Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Psychiatry Clin Neurosci ; 78(2): 123-130, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37984442

ABSTRACT

AIM: Blunted niacin response (BNR) was an endophenotype of schizophrenia, but the underlying mechanism remains unclarified. The objective of this study was to verify whether genes associated with BNR pathway constitute the genetic basis and the pathological mechanism of BNR phenotypic psychiatric patients. METHODS: Two independent sample sets consisting of 971 subjects were enrolled in this study. A total of 62 variants were genotyped in the discovery set, then the related variants were verified in the verification set. The published PGC GWAS data were used to validate the associations between the variants and psychiatry disorders. RT-PCR analysis, eQTL data, and Dual-Luciferase Reporter experiment were used to investigate the potential molecular mechanisms of the variants underlying BNR. RESULTS: The results showed that two SNPs, rs56959712 in HCAR2 and rs2454721 in HCAR3 were significantly associated with niacin response. The risk allele T of rs2454721 could affect the niacin responses of psychiatric patients through elevated HCAR3 gene expression. These two genes, especially HCAR3, were significantly associated with the risk of schizophrenia, as identified in this study and verified using the published GWAS data. CONCLUSION: HCAR3 is a novel schizophrenia susceptibility gene which is significantly associated with blunted niacin response in schizophrenia. In-depth investigation of HCAR3 is of great significance for uncovering the pathogenesis and propose new therapeutic targets for psychiatric disorders, especially for the BNR subgroup patients.


Subject(s)
Niacin , Receptors, Nicotinic , Schizophrenia , Humans , Niacin/pharmacology , Niacin/therapeutic use , Schizophrenia/drug therapy , Endophenotypes , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Genome-Wide Association Study , Receptors, Nicotinic/genetics , Receptors, Nicotinic/therapeutic use , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/therapeutic use
2.
Int J Immunopathol Pharmacol ; 37: 3946320231210737, 2023.
Article in English | MEDLINE | ID: mdl-37890097

ABSTRACT

Introduction: G-protein coupled receptor 30 (GPR30) is associated with cell metastasis and drug resistance in many different cancer cells. The present study aimed to reveal the sensitivity of GPR30 to gefitinib in non-small cell lung cancer (NSCLC) cells.Methods: Cell viability and proliferation were detected using cell counting kit 8 and 5-ethynyl-2'-deoxyuridine assays, respectively. Western blotting and quantitative real-time reverse transcription PCR were used to detect GPR30 or epithelial-mesenchyme transition (EMT)-related mRNA and protein expression.Results: The results showed that GPR30 expression is associated with gefitinib sensitivity. G15, as a GPR30 antagonist, reduced GPR30 expression. We chose the maximum concentration of G15 with minimal cytotoxicity to detect cell viability after combined treatment with gefitinib in NSCLC cells, which indicated that G15 could increase sensitivity to gefitinib. However, the effect of G15 on gefitinib sensitivity disappeared after treatment with a small interfering RNA targeting GPR30. Further research showed that G15 or GPR30 siRNA treatment could upregulate E-cadherin and downregulate vimentin levels.Conclusion: Taken together, these data suggested that G15 could enhance NSCLC sensitivity to gefitinib by inhibition of GPR30 and EMT.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Gefitinib/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Epithelial-Mesenchymal Transition , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , RNA, Small Interfering , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/therapeutic use , Cell Proliferation
3.
J Hematol Oncol ; 16(1): 92, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37537597

ABSTRACT

Several bispecific antibodies (bsAbs) targeting BCMA, GPRC5D, and FcRH5 are in clinical trials for heavily pretreated multiple myeloma (MM) patients. Teclistamab was approved for relapsed/refractory MM therapy in 2022, while elranatamab, linvoseltamab, F182112, talquetamab, and cevostamab are currently undergoing clinical trials. This study summarizes several latest reports on bsAbs for the treatment of MM from the ASCO 2023 Annual Meeting.


