Vein Endothelial Cells , Humans , Immunoconjugates/pharmacokinetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology
6.
Int J Nanomedicine ; 16: 239-248, 2021.
Article in English | MEDLINE | ID: mdl-33469284

ABSTRACT

BACKGROUND: Radiotherapy occupies an essential position as one of the most significant approaches for the clinical treatment of cancer. However, we cannot overcome the shortcoming of X-rays which is the high value of the oxygen enhancement ratio (OER). Radiosensitizers with the ability to enhance the radiosensitivity of tumor cells provide an alternative to changing X-rays to protons and heavy ion radiotherapy. MATERIALS AND METHODS: We prepared the Au-Pt nanoparticles (Au-Pt NPs) using a one-step method. The characteristics of the Au-Pt NPs were determined using TEM, HAADF-STEM, elemental mapping images, and DLS. The enhanced radiotherapy was demonstrated in vitro using MTT assays, colony formation assays, fluorescence imaging, and flow cytometric analyses of the apoptosis. The biodistribution of the Au-Pt NPs was analyzed using ICP-OES, and thermal images. The enhanced radiotherapy was demonstrated in vitro using immunofluorescence images, tumor volume and weigh, and hematoxylin & eosin (H&E) staining. RESULTS: Polyethylene glycol (PEG) functionalized nanoparticles composed of the metallic elements Au and Pt were designed to increase synergistic radiosensitivity. The mechanism demonstrated that heavy metal NPs possess a high X-ray photon capture cross-section and Compton scattering effect which increased DNA damage. Furthermore, the Au-Pt NPs exhibited enzyme-mimicking activities by catalyzing the decomposition of endogenous H2O2 to O2 in the solid tumor microenvironment (TME). CONCLUSION: Our work provides a systematically administered radiosensitizer that can selectively reside in a tumor via the EPR effect and enhances the efficiency of treating cancer with radiotherapy.


Subject(s)
Gold/therapeutic use , Metal Nanoparticles/chemistry , Neoplasms/radiotherapy , Platinum/therapeutic use , Radiation-Sensitizing Agents/therapeutic use , Animals , Catalysis , Cell Line, Tumor , Cell Survival , Female , Human Umbilical Vein Endothelial Cells , Humans , Metal Nanoparticles/ultrastructure , Mice , Mice, Inbred BALB C , Radiation-Sensitizing Agents/pharmacokinetics , Tissue Distribution , Tumor Microenvironment
7.
Int J Radiat Oncol Biol Phys ; 109(5): 1483-1494, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33253820

ABSTRACT

PURPOSE: Cervical cancer represents the fourth most frequent malignancy in the world among women, and mortality has remained stable for the past 4 decades. Intravenous cisplatin with concurrent radiation therapy is the standard-of-care for patients with local and regional cervical cancer. However, cisplatin induces serious dose-limiting systemic toxicities and recurrence frequently occurs. In this study, we aimed to develop an intracervical drug delivery system that allows cisplatin release directly into the tumor and minimize systemic side effects. METHODS AND MATERIALS: Twenty patient biopsies and 5 cell lines treated with cisplatin were analyzed for platinum content using inductively coupled plasma mass spectrometry. Polymeric implants loaded with cisplatin were developed and evaluated for degradation and drug release. The effect of local or systemic cisplatin delivery on drug biodistribution as well as tumor burden were evaluated in vivo, in combination with radiation therapy. RESULTS: Platinum levels in patient biopsies were 6-fold lower than the levels needed for efficacy and radiosensitization in vitro. Cisplatin local delivery implant remarkably improved drug specificity to the tumor and significantly decreased accumulation in the blood, kidney, and other distant normal organs, compared with traditional systemic delivery. The localized treatment further resulted in complete inhibition of tumor growth. CONCLUSIONS: The current standard-of-care systemic administration of cisplatin provides a subtherapeutic dose. We developed a polymeric drug delivery system that delivered high doses of cisplatin directly into the cervical tumor, while lowering drug accumulation and consequent side effects in normal tissues. Moving forward, these data will be used as the basis of a future first-in-human clinical trial to test the efficacy of localized cisplatin as adjuvant or neoadjuvant chemotherapy in local and regional cervical cancer.


