Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.615
Filter
1.
Vet Med Sci ; 10(5): e31548, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39158970

ABSTRACT

BACKGROUND: The vulnerability of buffalo sperm to cryoinjury necessitates the improvement of sperm cryo-resistance as a critical strategy for the widespread use of assisted reproductive technologies in buffalo. OBJECTIVES: The main aim of the present study was to evaluate the effects of different concentrations of rutin and chlorogenic acid (CGA) on buffalo semen quality, antioxidant activity and fertility during cryopreservation. METHODS: The semen was collected and pooled from the 3 buffaloes using an artificial vagina (18 ejaculations). The pooled sperm were divided into nine different groups: control (Tris-based extender); 0.4, 0.6, 0.8 and 1 mM rutin (rutin + Tris-based extender); and 50, 100, 150 and 200 µM CGG (CGA + Tris-based extender). Sperm kinematics, viability, hypo-osmotic swelling test, mitochondrial activity, antioxidant activities and malondialdehyde (MDA) concentration of frozen and thawed buffalo sperm were evaluated. In addition, 48 buffalo were finally inseminated, and pregnancy was rectally determined 1 month after insemination. RESULTS: Compared to the control group, adding R-0.4, R-0.6, CGA-100 and CGA-150 can improve total and progressive motility, motility characteristics, viability, PMF and DNA damage in buffalo sperm. In addition, the results showed that R-0.4, R-0.6, CGA-50, CGA-100 and CGA-150 increased total antioxidant capacity, catalase, glutathione peroxidase and glutathione activities and decreased MDA levels compared to the control group. Furthermore, it has been shown that adding 150 µM CGA and 0.6 mM rutin to an extender can increase in vivo fertility compared to the control group. CONCLUSIONS: In conclusion, adding rutin and CGA to the extender improves membrane stability and in vivo fertility of buffalo sperm by reducing oxidative stress.


Subject(s)
Antioxidants , Buffaloes , Chlorogenic Acid , Cryopreservation , Fertility , Oxidative Stress , Rutin , Semen Analysis , Semen Preservation , Animals , Buffaloes/physiology , Male , Rutin/pharmacology , Oxidative Stress/drug effects , Chlorogenic Acid/pharmacology , Semen Preservation/veterinary , Semen Preservation/methods , Antioxidants/pharmacology , Semen Analysis/veterinary , Fertility/drug effects , Cryopreservation/veterinary , Semen/drug effects , Semen/physiology , Female , Spermatozoa/drug effects , Spermatozoa/physiology , Dose-Response Relationship, Drug
2.
J Biochem Mol Toxicol ; 38(8): e23784, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39095945

ABSTRACT

Acrylamide (AA) is a carcinogenic compound that affects people due to its frequent use in laboratories and industry as well as the high-temperature cooking of foods with high hydrocarbon content. AA is known to cause severe reproductive abnormalities. The main aim of this study is to evaluate the protective effect of rutin (RU), a phytoactive compound, against AA-induced reproductive toxicity in female rats. Initially, rats were exposed to AA (40 mg/kg for 10 days). Therapy of RU was given after AA intoxication consecutively for 3 days. After 24 h of the last treatment, all the animals were sacrificed. The study evaluated reproductive hormones, oxidative stress markers, membrane-bound enzymes, DNA damage, histological findings, and an in silico approach to determine the protective efficacy of RU. The results indicated that RU significantly protected against inflammation, oxidative stress, and DNA damage induced by AA, likely due to its antioxidant properties.


Subject(s)
Acrylamide , DNA Damage , Inflammation , Oxidative Stress , Rutin , Animals , Rutin/pharmacology , Female , Oxidative Stress/drug effects , Acrylamide/toxicity , DNA Damage/drug effects , Rats , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/drug therapy , Ovary/drug effects , Ovary/metabolism , Ovary/pathology , Rats, Wistar , Computer Simulation , Antioxidants/pharmacology , Antioxidants/metabolism
3.
Sci Rep ; 14(1): 18690, 2024 08 12.
Article in English | MEDLINE | ID: mdl-39134561