Subject(s)
Antibodies, Bispecific , Multiple Myeloma , Humans , Antibodies, Bispecific/therapeutic use , Multiple Myeloma/therapy , B-Cell Maturation Antigen , Immunotherapy , Receptors, G-Protein-Coupled/therapeutic use
4.
ChemistryOpen ; 12(11): e202300051, 2023 11.
Article in English | MEDLINE | ID: mdl-37404062

ABSTRACT

Recent studies have identified G protein-coupled receptor 40 (GPR40) as a promising target for treating type 2 diabetes mellitus, and GPR40 agonists have several superior effects over other hypoglycemic drugs, including cardiovascular protection and suppression of glucagon levels. In this study, we constructed an up-to-date GPR40 ligand dataset for training models and performed a systematic optimization of the ensemble model, resulting in a powerful ensemble model (ROC AUC: 0.9496) for distinguishing GPR40 agonists and non-agonists. The ensemble model is divided into three layers, and the optimization process is carried out in each layer. We believe that these results will prove helpful for both the development of GPR40 agonists and ensemble models. All the data and models are available on GitHub. (https://github.com/Jiamin-Yang/ensemble_model).


Subject(s)
Deep Learning , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/drug therapy , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/therapeutic use , Hypoglycemic Agents/therapeutic use
5.
Chin Med J (Engl) ; 136(24): 2974-2982, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37284741

ABSTRACT

BACKGROUND: High-grade serous ovarian cancer (HGSOC) is the biggest cause of gynecological cancer-related mortality because of its extremely metastatic nature. This study aimed to explore and evaluate the characteristics of candidate factors associated with the metastasis and progression of HGSOC. METHODS: Transcriptomic data of HGSOC patients' samples collected from primary tumors and matched omental metastatic tumors were obtained from three independent studies in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were selected to evaluate the effects on the prognosis and progression of ovarian cancer using data from The Cancer Genome Atlas (TCGA) database. Hub genes' immune landscapes were estimated by the Tumor Immune Estimation Resource (TIMER) database. Finally, using 25 HGSOC patients' cancer tissues and 10 normal fallopian tube tissues, immunohistochemistry (IHC) was performed to quantify the expression levels of hub genes associated with International Federation of Gynecology and Obstetrics (FIGO) stages. RESULTS: Fourteen DEGs, ADIPOQ , ALPK2 , BARX1 , CD37 , CNR2 , COL5A3 , FABP4 , FAP , GPR68 , ITGBL1 , MOXD1 , PODNL1 , SFRP2 , and TRAF3IP3 , were upregulated in metastatic tumors in every database while CADPS , GATA4 , STAR , and TSPAN8 were downregulated. ALPK2 , FAP , SFRP2 , GATA4 , STAR , and TSPAN8 were selected as hub genes significantly associated with survival and recurrence. All hub genes were correlated with tumor microenvironment infiltration, especially cancer-associated fibroblasts and natural killer (NK) cells. Furthermore, the expression of FAP and SFRP2 was positively correlated with the International Federation of Gynecology and Obstetrics (FIGO) stage, and their increased protein expression levels in metastatic samples compared with primary tumor samples and normal tissues were confirmed by IHC ( P = 0.0002 and P = 0.0001, respectively). CONCLUSIONS: This study describes screening for DEGs in HGSOC primary tumors and matched metastasis tumors using integrated bioinformatics analyses. We identified six hub genes that were correlated with the progression of HGSOC, particularly FAP and SFRP2 , which might provide effective targets to predict prognosis and provide novel insights into individual therapeutic strategies for HGSOC.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/pathology , Prognosis , Gene Expression Profiling , Transcriptome , Tumor Microenvironment , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/therapeutic use , Tetraspanins/genetics , Protein Kinases , Integrin beta1/genetics , Integrin beta1/therapeutic use
6.
Lancet Haematol ; 10(2): e107-e116, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36725117