Subject(s)
Antineoplastic Agents/administration & dosage , Cisplatin/administration & dosage , Injections, Intralesional/methods , Radiation-Sensitizing Agents/administration & dosage , Uterine Cervical Neoplasms/drug therapy , Adult , Aged , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Biopsy , Cell Line, Tumor , Chemoradiotherapy/methods , Cisplatin/adverse effects , Cisplatin/analysis , Cisplatin/pharmacokinetics , Drug Implants , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Polymers/administration & dosage , Radiation-Sensitizing Agents/adverse effects , Radiation-Sensitizing Agents/pharmacokinetics , Tissue Distribution , Tumor Burden , Uterine Cervical Neoplasms/chemistry , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
8.
Cancer Chemother Pharmacol ; 86(5): 633-640, 2020 11.
Article in English | MEDLINE | ID: mdl-32989483

ABSTRACT

PURPOSE: To investigate the metabolic pathways of triapine in primary cultures of human hepatocytes and human hepatic subcellular fractions; to investigate interactions of triapine with tenofovir and emtricitabine; and to evaluate triapine as a perpetrator of drug interactions. The results will better inform future clinical studies of triapine, a radiation sensitizer currently being studied in a phase III study. METHODS: Triapine was incubated with human hepatocytes and subcellular fractions in the presence of a number of inhibitors of drug metabolizing enzymes. Triapine depletion was monitored by LC-MS/MS. Tenofovir and emtricitabine were co-incubated with triapine in primary cultures of human hepatocytes. Triapine was incubated with a CYP probe cocktail and human liver microsomes, followed by LC-MS/MS monitoring of CYP specific metabolite formation. RESULTS: Triapine was not metabolized by FMO, AO/XO, MAO-A/B, or NAT-1/2, but was metabolized by CYP450s. CYP1A2 accounted for most of the depletion of triapine. Tenofovir and emtricitabine did not alter triapine depletion. Triapine reduced CYP1A2 activity and increased CYP2C19 activity. CONCLUSION: CYP1A2 metabolism is the major metabolic pathway for triapine. Triapine may be evaluated in cancer patients in the setting of HIV with emtricitabine or tenofovir treatment. Confirmatory clinical trials may further define the in vivo triapine metabolic fate and quantify any drug-drug interactions.


Subject(s)
Cytochrome P-450 CYP1A2 Inhibitors/pharmacokinetics , Cytochrome P-450 CYP2C19 Inducers/pharmacokinetics , Neoplasms/therapy , Pyridines/pharmacokinetics , Radiation-Sensitizing Agents/pharmacokinetics , Thiosemicarbazones/pharmacokinetics , Cells, Cultured , Chemoradiotherapy/methods , Chromatography, High Pressure Liquid , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1A2 Inhibitors/therapeutic use , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP2C19 Inducers/therapeutic use , Drug Evaluation, Preclinical , Drug Interactions , Emtricitabine/pharmacokinetics , Hepatocytes , Humans , Inactivation, Metabolic , Microsomes, Liver , Primary Cell Culture , Pyridines/therapeutic use , Radiation-Sensitizing Agents/therapeutic use , Tandem Mass Spectrometry , Tenofovir/pharmacokinetics , Thiosemicarbazones/therapeutic use
9.
Theranostics ; 10(17): 7683-7696, 2020.
Article in English | MEDLINE | ID: mdl-32685013