ABSTRACT

Styphnolobium japonicum leaves are considered a rich source of flavonoids, which are the prospective basis for various therapeutic effects. However, there has been a lack of comprehensive cytotoxic studies conducted on these leaves. Therefore, this ongoing investigation aimed to detect and isolate the flavonoids present in S. japonicum leaves, and assess their antioxidant and anticancer properties. The defatted extract from S. japonicum leaves was analyzed using HPLC, which resulted in the identification of seven phenolics and six flavonoids. Rutin and quercetin were found to be the most abundant. Furthermore, a comprehensive profile of flavonoids was obtained through UPLC/ESI-MS analysis in negative acquisition mode. Fragmentation pathways of the identified flavonoids were elucidated to gain relevant insights into their structural characteristics. Furthermore, genistein 7-O-glucoside, quercetin 3-O-rutinoside, and kaempferol 3-O-α-L-rhamnopyranosyl-(1 → 6)-ß-D-glucopyranosyl-(1 → 2)-ß-D-glucopyranoside were isolated and characterized. The defatted extract rich in flavonoids exhibited significant antioxidant, iron-reducing, free radicals scavenging impacts, and remarkable cytotoxicity against the liver cell line (IC50 337.9µg/ mL) and lung cell line (IC50 55.0 µg/mL). Furthermore, the antioxidant and anticancer capacities of the three isolated flavonoids have been evaluated, and it has been observed that their effects are concentration-dependent. The findings of this research highlight the promising impact of flavonoids in cancer therapy. It is recommended that future scientific investigations prioritize the exploration of the distinct protective and therapeutic characteristics of S. japonicum leaves, which hold significant potential as a valuable natural resource.


Subject(s)
Antioxidants , Flavonoids , Plant Extracts , Plant Leaves , Plant Leaves/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Egypt , Cell Line, Tumor , Chromatography, High Pressure Liquid , Quercetin/pharmacology , Quercetin/analogs & derivatives , Quercetin/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Phenols/pharmacology , Phenols/chemistry , Rutin/pharmacology , Rutin/chemistry , Sophora japonica
4.
ACS Nano ; 18(33): 22104-22121, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39102149

ABSTRACT

Digital light processing (DLP) bioprinting, known for its high resolution and speed, enables the precise spatial arrangement of biomaterials and has become integral to advancing tissue engineering and regenerative medicine. Nevertheless, inherent light scattering presents significant challenges to the fidelity of the manufactured structures. Herein, we introduce a photoinhibition strategy based on Rutin nanoparticles (Rnps), attenuating the scattering effect through concurrent photoabsorption and free radical reaction. Compared to the widely utilized biocompatible photoabsorber tartrazine (Tar), Rnps-infused bioink enhanced printing speed (1.9×), interlayer homogeneity (58% less overexposure), resolution (38.3% improvement), and print tolerance (3× high-precision range) to minimize trial-and-error. The biocompatible and antioxidative Rnps significantly improved cytocompatibility and exhibited resistance to oxidative stress-induced damage in printed constructs, as demonstrated with human induced pluripotent stem cell-derived endothelial cells (hiPSC-ECs). The related properties of Rnps facilitate the facile fabrication of multimaterial, heterogeneous, and cell-laden biomimetic constructs with intricate structures. The developed photoinhibitor, with its profound adaptability, promises wide biomedical applications tailored to specific biological requirements.


Subject(s)
Bioprinting , Light , Nanoparticles , Rutin , Humans , Rutin/chemistry , Rutin/pharmacology , Nanoparticles/chemistry , Tissue Engineering , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Endothelial Cells/drug effects , Oxidative Stress/drug effects
5.
Sci Rep ; 14(1): 15314, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961104