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy targeting B-cell maturation antigen (BCMA) has shown activity in treating relapsed or refractory multiple myeloma; however, relapse is still common, and new targets are needed. We aimed to assess the activity and safety profile of G protein-coupled receptor class C group 5 member D (GPRC5D)-targeted CAR T cells (OriCAR-017) in patients with relapsed or refractory multiple myeloma. METHODS: POLARIS was a first-in-human, single-centre, single-arm, phase 1 trial of GPRC5D-targeted CAR T cells (OriCAR-017) done at the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China. Eligible patients were adults aged 18-75 years with a diagnosis of relapsed or refractory multiple myeloma and an ECOG performance status of 0-2, had GPRC5D expression in bone marrow plasma cells greater than 20% or were positive for GPRC5D by immunohistochemistry, and had received at least three previous lines of treatment including proteasome inhibitors, immunomodulatory drugs, and chemotherapy. Patients were consecutively assigned to receive a single dose of intravenous OriCAR-017 at 1 × 106 CAR T cells per kg, 3 × 106 CAR T cells per kg, or 6 × 106 CAR T cells per kg in the dose-escalation phase. In the expansion phase, patients received the recommended phase 2 dose. Recruitment to the expansion phase terminated early due to the COVID-19 pandemic on May 1, 2022. The primary endpoints were safety, the maximum tolerated dose and the recommended phase 2 dose. Safety and activity analyses included all patients who received OriCAR-017. This trial is registered with ClinicalTrials.gov, NCT05016778. This trial has been completed and is entering long-term follow-up. FINDINGS: Between June 9, 2021, and Feb 28, 2022, we recruited 13 patients for inclusion into the study. One patient was excluded because of GPRC5D negativity and two patients discontinued after apheresis because of rapid progression. Nine patients were assigned to the dose escalation phase (three received 1 × 106 CAR T cells per kg, three received 3 × 106 CAR T cells per kg, and three received 6 × 106 CAR T cells per kg). The maximum tolerated dose was not identified, because no dose-limiting toxic effects were observed. On the basis of safety and preliminary activity, the recommended phase 2 dose was set at 3 × 106 CAR T cells per kg, which was received by one additional patient in the dose expansion phase. Five patients (50%) were female, five (50%) were male, and all were Chinese. Five patients (50%) were previously treated with BCMA-targeted CAR T-cell therapy. Median follow-up was 238 days (IQR 182-307). There were no serious adverse events and no treatment-related deaths. The most common grade 3 or worse adverse events were haematological, including neutropenia (ten [100%] of ten patients), thrombocytopenia (nine [90%]), leukopenia (nine [90%]), and anaemia (seven [70%]). All patients had cytokine release syndrome (nine [90%] grade 1 and one [10%] grade 2). No neurological toxic effects were reported. Ten (100%) of ten patients had an overall response, of whom six (60%) had a stringent complete response and four (40%) had very good partial response. Two patients discontinued due to disease progression (one GPRC5D-positive patient in the middle-dose group and one GPRC5D-negative patient in the low-dose group). INTERPRETATION: The results of this study suggest that GPRC5D is an active target for immunotherapy in multiple myeloma. GPRC5D-targeted CAR T-cell therapy is a promising treatment modality for patients with relapsed or refractory multiple myeloma and deserves further testing. FUNDING: OriCell Therapeutics.


Subject(s)
Anemia , COVID-19 , Multiple Myeloma , Thrombocytopenia , Adult , Humans , Male , Female , Multiple Myeloma/drug therapy , B-Cell Maturation Antigen , Pandemics , Neoplasm Recurrence, Local , T-Lymphocytes , Receptors, G-Protein-Coupled/therapeutic use
7.
Cancer Invest ; 41(2): 173-182, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36318235

ABSTRACT

Neuroblastoma (NB) is a pediatric solid cancer with high fatality, relapses, and acquired resistance to chemotherapy, that requires new therapeutic approaches to improve survival. LGR5 is a receptor that potentiates WNT/signaling pathway and has been reported to promote development and survival in several adult cancers. In this study we investigated LGR5 expression in a panel of NB cell lines with acquired resistance to vincristine or doxorubicin. We show LGR5-LRP6 cooperation with enhanced expression in drug resistant NB cell lines compared to parental cells, suggesting a role for LGR5 in the emergence of drug resistance, warranting further investigation.


Subject(s)
Neuroblastoma , Wnt Signaling Pathway , Child , Humans , Wnt Proteins/therapeutic use , Drug Resistance, Neoplasm , Cell Line, Tumor , Neoplasm Recurrence, Local , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/therapeutic use
8.
Chem Biodivers ; 20(1): e202200814, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36471492