ABSTRACT

Tumor hypoxia, acidosis, and excessive reactive oxygen species (ROS) were the main characteristics of the bladder tumor microenvironment (TME), and abnormal TME led to autophagy activation, which facilitated cancer cell proliferation. The therapeutic efficacy of autophagy inhibitors might also be impeded by abnormal TME. To address these issues, we proposed a new strategy that utilized manganese dioxide (MnO2) nanoparticles to optimize the abnormal TME and revitalize autophagy inhibitors, and both oxygenation and autophagy inhibition may sensitize the tumor cells to radiation therapy. Methods: By taking advantage of the strong affinity between negatively charged MnO2 and positively charged chloroquine (CQ), the nanoparticles were fabricated by integrating MnO2 and CQ in human serum albumin (HSA)-based nanoplatform (HSA-MnO2-CQ NPs). Results: HSA-MnO2-CQ NPs NPs efficiently generated O2 and increased pH in vitro after reaction with H+/H2O2 and then released the encapsulated CQ in a H+/H2O2 concentration-dependent manner. The NPs restored the autophagy-inhibiting activity of chloroquine in acidic conditions by increasing its intracellular uptake, and markedly blocked hypoxia-induced autophagic flux. In vivo studies showed the NPs improved pharmacokinetic behavior of chloroquine and effectively accumulated in tumor tissues. The NPs exhibited significantly decreased tumor hypoxia areas and increased tumor pH, and had remarkable autophagy inhibition efficacy on bladder tumors. Finally, a significant anti-tumor effect achieved by the enhanced autophagy inhibition and radiation sensitization. Conclusions: HSA-MnO2-CQ NPs synergistically regulated the abnormal TME and inhibited autophagic flux, and effectively sensitized radiation therapy to treat bladder cancers.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Chemoradiotherapy/methods , Drug Carriers/chemistry , Radiation-Sensitizing Agents/administration & dosage , Urinary Bladder Neoplasms/therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Autophagy/drug effects , Autophagy/radiation effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Chloroquine/administration & dosage , Chloroquine/pharmacokinetics , Drug Synergism , Humans , Hydrogen-Ion Concentration/drug effects , Male , Manganese Compounds/administration & dosage , Manganese Compounds/pharmacokinetics , Mice , Nanoparticles/chemistry , Oxides/administration & dosage , Oxides/pharmacokinetics , Radiation Tolerance/drug effects , Radiation-Sensitizing Agents/pharmacokinetics , Reactive Oxygen Species/metabolism , Serum Albumin, Human/chemistry , Tumor Hypoxia/drug effects , Tumor Hypoxia/radiation effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/radiation effects , Urinary Bladder/pathology , Urinary Bladder Neoplasms/pathology , Xenograft Model Antitumor Assays
10.
Int J Pharm ; 582: 119321, 2020 May 30.
Article in English | MEDLINE | ID: mdl-32289483

ABSTRACT

Combining functional proteins with small molecular drugs into one entity may endow distinct synergistic advantages. However, on account of completely different physicochemical properties of such payloads, co-delivery through systemic administration for therapeutic purpose is challenging. Herein, we designed the protein-drug conjugate HSAP-DC-CAT (human serum albumin/Pt (IV)-dibenzocyclooctyne/chlorin e6-catalase) by modification of CAT and cisplatin pro-drug loaded HSA with pH-sensitive azide linker 3-(azidomethyl)-4-methyl-2,5-furandione (AzMMMan) followed by click chemistry assembly with DC. The dynamic covalent bonds between linker and proteins, on the one hand, can bridge proteins and small molecular drugs in the intermediate state for systemic delivery in the harsh in vivo environment; on the other hand, it can trigger traceless cleavage and release of drugs and proteins with full bioactivity in acidic microenvironment of tumor. The multifunctional HSAP-DC-CAT provides efficient cytosolic transduction in vitro, excellent blood half-lives after systemic administration, and significant antitumor outcome via integrated cisplatin-based chemotherapy and Ce6-based photodynamic therapy enhanced by catalase-induced manipulation of tumor hypoxia microenvironment. This study describes a universal formulation strategy for protein and small molecular drug by a bifunctional linker through amide reaction and click chemistry, with traceless in vivo release of therapeutic units.


Subject(s)
Antioxidants/pharmacology , Breast Neoplasms/drug therapy , Catalase/pharmacology , Cisplatin/pharmacology , Photochemotherapy , Porphyrins/pharmacology , Prodrugs/pharmacology , Radiation-Sensitizing Agents/pharmacology , Serum Albumin, Human/chemistry , Animals , Antioxidants/chemistry , Antioxidants/pharmacokinetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Catalase/chemistry , Catalase/pharmacokinetics , Cell Line, Tumor , Chlorophyllides , Cisplatin/chemistry , Cisplatin/pharmacokinetics , Click Chemistry , Delayed-Action Preparations , Drug Carriers , Drug Compounding , Female , Hydrogen-Ion Concentration , Mice, Nude , Porphyrins/chemistry , Porphyrins/pharmacokinetics , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacokinetics , Tumor Hypoxia , Tumor Microenvironment
11.
Nanoscale ; 12(16): 8809-8818, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32250377