ABSTRACT

This work examines the capacity of Naringin and Rutin to influence the DNA damage response (DDR) pathway by investigating their interactions with key DDR proteins, including PARP-1, ATM, ATR, CHK1, and WEE1. Through a combination of in silico molecular docking and in vitro evaluations, we investigated the cytotoxic and genotoxic effects of these compounds on MDA-MB-231 cells, comparing them to normal human fibroblast cells (2DD) and quiescent fibroblast cells (QFC). The research found that Naringin and Rutin had strong affinities for DDR pathway proteins, indicating their capacity to specifically regulate DDR pathways in cancer cells. Both compounds exhibited preferential cytotoxicity towards cancer cells while preserving the vitality of normal 2DD fibroblast cells, as demonstrated by cytotoxicity experiments conducted at a dose of 10 µM. The comet experiments performed particularly on QFC cells provide valuable information on the genotoxic impact of Naringin and Rutin, highlighting the targeted initiation of DNA damage in cancer cells. The need to use precise cell models to appropriately evaluate toxicity and genotoxicity is emphasized by this discrepancy. In addition, ADMET and drug-likeness investigations have emphasized the pharmacological potential of these compounds; however, they have also pointed out the necessity for optimization to improve their therapeutic profiles. The antioxidant capabilities of Naringin and Rutin were assessed using DPPH and free radical scavenging assays at a concentration of 10 µM. The results confirmed that both compounds have a role in reducing oxidative stress, hence enhancing their anticancer effects. Overall, Naringin and Rutin show potential as medicines for modulating the DDR in cancer treatment. They exhibit selective toxicity towards cancer cells while sparing normal cells and possess strong antioxidant properties. This analysis enhances our understanding of the therapeutic uses of natural chemicals in cancer treatment, supporting the need for more research on their mechanisms of action and clinical effectiveness.


Subject(s)
Antioxidants , Breast Neoplasms , DNA Damage , Flavanones , Molecular Docking Simulation , Oxidative Stress , Rutin , Humans , Flavanones/pharmacology , Rutin/pharmacology , DNA Damage/drug effects , Antioxidants/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Oxidative Stress/drug effects , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Cell Survival/drug effects
6.
Bioanalysis ; 16(11): 557-567, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-39011589

ABSTRACT

Aim: A HPLC method was developed and validated for the novel combination of rutin (RN) and donepezil (DNP). Materials & methods: RN and DNP were simultaneously eluted through a C18 column (Ø 150 × 4.6 mm) with a 60:40 v/v ratio of 0.1% formic acid aqueous solution to methanol at 0.5 ml/min. Results: The purposed method was found linear, selective, reproducible, accurate and precise with percent RSD less than 2. The limit of quantification for RN and DNP was found 3.66 and 3.25 µg/ml, respectively. Conclusion: Validated as per the ICH guidelines, the developed method efficiently quantified RN and DNP co-loaded in DQAsomes (121 nm) estimating matrix effect, release profile, entrapment efficiency, loading efficiency and in vivo plasma kinetics.


[Box: see text].


Subject(s)
Donepezil , Rutin , Donepezil/blood , Donepezil/analysis , Chromatography, High Pressure Liquid/methods , Rutin/analysis , Rutin/blood , Humans , Chromatography, Reverse-Phase/methods , Reproducibility of Results
7.
Food Chem Toxicol ; 191: 114887, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053873

ABSTRACT

Zearalenone (ZEN) poses a potential threat on human and animal health partly through the nuclear factor (NF)-κB signaling pathway. In silico study suggested that rutin effective against TLR4 and NF-κB. A wetting test was designed to evaluate the effect and underlying mechanism of rutin in alleviating ZEN-induced inflammation in animals. Twenty-four female mice were randomly divided into 4 groups: control (basal diet), ZEN group (basal diet + ZEN), rutin group (basic diet + rutin), Z + R group (basal diet + rutin + ZEN). Results showed that rutin effectively alleviated ZEN-induced inflammation and damage of liver and jejunum in mice. Rutin addition reduced the content of lipopolysaccharide (LPS) in serum and liver mainly by improving the intestinal barrier function resulted from the production increase of short-chain fatty acids (SCFA). In sum, this study showed that rutin alleviated ZEN-induced liver inflammation and injury by modulating the gut microbiota, increasing the production of SCFA and improving intestinal barrier function, leading to the decrease of LPS in liver and the inhibition of MyD88 independent NF-κB signaling pathway in mice. Specifically, these findings may provide useful insights into the screening of functional natural compounds and its action mechanism to alleviate ZEN induced liver inflammation.