ABSTRACT

Diabetes mellitus (DM) is a serious disease affecting human health. Numerous attempts have been made to develop safe and effective new antidiabetic drugs. Recently, a series of G protein-coupled receptors for free fatty acids (FFAs) have been described and characterized, and small molecule agonists and antagonists of these receptors show considerable promise for managing diabetes and related complications. FFA-activated GPR120 could stimulate the release of glucagon-like peptide-1(GLP-1), which can enhance the glucose-dependent secretion of insulin from pancreatic ß cells. GPR120 is a promising target for treating type 2 DM (T2DM). Herein we designed and synthesized a series of novel GPR120 agonists based on the structure of TUG-891, which was the first potent and selective GPR120 agonist. Among the designed compounds, 18 f showed excellent GPR120 activation activity and high selectivity for GPR40 in vitro. Compound 18 f dose-dependently improved glucose tolerance in normal mice, and no hypoglycemic side effects were observed at high dose. In addition, compound 18 f increased insulin release and displayed good antidiabetic effect in diet-induced obese mice. Molecular simulations illustrated that compound 18 f could enter the active site of GPR120 and interact with Arg99. Based on these observations, compound 18 f may be a promising lead compound for the design of novel GPR120 agonists to treat T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Mice , Humans , Animals , Diabetes Mellitus, Type 2/drug therapy , Insulin , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/therapeutic use , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Fatty Acids, Nonesterified , Glucose
9.
Chinese Medical Journal ; (24): 2974-2982, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-1007584

ABSTRACT

BACKGROUND@#High-grade serous ovarian cancer (HGSOC) is the biggest cause of gynecological cancer-related mortality because of its extremely metastatic nature. This study aimed to explore and evaluate the characteristics of candidate factors associated with the metastasis and progression of HGSOC.@*METHODS@#Transcriptomic data of HGSOC patients' samples collected from primary tumors and matched omental metastatic tumors were obtained from three independent studies in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were selected to evaluate the effects on the prognosis and progression of ovarian cancer using data from The Cancer Genome Atlas (TCGA) database. Hub genes' immune landscapes were estimated by the Tumor Immune Estimation Resource (TIMER) database. Finally, using 25 HGSOC patients' cancer tissues and 10 normal fallopian tube tissues, immunohistochemistry (IHC) was performed to quantify the expression levels of hub genes associated with International Federation of Gynecology and Obstetrics (FIGO) stages.@*RESULTS@#Fourteen DEGs, ADIPOQ , ALPK2 , BARX1 , CD37 , CNR2 , COL5A3 , FABP4 , FAP , GPR68 , ITGBL1 , MOXD1 , PODNL1 , SFRP2 , and TRAF3IP3 , were upregulated in metastatic tumors in every database while CADPS , GATA4 , STAR , and TSPAN8 were downregulated. ALPK2 , FAP , SFRP2 , GATA4 , STAR , and TSPAN8 were selected as hub genes significantly associated with survival and recurrence. All hub genes were correlated with tumor microenvironment infiltration, especially cancer-associated fibroblasts and natural killer (NK) cells. Furthermore, the expression of FAP and SFRP2 was positively correlated with the International Federation of Gynecology and Obstetrics (FIGO) stage, and their increased protein expression levels in metastatic samples compared with primary tumor samples and normal tissues were confirmed by IHC ( P = 0.0002 and P = 0.0001, respectively).@*CONCLUSIONS@#This study describes screening for DEGs in HGSOC primary tumors and matched metastasis tumors using integrated bioinformatics analyses. We identified six hub genes that were correlated with the progression of HGSOC, particularly FAP and SFRP2 , which might provide effective targets to predict prognosis and provide novel insights into individual therapeutic strategies for HGSOC.


Subject(s)
Humans , Female , Ovarian Neoplasms/pathology , Prognosis , Gene Expression Profiling , Transcriptome , Tumor Microenvironment , Receptors, G-Protein-Coupled/therapeutic use , Tetraspanins/genetics , Protein Kinases , Integrin beta1/therapeutic use
10.
J Clin Psychopharmacol ; 42(5 Suppl 1): S1-S13, 2022.
Article in English | MEDLINE | ID: mdl-36099402