ABSTRACT

The application of radiotherapy (RT) to treat osteosarcoma (OS) has been limited, but this is starting to change as the ability to target radiation energy to niches improves. Furthermore, lung cancer from highly metastatic OS is a major cause of death, so it is critical to explore new strategies to tackle metastasis. In this study, we designed a nanoscale radiosensitizer by grafting 2-deoxy-d-glucose (2DG) onto graphene quantum dots (GQD) to achieve OS targeting and boost RT efficacy. Combining the use of 2DG-grafted GQDs (2DG-g-GQD) with RT produced a significant increase in oxidative stress response and DNA damage in the 143B OS cell line compared with RT alone. Moreover, 2DG-g-GQDs selectively associated with 143B cells, and demonstrated the inhibition of migration in a scratch assay. We also demonstrated remarkable improvement in their ability to inhibit tumour progression and lung metastasis in an OS xenograft mouse model. Our results show that the use of 2DG-g-GQDs as OS-targeting radiosensitizers improves their therapeutic outcome and exhibits potential for use in low-dose precision RT for OS.


Subject(s)
Deoxyglucose/chemistry , Graphite/chemistry , Osteosarcoma/radiotherapy , Quantum Dots/therapeutic use , Radiation-Sensitizing Agents/chemistry , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , DNA Damage , Deoxyglucose/pharmacokinetics , Deoxyglucose/therapeutic use , Drug Delivery Systems , Glucose/chemistry , Glucose/pharmacokinetics , Glucose/therapeutic use , Graphite/pharmacokinetics , Graphite/therapeutic use , Humans , Mice , Neoplasm Metastasis/prevention & control , Osteosarcoma/metabolism , Osteosarcoma/pathology , Quantum Dots/chemistry , Radiation-Sensitizing Agents/pharmacokinetics , Radiation-Sensitizing Agents/therapeutic use , Reactive Oxygen Species/metabolism , Treatment Outcome
12.
Nanoscale ; 12(13): 6959-6963, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32187249

ABSTRACT

Ultra-small gold nanoclusters (AuNCs) are increasingly investigated for cancer imaging and radiotherapy enhancement. While fine-tuning the AuNC surface chemistry can optimize their pharmacokinetics, its effects on radiotherapy enhancement remain largely unexplored. This study demonstrates that optimizing the surface chemistry of AuNCs for increased tumor uptake can significantly affect its potential to augment radiotherapy outcomes.


Subject(s)
Gold , Metal Nanoparticles , Neoplasms/radiotherapy , Radiation-Sensitizing Agents , Cell Line , Gold/chemistry , Gold/pharmacokinetics , Gold/pharmacology , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Neoplasms/metabolism , Neoplasms/pathology , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacokinetics , Radiation-Sensitizing Agents/pharmacology
13.
J Photochem Photobiol B ; 205: 111827, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32120183

ABSTRACT

5-iodo-2-deoxyuridine (IUdR) has been demonstrated to induce an appreciable radiosensitizing effect on glioblastoma patients, but due to the short circulation half-life times and failure to pass through the blood-brain barrier (BBB), its clinical use is limited. Accordingly, in this study, we used magnetic graphene oxide (NGO/SPIONs) nanoparticles coated with PLGA polymer as a dynamic nanocarrier for IUdR and, evaluated its sensitizing enhancement ratio in combination with a single dose X-ray at clinically megavoltage energies for treatment of C6 glioma rats. Nanoparticles were characterized using Zetasizer and TEM microscopy, and in vitro biocompatibility of nanoparticles was assessed with MTT assay. IUdR/MNPs were intravenously administered under a magnetic field (1.3 T) on day 13 after the implantation of C6 cells. After a day following the injection, rats exposed with radiation (8 Gy). ICP-OES analysis data indicated an effective magnetic targeting, leading to remarkably improved penetration through the BBB. In vivo release analysis with HPLC indicated sustained release of IUdR and, prolonged the lifespan in plasma (P < .01). In addition, our findings revealed a synergistic effect for IUdR/MNPs coupled with radiation, which significantly inhibited the tumor expansion (>100%), prolonged the survival time (>100%) and suppressed the anti-apoptotic response of glioma rats by increasing Bax/Bcl-2 ratio (2.13-fold) in compared with the radiation-only. In conclusion, besides high accumulation in targeted tumor sites, the newly developed IUdR/MNPs, also exhibited the ability of IUdR/MNPs to significantly enhance radiosensitizing effect, improve therapeutic efficacy and increase toxicity for glioma-bearing rats.