Subject(s)
Lipopolysaccharides , NF-kappa B , Rutin , Signal Transduction , Zearalenone , Animals , Zearalenone/toxicity , Rutin/pharmacology , Lipopolysaccharides/toxicity , NF-kappa B/metabolism , Signal Transduction/drug effects , Mice , Female , Liver/drug effects , Liver/metabolism , Gastrointestinal Microbiome/drug effects , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Toll-Like Receptor 4/metabolism
8.
Yale J Biol Med ; 97(2): 153-164, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38947101

ABSTRACT

The blood-brain barrier (BBB) prevents the use of many drugs for the treatment of neurological disorders. Recently, nitrogen-doped carbon dots (NCDs) have emerged as promising nanocarriers to cross BBB. The primary focus of our study was to evaluate the effectiveness of NCDs for the symptomatic treatment of Alzheimer's disease (AD). In this study, we developed and characterized NCDs bound to rutin, a flavonoid with known benefits for AD. Despite its benefits, the transportation of rutin via NCDs for AD therapy has not been explored previously. We characterized the particles using FTIR and UV-visible spectroscopy followed by atomic force microscopy. Once the design was optimized and validated, we performed in vivo testing via a hemolytic assay to optimize the dosage. Preliminary in vitro testing was performed in AlCl3-induced rat models of AD whereby a single dose of 10 mg/kg NCDs-rutin was administered intraperitoneally. Interestingly, this single dose of 10 mg/kg NCDs-rutin produced the same behavioral effects as 50 mg/kg rutin administered intraperitoneally for 1 month. Similarly, histological and biomarker profiles (SOD2 and TLR4) also presented significant protective effects of NCDs-rutin against neuronal loss, inflammation, and oxidative stress. Hence, NCDs-rutin are a promising approach for the treatment of neurological diseases.


Subject(s)
Alzheimer Disease , Carbon , Glucose , Nitrogen , Rutin , Rutin/pharmacology , Rutin/chemistry , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Carbon/chemistry , Carbon/pharmacology , Nitrogen/chemistry , Rats , Glucose/metabolism , Male , Quantum Dots/chemistry , Disease Models, Animal , Oxidative Stress/drug effects , Humans
9.
Biomed Pharmacother ; 177: 116961, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901206

ABSTRACT

Peptic ulcer is a sore on the stomach lining that results from the erosion of the gastrointestinal tract mucosa due to various influencing factors. Of these, Helicobacter pylori infection and non-steroidal anti-inflammatory drugs (NSAIDs) stand out as the most prominent causes. This condition poses a significant global health concern due to its widespread impact on individuals worldwide. While various treatment strategies have been employed, including proton pump inhibitors and histamine-2 receptor antagonists, these have notable side effects and limitations. Thus, there is a pressing need for new treatments to address this global health issue. Rutin, a natural flavonoid, exhibits a range of biological activities, including anti-inflammatory, anticancer, and antioxidant properties. This review explores the potential anti-ulcer effect of rutin in experimental models and how rutin can be a better alternative for treating peptic ulcers. We used published literature from different online databases such as PubMed, Google Scholar, and Scopus. This work highlights the abundance of rutin in various natural sources and its potential as a promising option for peptic ulcer treatment. Notably, the anti-inflammatory properties of rutin, which involve inhibiting inflammatory mediators and the COX-2 enzyme, are emphasized. While acknowledging the potential of rutin, it is important to underscore the necessity for further research to fully delineate its therapeutic potential and clinical applicability in managing peptic ulcers and ultimately improving patient outcomes. This review on the anti-ulcer potential of rutin opened a new door for further study in the field of alternative medicine in peptic ulcer management.