ABSTRACT

This continuing education supplement is jointly provided by Medical Education Resources and CMEology. The supplement is supported by an independent educational grant from Sunovion Pharmaceuticals Inc. It was edited and peer reviewed by the Journal of Clinical Psychopharmacology.After reviewing the learning objectives and reading the supplement, please complete the Activity Evaluation/Credit Request form online at https://www.cmesurvey.site/TAAR1. ABSTRACT: All currently available antipsychotics work via essentially the same mechanism: by antagonizing the dopamine D2 receptor. However, schizophrenia is an extremely heterogeneous condition, and antipsychotics do not adequately control symptoms for all patients. Negative and cognitive symptoms are especially difficult to manage with existing medications. Therefore, antipsychotic agents with novel mechanisms of action are urgently needed. Recently, a phase 2 clinical trial and extension study demonstrated that, relative to placebo, the trace amine-associated receptor 1 (TAAR1) agonist ulotaront was effective at controlling the positive, negative, and cognitive symptoms of schizophrenia. In addition, ulotaront seems to lack the weight gain, metabolic issues, and extrapyramidal symptoms associated with traditional antipsychotics. This agent is currently undergoing multiple phase 3 trials for the treatment of schizophrenia. Another TAAR1 agonist, ralmitaront, is being investigated for the treatment of schizophrenia and schizoaffective disorders. Two phase 2 clinical trials are underway, evaluating ralmitaront both as a monotherapy and an add-on therapy to traditional antipsychotics. In this supplement, we review the biologic, preclinical, and clinical data available for TAAR1 agonists, so that if and when they are approved for the treatment of schizophrenia, psychiatry specialists will be ready to use them to optimize patient outcomes. We also briefly review other emerging therapies in late-stage development for the treatment of schizophrenia.


Subject(s)
Antipsychotic Agents , Psychotic Disorders , Schizophrenia , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Humans , Psychotic Disorders/drug therapy , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/therapeutic use , Schizophrenia/drug therapy
11.
N Engl J Med ; 387(13): 1196-1206, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36170501

ABSTRACT

BACKGROUND: B-cell maturation antigen (BCMA)-directed chimeric antigen receptor (CAR) T-cell therapies have generated responses in patients with advanced myeloma, but relapses are common. G protein-coupled receptor, class C, group 5, member D (GPRC5D) has been identified as an immunotherapeutic target in multiple myeloma. Preclinical studies have shown the efficacy of GPRC5D-targeted CAR T cells, including activity in a BCMA antigen escape model. METHODS: In this phase 1 dose-escalation study, we administered a GPRC5D-targeted CAR T-cell therapy (MCARH109) at four dose levels to patients with heavily pretreated multiple myeloma, including patients with relapse after BCMA CAR T-cell therapy. RESULTS: A total of 17 patients were enrolled and received MCARH109 therapy. The maximum tolerated dose was identified at 150×106 CAR T cells. At the 450×106 CAR T-cell dose, 1 patient had grade 4 cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome (ICANS), and 2 patients had a grade 3 cerebellar disorder of unclear cause. No cerebellar disorder, ICANS of any grade, or cytokine release syndrome of grade 3 or higher occurred in the 12 patients who received doses of 25×106 to 150×106 cells. A response was reported in 71% of the patients in the entire cohort and in 58% of those who received doses of 25×106 to 150×106 cells. The patients who had a response included those who had received previous BCMA therapies; responses were observed in 7 of 10 such patients in the entire cohort and in 3 of 6 such patients who received 25×106 to 150×106 cells. CONCLUSIONS: The results of this study of a GPRC5D-targeted CAR T-cell therapy (MCARH109) confirm that GPRC5D is an active immunotherapeutic target in multiple myeloma. (Funded by Juno Therapeutics/Bristol Myers Squibb; ClinicalTrials.gov number, NCT04555551.).


Subject(s)
Immunotherapy, Adoptive , Multiple Myeloma , Receptors, Chimeric Antigen , Receptors, G-Protein-Coupled , B-Cell Maturation Antigen/therapeutic use , Cytokine Release Syndrome/etiology , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Multiple Myeloma/drug therapy , Neoplasm Recurrence, Local/etiology , Receptors, Chimeric Antigen/therapeutic use , Receptors, G-Protein-Coupled/therapeutic use , T-Lymphocytes
12.
Cancer Discov ; 12(8): OF3, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35748592

ABSTRACT

Patients with refractory or relapsed multiple myeloma usually develop resistance to the two approved BCMA-targeting chimeric antigen receptor (CAR) T cells. A preliminary study of a new CAR T-cell therapy that zeroes in on the GPRC5D protein on multiple myeloma cells suggests that this approach is safe and effective. All 10 patients treated with the GPRC5D-targeting cells showed responses.