Subject(s)
Brain Neoplasms/drug therapy , Glioma/drug therapy , Graphite/administration & dosage , Idoxuridine/administration & dosage , Nanoparticles/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer/administration & dosage , Radiation-Sensitizing Agents/administration & dosage , Animals , Brain/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Drug Liberation , Glioma/metabolism , Glioma/pathology , Graphite/chemistry , Graphite/pharmacokinetics , Hydrogen-Ion Concentration , Idoxuridine/pharmacokinetics , Magnetic Phenomena , Male , Nanoparticles/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacokinetics , Rabbits , Radiation-Sensitizing Agents/pharmacokinetics , Rats, Wistar , Tumor Burden/drug effects
14.
Sci Adv ; 6(4): eaaz1722, 2020 01.
Article in English | MEDLINE | ID: mdl-32010792

ABSTRACT

In the current clinical boron neutron capture therapy (BNCT), p-boronophenylalanine (BPA) has been the most powerful drug owing to its ability to accumulate selectively within cancers through cancer-related amino acid transporters including LAT1. However, the therapeutic success of BPA has been sometimes compromised by its unfavorable efflux from cytosol due to their antiport mechanism. Here, we report that poly(vinyl alcohol) (PVA) can form complexes with BPA through reversible boronate esters in aqueous solution, and the complex termed PVA-BPA can be internalized into cancer cells through LAT1-mediated endocytosis, thereby enhancing cellular uptake and slowing the untoward efflux. In in vivo study, compared with clinically used fructose-BPA complexes, PVA-BPA exhibited efficient tumor accumulation and prolonged tumor retention with quick clearance from bloodstream and normal organs. Ultimately, PVA-BPA showed critically enhanced antitumor activity in BNCT. The facile technique proposed in this study offers an approach for drug delivery focusing on drug metabolism.


Subject(s)
Boron Compounds/pharmacology , Boron Neutron Capture Therapy , Energy Metabolism/drug effects , Phenylalanine/analogs & derivatives , Polyvinyl Alcohol/pharmacology , Radiation-Sensitizing Agents/pharmacology , Animals , Boron Compounds/chemistry , Boron Compounds/pharmacokinetics , Cell Line, Tumor , Disease Models, Animal , Drug Synergism , Humans , Mass Spectrometry , Mice , Neoplasms/therapy , Phenylalanine/chemistry , Phenylalanine/pharmacokinetics , Phenylalanine/pharmacology , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/pharmacokinetics , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacokinetics , Signal Transduction/drug effects , Tissue Distribution , Xenograft Model Antitumor Assays
15.
Nanotechnology ; 31(13): 135102, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-31783387

ABSTRACT

Radiotherapy is one of the main treatments used to fight cancer. A major limitation of this modality is the lack of selectivity between cancerous and healthy tissues. One of the most promising strategies proposed in this last decade is the addition of nanoparticles with high-atomic number to enhance radiation effects in tumors. Gold nanoparticles (AuNPs) are considered as one of the best candidates because of their high radioenhancing property, simple synthesis and low toxicity. Ultra small AuNPs (core size of 2.4 nm and hydrodynamic diameter of 4.5 nm) covered with dithiolated diethylenetriaminepentaacetic acid (Au@DTDTPA) are of high interest because of their properties to bind MRI active or PET active compounds at their surface, to concentrate in some tumors and be eliminated via renal clearance thanks to their small size. These key figures make Au@DTDTPA the best candidate to develop image-guided radiotherapy. Surprisingly the capacity of the nanoparticles to penetrate cells, an important issue to predict radioenhancement, has not been established yet. Here, we report the uptake dynamics, internalization routes and excretion dynamics of Au@DTDTPA nanoparticles in various cancer cell lines including glioblastoma (U87-MG), chordoma (UM-Chor1), cervix (HeLa), prostate (PC3), and pancreatic (BxPC-3) cell lines as well as fibroblasts (Dermal fibroblasts). This study demonstrates a strong cell line dependence of the nanoparticle uptake and excretion dynamics. Different pathways of cell internalization evidenced here explain this dependence. As a major finding, the retention of Au@DTDTPA nanoparticles was found to be higher in cancer cells than in fibroblasts. This result strengthens the strategy of using nanoagents to improve tumor selectivity of radiation treatments. In particular Au@DTDTPA nanoparticles are good candidates to improve the treatment of radioresitant gliobastoma, pancreatic and prostate cancer in particular. In conclusion, the variability of cell-to-nanoparticle interaction is a new parameter to consider in the choice of nanoagents in a combined treatment.