Subject(s)
Anti-Inflammatory Agents , Anti-Ulcer Agents , Peptic Ulcer , Rutin , Rutin/pharmacology , Rutin/therapeutic use , Humans , Peptic Ulcer/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use
10.
Food Chem ; 457: 140163, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38924912

ABSTRACT

Enzymatically modified isoquercitrin (EMIQ) is a glyco-chemically modified flavonoid exhibiting notably high biological activity, such as antioxidant, anti-inflammatory and anti-allergic properties. However, the utilization of expensive substrates such as isoquercitrin and cyclodextrin in the conventional approach has hindered the industrial-scale production of EMIQ due to high cost and low yields. Hence, the development of a cost-effective and efficient method is crucial for the biological synthesis of EMIQ. In this study, a natural cascade catalytic reaction system was constructed with α-L-rhamnosidase and amylosucrase using the inexpensive substrates rutin and sucrose. Additionally, a novel approach integrating gradient temperature regulation into biological cascade reactions was implemented. Under the optimal conditions, the rutin conversion reached a remarkable 95.39% at 24 h. Meanwhile, the productivity of quercetin-3-O-tetraglucoside with the best bioavailability reached an impressive 41.69%. This study presents promising prospects for future mass production of EMIQ directly prepared from rutin and sucrose.


Subject(s)
Glucosyltransferases , Quercetin , Rutin , Sucrose , Rutin/chemistry , Quercetin/chemistry , Quercetin/analogs & derivatives , Quercetin/metabolism , Sucrose/chemistry , Sucrose/analogs & derivatives , Sucrose/metabolism , Glucosyltransferases/metabolism , Glucosyltransferases/chemistry , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Temperature , Biocatalysis
11.
Ultrason Sonochem ; 108: 106944, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878712

ABSTRACT

With the proposal of the 2030 Agenda for Sustainable Development, the Chinese medicine extraction technology has been innovatively improved to prioritize low energy consumption, sustainability, and minimized organic solvent utilization. Forsythia suspensa (FS) possesses favorable pharmacological properties and is extensively utilized in traditional Chinese medicine. However, due to the limitations of the composition and extraction methods, its potential has not been fully developed. Thus, a combination of ultrasound-assisted extraction (UAE), enzyme-assisted extraction (EAE), and ß-cyclodextrin extraction (ß-CDE) was employed to isolate and purify rutin, phillyrin, and forsythoside A from FS. The results demonstrated that the efficiency of extracting enzymatic and ultrasound assisted ß-cyclodextrin extraction (EUA-ß-CDE) was highly influenced by the temperature and duration of hydrolysis, as well as the duration of the extraction process. According to the results of the single-factor experiment, Box-Behnken design (BBD) in Response surface method (RSM) was used to optimize the experimental parameters to achieve the maximum comprehensive evaluation value (CEV) value. The EUA-ß-CDE compared with other extraction methods, has good extraction effect and low energy consumption by high performance liquid chromatography (HPLC), scanning electron microscopy (SEM), calculation of power consumption and CO2 emission The EUA-ß-CDE compared with other extraction methods, has good extraction effect and low energy consumption by HPLC, SEM, calculation of power consumption and CO2 emission. Then, the structural characteristics of EUA-ß-CDE of FS extract had significant interaction with ß-CD by Fourier infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). In addition, EUA-ß-CDE extract has good antioxidant and anti-inflammatory activities. The establishment of EUA-ß-CDE of FS provides a new idea for the development and application of other sustainable extraction methods of traditional Chinese medicine.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Forsythia , Ultrasonic Waves , beta-Cyclodextrins , Forsythia/chemistry , beta-Cyclodextrins/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Chemical Fractionation/methods , Enzymes/metabolism , Temperature , Glucosides/isolation & purification , Glucosides/chemistry , Glucosides/pharmacology , Hydrolysis , Rutin/isolation & purification , Rutin/chemistry , Rutin/pharmacology
12.
Molecules ; 29(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38930884

ABSTRACT

Acute lung injury (ALI) remains a significant global health issue, necessitating novel therapeutic interventions. In our latest study, we pioneered the use of D-mannitol-cerium-quercetin/rutin coordination polymer nanoparticles (MCQ/R NPs) as a potential treatment for ALI. The MCQ/R NPs, which integrate rutin and quercetin for their therapeutic potential and D-mannitol for its pulmonary targeting, displayed exceptional efficacy. By utilizing cerium ions for optimal nanoparticle assembly, the MCQ/R NPs demonstrated an average size of less than 160 nm. Impressively, these nanoparticles outperformed conventional treatments in both antioxidative capabilities and biocompatibility. Moreover, our in vivo studies on LPS-induced ALI mice showed a significant reduction in lung tissue inflammation. This groundbreaking research presents MCQ/R NPs as a promising new approach in ALI therapeutics.