Subject(s)
Drug Resistance, Neoplasm , Immunotherapy, Adoptive , Multiple Myeloma , Receptors, Chimeric Antigen , Receptors, G-Protein-Coupled , B-Cell Maturation Antigen/antagonists & inhibitors , B-Cell Maturation Antigen/immunology , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/immunology , Humans , Immunotherapy, Adoptive/methods , Multiple Myeloma/immunology , Multiple Myeloma/therapy , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/therapeutic use , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/immunology , Receptors, G-Protein-Coupled/therapeutic use
13.
Adv Exp Med Biol ; 1366: 65-85, 2022.
Article in English | MEDLINE | ID: mdl-35412135

ABSTRACT

The discovery of the G-protein coupled-receptor (GPCR) CXCR4 as a major coreceptor of HIV-1 entry about three decades ago explained why the chemokine SDF-1/CXCL12 inhibits specific viral strains. The knowledge that RANTES, MlP-1α, and MlP-1ß specifically inhibit other primary HIV-1 strains allowed the rapid discovery of CCR5 as second major viral coreceptor and explained why individuals with deletions in CCR5 are protected against sexual HIV-1 transmission. Here, we provide an update on endogenous ligands of GPCRs that act as endogenous inhibitors of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) entry. In addition, we summarize the development of optimized derivatives of endogenous GPCR ligands and their perspectives as antiviral agents and beyond. Finally, we provide examples for other endogenous peptides that may contribute to our innate immune defense against HIV-1 and other viral pathogens and offer prospects for preventive or therapeutic development.


Subject(s)
HIV Fusion Inhibitors , HIV Infections , HIV-1 , Animals , HIV Fusion Inhibitors/pharmacology , HIV Fusion Inhibitors/therapeutic use , HIV Infections/drug therapy , HIV-1/metabolism , HIV-1/physiology , HIV-2/metabolism , HIV-2/physiology , Humans , Ligands , Peptides/therapeutic use , Receptors, CCR5 , Receptors, G-Protein-Coupled/therapeutic use , Signal Transduction , Simian Immunodeficiency Virus
14.
CNS Drugs ; 35(12): 1239-1248, 2021 12.
Article in English | MEDLINE | ID: mdl-34766253

ABSTRACT

Trace amines, including ß-phenylethylamine (ß-PEA), p-tyramine (TYR), tryptamine (TRP), and p-octopamine (OCT), represent a group of amines expressed at low levels in the mammalian brain. Given the close structural similarities to traditional monoamines, links between trace amines and the monoaminergic system have long been suspected. Trace amine-associated receptor 1 (TAAR1), the most well characterized receptor in the TAAR family, has been shown to be potently activated by trace amines such as TYR and PEA. Further, catecholamine metabolites and amphetamine analogs are also potent agonists of TAAR1, implicating the receptor in mediating the monoaminergic system and in substance use disorders. In the central nervous system, TAAR1 is expressed in brain regions involved in dopaminergic, serotonergic, and glutamatergic transmission, and genetic animal models and electrophysiological studies have revealed that TAAR1 is a potent modulator of the monoaminergic system. Selective and potent engineered TAAR1 ligands, including full (RO5166017 and RO5256390) and partial (RO5203648, RO5263397 and RO5073012) agonists and the antagonist EPPTB (N-(3-ethoxyphenyl)-4-(1-pyrrolidinyl)-3-(trifluoromethyl) benzamide, RO5212773), serve as invaluable tools for the investigation of TAAR1 functions and display significant potential for the development of TAAR1-based pharmacotherapies for the treatment of substance use disorders. Despite a number of advances that have been made, more clinical studies are warranted in order to test the potential and efficacy of TAAR1 ligands in the treatment of psychiatric disorders, including substance use disorders.


Subject(s)
Receptors, G-Protein-Coupled/therapeutic use , Substance-Related Disorders/drug therapy , Animals , Humans , Ligands , Models, Animal , Treatment Outcome
15.
J Med Chem ; 63(23): 14216-14227, 2020 12 10.
Article in English | MEDLINE | ID: mdl-32914978

ABSTRACT

GPR18 is a G-protein-coupled receptor that belongs to the orphan class A family. Even though it shares low sequence homology with the cannabinoid receptors CB1R and CB2R, a growing body of research suggests its relationship with the endocannabinoid system, not only because it is able to recognize cannabinoid ligands but also because of its expression and ability to heteromerize with CBRs. In this review, we aim to analyze the biological relevance, reported modulators, and structural features of GPR18. In order to guide future drug design in this field, highlights from molecular modeling of GPR18 will be provided.