Subject(s)
Fibroblasts/cytology , Gold/pharmacokinetics , Radiation-Sensitizing Agents/pharmacokinetics , Cell Line, Tumor , Cell Proliferation/drug effects , Fibroblasts/chemistry , Gold/chemistry , HeLa Cells , Humans , Metal Nanoparticles/chemistry , PC-3 Cells , Pentetic Acid/chemistry , Radiation-Sensitizing Agents/chemistry
16.
Br J Radiol ; 93(1106): 20190742, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31778316

ABSTRACT

OBJECTIVE: One of the major issues in current radiotherapy (RT) is the normal tissue toxicity. A smart combination of agents within the tumor would allow lowering the RT dose required while minimizing the damage to healthy tissue surrounding the tumor. We chose gold nanoparticles (GNPs) and docetaxel (DTX) as our choice of two radiosensitizing agents. They have a different mechanism of action which could lead to a synergistic effect. Our first goal was to assess the variation in GNP uptake, distribution, and retention in the presence of DTX. Our second goal was to assess the therapeutic results of the triple combination, RT/GNPs/DTX. METHODS: We used HeLa and MDA-MB-231 cells for our study. Cells were incubated with GNPs (0.2 nM) in the absence and presence of DTX (50 nM) for 24 h to determine uptake, distribution, and retention of NPs. For RT experiments, treated cells were given a 2 Gy dose of 6 MV photons using a linear accelerator. RESULTS: Concurrent treatment of DTX and GNPs resulted in over 85% retention of GNPs in tumor cells. DTX treatment also forced GNPs to be closer to the most important target, the nucleus, resulting in a decrease in cell survival and increase in DNA damage with the triple combination of RT/ GNPs/DTX vs RT/DTX. Our experimental therapeutic results were supported by Monte Carlo simulations. CONCLUSION: The ability to not only trap GNPs at clinically feasible doses but also to retain them within the cells could lead to meaningful fractionated treatments in future combined cancer therapy. Furthermore, the suggested triple combination of RT/GNPs/DTX may allow lowering the RT dose to spare surrounding healthy tissue. ADVANCES IN KNOWLEDGE: This is the first study to show intracellular GNP transport disruption by DTX, and its advantage in radiosensitization.


Subject(s)
Antineoplastic Agents/pharmacology , Docetaxel/pharmacology , Gold/pharmacology , Metal Nanoparticles , Radiation-Sensitizing Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Biological Transport , Cell Survival/drug effects , Cell Survival/radiation effects , Docetaxel/pharmacokinetics , Drug Synergism , Female , Gold/pharmacokinetics , HeLa Cells , Humans , Radiation-Sensitizing Agents/pharmacokinetics , Triple Negative Breast Neoplasms/radiotherapy , Tumor Cells, Cultured , Uterine Cervical Neoplasms/radiotherapy
17.
Anticancer Res ; 39(12): 6661-6671, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31810931