Subject(s)
Acute Lung Injury , Cerium , Mannitol , Nanoparticles , Polymers , Quercetin , Acute Lung Injury/drug therapy , Quercetin/pharmacology , Quercetin/chemistry , Animals , Mannitol/chemistry , Mannitol/therapeutic use , Nanoparticles/chemistry , Mice , Polymers/chemistry , Cerium/chemistry , Cerium/pharmacology , Cerium/therapeutic use , Rutin/chemistry , Rutin/pharmacology , Rutin/therapeutic use , Antioxidants/pharmacology , Antioxidants/chemistry , Humans , Drug Synergism , Disease Models, Animal , Lipopolysaccharides
13.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892197

ABSTRACT

Viral pathogens pose a substantial threat to public health and necessitate the development of effective remediation and antiviral strategies. This short communication aimed to investigate the antiviral efficacy of disinfectants on the surface proteins of human pathogenic viruses. Using in silico modeling, the ligand-binding energies (LBEs) of selected disinfectants were predicted and combined with their environmental impacts and costs through an eco-pharmaco-economic analysis (EPEA). The results revealed that the binding affinities of chemical disinfectants to viral proteins varied significantly (p < 0.005). Rutin demonstrated promising broad-spectrum antiviral efficacy with an LBE of -8.49 ± 0.92 kcal/mol across all tested proteins. Additionally, rutin showed a superior eco-pharmaco-economic profile compared to the other chemicals, effectively balancing high antiviral effectiveness, moderate environmental impact, and affordability. These findings highlight rutin as a key phytochemical for use in remediating viral contaminants.


Subject(s)
Antiviral Agents , Disinfectants , Rutin , Disinfectants/pharmacology , Disinfectants/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Rutin/chemistry , Rutin/pharmacology , Humans , Computer Simulation , Viruses/drug effects , Viral Proteins/chemistry , Viral Proteins/metabolism , Molecular Docking Simulation , Membrane Proteins/metabolism , Membrane Proteins/chemistry , Protein Binding
14.
Nutrients ; 16(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38892535

ABSTRACT

Rice bean [Vigna umbellata (Thunb.) Ohwi and Ohashi], an annual legume in the genus Vigna, is a promising crop suitable for cultivation in a changing climate to ensure food security. It is also a medicinal plant widely used in traditional Chinese medicine; however, little is known about the medicinal compounds in rice bean. In this study, we assessed the diuretic effect of rice bean extracts on mice as well as its relationship with the contents of eight secondary metabolites in seeds. Mice gavaged with rice bean extracts from yellow and black seeds had higher urinary output (5.44-5.47 g) and water intake (5.8-6.3 g) values than mice gavaged with rice bean extracts from red seeds. Correlation analyses revealed significant negative correlations between urine output and gallic acid (R = -0.70) and genistein (R = -0.75) concentrations, suggesting that these two polyphenols negatively regulate diuresis. There were no obvious relationships between mice diuresis-related indices (urine output, water intake, and weight loss) and rutin or catechin contents, although the concentrations of both of these polyphenols in rice bean seeds were higher than the concentrations of the other six secondary metabolites. Our study findings may be useful for future research on the diuretic effects of rice bean, but they should be confirmed on the basis of systematic medical trials.


Subject(s)
Diuretics , Polyphenols , Seeds , Animals , Mice , Diuretics/pharmacology , Seeds/chemistry , Polyphenols/pharmacology , Polyphenols/analysis , Male , Plant Extracts/pharmacology , Vigna/chemistry , Gallic Acid/pharmacology , Genistein/pharmacology , Catechin/pharmacology , Catechin/analysis , Rutin/pharmacology , Rutin/analysis , Diuresis/drug effects
15.
Bioorg Chem ; 149: 107503, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823312