Subject(s)
Cannabinoids/metabolism , Receptors, G-Protein-Coupled/metabolism , Drug Design , Humans , Protein Conformation , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/therapeutic use
16.
Curr Alzheimer Res ; 16(10): 871-894, 2019.
Article in English | MEDLINE | ID: mdl-30963972

ABSTRACT

Albeit cholinergic depletion remains the key event in Alzheimer's Disease (AD), recent information describes stronger links between monoamines (trace amines, catecholamines, histamine, serotonin, and melatonin) and AD than those known in the past century. Therefore, new drug design strategies focus efforts to translate the scope on these topics and to offer new drugs which can be applied as therapeutic tools in AD. In the present work, we reviewed the state-of-art regarding genetic, neuropathology and neurochemistry of AD involving monoamine systems. Then, we compiled the effects of monoamines found in the brain of mammals as well as the reported effects of their derivatives and some structure-activity relationships. Recent derivatives have triggered exciting effects and pharmacokinetic properties in both murine models and humans. In some cases, the mechanism of action is clear, essentially through the interaction on G-protein-coupled receptors as revised in this manuscript. Additional mechanisms are inhibition of enzymes for their biotransformation, regulation of free-radicals in the central nervous system and others for the effects on Tau phosphorylation or amyloid-beta accumulation. All these data make the monoamines and their derivatives attractive potential elements for AD therapy.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Biogenic Monoamines/metabolism , Drug Design , Receptors, G-Protein-Coupled/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/therapeutic use , Animals , Biogenic Monoamines/therapeutic use , Humans , Receptors, G-Protein-Coupled/therapeutic use
17.
Bioorg Med Chem Lett ; 29(12): 1471-1475, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30992164

ABSTRACT

The free fatty acid receptor 1 (FFA1) is considered as a promising anti-diabetic target based on its function of glucose-stimulated insulin secretion. The previously reported compound 2 is a highly potent FFA1 agonist, but it might be suffered from poor pharmacokinetic properties because the phenylpropanoic acid is vulnerable to ß-oxidation. To identify orally available analogs, we tried to block the route of ß-oxidation by incorporating deuterium at phenylpropionic acid moiety. As expected, the deuterium-based analogs 3 and 4 exhibited better pharmacokinetic properties than parent compound 2. Although the difference of potency between compound 2 and 3 is quite small, the glucose-lowering effect of deuterium analog 3 was better than that of compound 2. Meanwhile, compound 3 docked well into the same binding pocket of TAK-875, and formed almost identical interactions of TAK-875 in binding site. Different from glibenclamide, a lower risk of hypoglycemia was observed in compound 3 even at the high dose of 60 mg/kg.


Subject(s)
Deuterium/therapeutic use , Receptors, G-Protein-Coupled/therapeutic use , Deuterium/pharmacokinetics , Humans , Molecular Structure , Structure-Activity Relationship
18.
Postepy Hig Med Dosw (Online) ; 71(0): 942-953, 2017 Nov 19.
Article in English | MEDLINE | ID: mdl-29176006