ABSTRACT

BACKGROUND: Boron neutron capture therapy (BNCT) selectively kills tumor cells while sparing adjacent normal cells. Boric acid (BA)-mediated BNCT showed therapeutic efficacy in treating hepatocellular carcinoma (HCC) in vivo. However, DNA damage and corresponding responses induced by BA-mediated BNCT remained unclear. This study aimed to investigate whether BA-mediated BNCT induced DNA double-strand breaks (DSBs) and to explore DNA damage responses in vitro. MATERIALS AND METHODS: Huh7 Human HCC cells were treated with BA and irradiated with neutrons during BA-BNCT. Cell survival and DNA DSBs were examined by clonogenic assay and expression of phosphorylated H2A histone family member X (γH2AX), respectively. The DNA damage response was explored by determining the expression levels of DNA repair- and apoptosis-associated proteins and conducting a cell-cycle analysis. RESULTS: DNA DSBs induced by BA-mediated BNCT were primarily repaired through the homologous recombination pathway. BA-mediated BNCT induced G2/M arrest and apoptosis in HCC. CONCLUSION: Our findings may enable the identification of radiosensitizers or adjuvant drugs for potentiating the therapeutic effectiveness of BA-mediated BNCT for HCC.


Subject(s)
Boric Acids/therapeutic use , Boron Neutron Capture Therapy/methods , Carcinoma, Hepatocellular/radiotherapy , DNA Breaks, Double-Stranded , DNA Repair , Liver Neoplasms/radiotherapy , Radiation-Sensitizing Agents/therapeutic use , Apoptosis Regulatory Proteins/metabolism , Boric Acids/pharmacokinetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Caspase 3/metabolism , Cell Line, Tumor , Cell Survival/radiation effects , DNA End-Joining Repair , DNA-Binding Proteins/metabolism , Enzyme Activation , Histones/metabolism , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Radiation-Sensitizing Agents/pharmacokinetics , Recombinational DNA Repair
18.
Mol Pharm ; 16(9): 3831-3841, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31381351

ABSTRACT

Boron neutron capture therapy (BNCT) is a therapeutic modality which has been used for the treatment of cancers, including brain and head and neck tumors. For effective treatment via BNCT, efficient and selective delivery of a high boron dose to cancer cells is needed. Prostate-specific membrane antigen (PSMA) is a target for prostate cancer imaging and drug delivery. In this study, we conjugated boronic acid or carborane functional groups to a well-established PSMA inhibitor scaffold to deliver boron to prostate cancer cells and prostate tumor xenograft models. Eight boron-containing PSMA inhibitors were synthesized. All of these compounds showed a strong binding affinity to PSMA in a competition radioligand binding assay (IC50 from 555.7 to 20.3 nM). Three selected compounds 1a, 1d, and 1f were administered to mice, and their in vivo blocking of 68Ga-PSMA-11 uptake was demonstrated through a positron emission tomography (PET) imaging and biodistribution experiment. Biodistribution analysis demonstrated boron uptake of 4-7 µg/g in 22Rv1 prostate xenograft tumors and similar tumor/muscle ratios compared to the ratio for the most commonly used BNCT compound, 4-borono-l-phenylalanine (BPA). Taken together, these data suggest a potential role for PSMA targeted BNCT agents in prostate cancer therapy following suitable optimization.


Subject(s)
Antigens, Surface/metabolism , Boron Neutron Capture Therapy/methods , Boronic Acids/chemistry , Boronic Acids/pharmacokinetics , Drug Delivery Systems/methods , Glutamate Carboxypeptidase II/antagonists & inhibitors , Glutamate Carboxypeptidase II/metabolism , Prostatic Neoplasms/radiotherapy , Animals , Boron Compounds/chemistry , Boron Compounds/pharmacokinetics , Cell Line, Tumor , Cell Survival/drug effects , Edetic Acid/analogs & derivatives , Edetic Acid/pharmacokinetics , Gallium Isotopes , Gallium Radioisotopes , Humans , Inhibitory Concentration 50 , Ligands , Male , Mice , Mice, Nude , Oligopeptides/pharmacokinetics , Phenylalanine/analogs & derivatives , Phenylalanine/chemistry , Phenylalanine/pharmacokinetics , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms/pathology , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacokinetics , Tissue Distribution , Xenograft Model Antitumor Assays
19.
Clin Cancer Res ; 25(20): 6035-6043, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31337643