ABSTRACT

G protein-coupled receptors (GPCRs) constitute a family of transmembrane proteins that mediate many cellular processes. GPR120/FFAR4, a receptor from this family that is activated by fatty acids, has received considerable attention recently. This paper presents a literature review concerning the role of GPR120 and its mechanism of action in animal and human studies as well as the potential use of GPR120 for the treatment of chronic diseases. Two electronic databases - Medline and Google Scholar - were searched for available studies addressing the review topic that were written in English and published from 2000 to June 2017. The following key terms were used in the search: GPR120, FFA4, GPR120 agonist, PUFAs, EPA, DHA, adipocyte, obesity, hyperlipidemia, inflammation, cancer, diabetes, insulin resistance, taste, atherogenesis, hepatis, central nervous system. In humans, GPR120 expression is expressed in macrophages, eosinophils, and adipose tissue, in cells of the tongue, liver, lungs, small and large intestine, gastric mucosa, and pancreas, in the central nervous system and placental microvilli. Medium- and long-chain fatty acids act as ligands for the receptor. Through the internalization of beta-arrestin-2 complex and the inhibition of NF-κB, GPR120 mediates the activation of the cell's anti-inflammatory mechanisms. The receptor is also involved in the maturation of adipocytes, the modulation of insulin signalling pathways, the regulation of glucose metabolism, and the secretion of intestinal hormones. GPR120 is a promising target for the treatment of numerous diseases, whose pathophysiology is associated with low-grade inflammation. As a result of intensive searches, a likely group of synthetic agonists of the receptor was determined with potential therapeutic applications in conditions such as obesity, impaired carbohydrate metabolism, inflammatory bowel diseases, cancer, mental disorders.


Subject(s)
Receptors, G-Protein-Coupled/physiology , Adipocytes/metabolism , Animals , Anti-Inflammatory Agents/therapeutic use , Humans , Inflammation/metabolism , Insulin Resistance/physiology , Obesity/metabolism , Receptors, G-Protein-Coupled/therapeutic use
19.
J Recept Signal Transduct Res ; 37(2): 109-123, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27267434

ABSTRACT

Takeda G-protein-coupled receptor 5 (TGR5) is emerging as an important and promising target for the development of anti-diabetic drugs. Pharmacophore modeling and atom-based 3D-QSAR studies were carried out on a new series of 5-phenoxy-1,3-dimethyl-1H-pyrazole-4-carboxamides as highly potent agonists of TGR5. The generated best six featured pharmacophore model AAHHRR consists of two hydrogen bond acceptors (A): two hydrophobic groups (H) and two aromatic rings (R). The constructed 3D-QSAR model acquired excellent correlation coefficient value (R2 = 0.9018), exhibited good predictive power (Q2 = 0.8494) and high Fisher ratio (F = 61.2). The pharmacophore model was validated through Guner-Henry (GH) scoring method. The GH value of 0.5743 indicated that the AAHHRR model was statistically valuable and reliable in the identification of TGR5 agonists. Furthermore, the combined approach of molecular docking and binding free energy calculations were carried out for the 5-phenoxy-1,3-dimethyl-1H-pyrazole-4-carboxamides to explore the binding mode and interaction pattern. The generated contour maps revealed the important structural insights for the activity of the compounds. The results obtained from this study could be helpful in the development of novel and more potent agonists of TGR5.


Subject(s)
Diabetes Mellitus/drug therapy , Hypoglycemic Agents/chemistry , Imidazoles/chemistry , Receptors, G-Protein-Coupled/chemistry , Binding Sites , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Hypoglycemic Agents/therapeutic use , Imidazoles/therapeutic use , Models, Molecular , Molecular Docking Simulation , Protein Conformation/drug effects , Quantitative Structure-Activity Relationship , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/therapeutic use
20.
Neurochem Int ; 101: 1-14, 2016 12.
Article in English | MEDLINE | ID: mdl-27620813

ABSTRACT

Neurodegenerative and cerebrovascular diseases are frequent in elderly populations and comprise primarily of dementia (mainly Alzheimer's disease) Parkinson's disease and stroke. These neurological disorders (NDs) occur as a result of neurodegenerative processes and represent one of the most frequent causes of death and disability worldwide with a significant clinical and socio-economic impact. Although NDs have been characterized for many years, the exact molecular mechanisms that govern these pathologies or why they target specific individuals and specific neuronal populations remain unclear. As research progresses, many similarities appear which relate these diseases to one another on a subcellular level. Discovering these similarities offers hope for therapeutic advances that could ameliorate the conditions of many diseases simultaneously. G-protein coupled receptors (GPCRs) are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many NDs. This review will highlight the potential use of neurotransmitter GPCRs as emerging therapeutic targets for neurodegenerative and cerebrovascular diseases.


Subject(s)
Cerebrovascular Disorders/metabolism , Neurodegenerative Diseases/metabolism , Neurotransmitter Agents/pharmacology , Receptors, G-Protein-Coupled/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Cerebrovascular Disorders/drug therapy , Humans , Neurodegenerative Diseases/drug therapy , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Receptors, G-Protein-Coupled/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...