ABSTRACT

PURPOSE: Iododeoxyuridine (IUdR) is a potent radiosensitizer; however, its clinical utility is limited by dose-limiting systemic toxicities and the need for prolonged continuous infusion. 5-Iodo-2-pyrimidinone-2'-deoxyribose (IPdR) is an oral prodrug of IUdR that, compared with IUdR, is easier to administer and less toxic, with a more favorable therapeutic index in preclinical studies. Here, we report the clinical and pharmacologic results of a first-in-human phase I dose escalation study of IPdR + concurrent radiation therapy (RT) in patients with advanced metastatic gastrointestinal (GI) cancers. PATIENTS AND METHODS: Adult patients with metastatic GI cancers referred for palliative RT to the chest, abdomen, or pelvis were eligible for study. Patients received IPdR orally once every day × 28 days beginning 7 days before the initiation of RT (37.5 Gy in 2.5 Gy × 15 fractions). A 2-part dose escalation scheme was used, pharmacokinetic studies were performed at multiple time points, and all patients were assessed for toxicity and response to Day 56. RESULTS: Nineteen patients were entered on study. Dose-limiting toxicity was encountered at 1,800 mg every day, and the recommended phase II dose is 1,200 mg every day. Pharmacokinetic analyses demonstrated achievable and sustainable levels of plasma IUdR ≥1 µmol/L (levels previously shown to mediate radiosensitization). Two complete, 3 partial, and 9 stable responses were achieved in target lesions. CONCLUSIONS: Administration of IPdR orally every day × 28 days with RT is feasible and tolerable at doses that produce plasma IUdR levels ≥1 µmol/L. These results support the investigation of IPdR + RT in phase II studies.


Subject(s)
Chemoradiotherapy/methods , Gastrointestinal Neoplasms/therapy , Idoxuridine/pharmacokinetics , Pyrimidine Nucleosides/administration & dosage , Radiation-Sensitizing Agents/administration & dosage , Administration, Oral , Adult , Aged , Aged, 80 and over , Dose Fractionation, Radiation , Feasibility Studies , Female , Gastrointestinal Neoplasms/pathology , Humans , Idoxuridine/administration & dosage , Idoxuridine/toxicity , Male , Maximum Tolerated Dose , Middle Aged , Neoplasm Staging , Prodrugs/administration & dosage , Prodrugs/pharmacokinetics , Prodrugs/toxicity , Pyrimidine Nucleosides/pharmacokinetics , Pyrimidine Nucleosides/toxicity , Radiation-Sensitizing Agents/pharmacokinetics , Radiation-Sensitizing Agents/toxicity , Treatment Outcome
20.
Xenobiotica ; 49(3): 346-362, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29543539

ABSTRACT

Sulfoquinovosylacylpropanediol (SQAP) is a novel potent radiosensitizer that inhibits angiogenesis in vivo and results in increased oxigenation and reduced tumor volume. We investigated the distribution, metabolism, and excretion of SQAP in male KSN-nude mice transplanted with a human pulmonary carcinoma, Lu65. For the metabolism analysis, a 2 mg (2.98 MBq)/kg of [glucose-U-14C]-SQAP (CP-3839) was intravenously injected. The injected SQAP was decomposed into a stearic acid and a sulfoquinovosylpropanediol (SQP) in the body. The degradation was relatively slow in the carcinoma tissue.1,3-propanediol[1-14C]-SQAP (CP-3635) was administered through intravenous injection of a 1 mg (3.48 MBq)/kg dose followed by whole body autoradiography of the mice. The autoradiography analysis demonstrated that SQAP rapidly distributed throughout the whole body and then quickly decreased within 4 hours except the tumor and excretion organs such as liver, kidney. Retention of SQAP was longer in tumor parts than in other tissues, as indicated by higher levels of radioactivity at 4 hours. The radioactivity around the tumor had also completely disappeared within 72 hours.


Subject(s)
Glycolipids/pharmacokinetics , Radiation-Sensitizing Agents/pharmacokinetics , Administration, Intravenous , Animals , Autoradiography , Chromatography, High Pressure Liquid , Chromatography, Liquid , Glycolipids/administration & dosage , Glycolipids/therapeutic use , Humans , Lung Neoplasms/drug therapy , Mice, Nude , Radiation-Sensitizing Agents/administration & dosage , Radiation-Sensitizing Agents/therapeutic use , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...