ABSTRACT

Lactate dehydrogenase (LDH), a crucial enzyme in anaerobic glycolysis, plays a pivotal role in the energy metabolism of tumor cells, positioning it as a promising target for tumor treatment. Rutin, a plant-based flavonoid, offers benefits like antioxidant, antiapoptotic, and antineoplastic effects. This study employed diverse experiments to investigate the inhibitory mechanism of rutin on LDH through a binding perspective. The outcomes revealed that rutin underwent spontaneous binding within the coenzyme binding site of LDH, leading to the formation of a stable binary complex driven by hydrophobic forces, with hydrogen bonds also contributing significantly to sustaining the stability of the LDH-rutin complex. The binding constant (Ka) for the LDH-rutin system was 2.692 ± 0.015 × 104 M-1 at 298 K. Furthermore, rutin induced the alterations in the secondary structure conformation of LDH, characterized by a decrease in α-helix and an increase in antiparallel and parallel ß-sheet, and ß-turn. Rutin augmented the stability of coenzyme binding to LDH, which could potentially hinder the conversion process among coenzymes. Specifically, Arg98 in the active site loop of LDH provided essential binding energy contribution in the binding process. These outcomes might explain the dose-dependent inhibition of the catalytic activity of LDH by rutin. Interestingly, both the food additives ascorbic acid and tetrahydrocurcumin could reduce the binding stability of LDH and rutin. Meanwhile, these food additives did not produce positive synergism or antagonism on the rutin binding to LDH. Overall, this research could offer a unique insight into the therapeutic potential and medicinal worth of rutin.


Subject(s)
L-Lactate Dehydrogenase , Rutin , Rutin/chemistry , Rutin/pharmacology , Rutin/metabolism , L-Lactate Dehydrogenase/antagonists & inhibitors , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/chemistry , Humans , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Molecular Structure , Structure-Activity Relationship , Dose-Response Relationship, Drug , Molecular Docking Simulation , Computer Simulation , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
16.
Food Res Int ; 188: 114502, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823845

ABSTRACT

Lycium barbarum L. berries have a remarkable chemical composition and extensive biological activities, being a valuable component of health and nutraceutical practices. Nevertheless, a deep insight on the intestinal permeation of the pro-healthy bioactive compounds is urgently needed to predict the real effects on human body. This study attempted, for the first time, to optimize the Ultrasound-Assisted Extraction (UAE) of goji berries using a Response Surface Methodology approach and establish the intestinal permeation of the principal pro-healthy compounds. The optimal extraction conditions were a solid:liquid ratio of 8.75 % for 56.21 min, using an intensity of 59.05 W/m2. The optimal extract displayed a remarkable antioxidant capacity, with LC/DAD-ESI-MS analysis unveiled a diverse phytochemical profile, encompassing different compounds (e.g. glu-lycibarbarspermidine F, 2-glu-kukoamine, rutin, 3,5-dicaffeoylquinic acid). The intestinal co-culture model demonstrated that glu-lycibarbarspermidine F (isomer 2) (73.70 %), 3,5-dicaffeoylquinic acid (52.66 %), and isorhamnetin-3-O-rutinoside (49.31 %) traversed the intestinal cell layer, exerting beneficial health-promoting effects.


Subject(s)
Antioxidants , Fruit , Lycium , Plant Extracts , Lycium/chemistry , Fruit/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Humans , Permeability , Ultrasonic Waves , Phytochemicals/isolation & purification , Intestinal Mucosa/metabolism , Caco-2 Cells , Intestinal Absorption , Rutin/isolation & purification , Ultrasonics/methods , Intestinal Barrier Function
17.
Int J Nanomedicine ; 19: 4465-4493, 2024.
Article in English | MEDLINE | ID: mdl-38779103

ABSTRACT

Background: Liver cancer remains to be one of the leading causes of cancer worldwide. The treatment options face several challenges and nanomaterials have proven to improve the bioavailability of several drug candidates and their applications in nanomedicine. Specifically, chitosan nanoparticles (CNPs) are extremely biodegradable, pose enhanced biocompatibility and are considered safe for use in medicine. Methods: CNPs were synthesized by ionic gelation, loaded with rutin (rCNPs) and characterized by ultraviolet-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The rCNPs were tested for their cytotoxic effects on human hepatoma Hep3B cells, and experiments were conducted to determine the mechanism of such effects. Further, the biocompatibility of the rCNPs was tested on L929 fibroblasts, and their hemocompatibility was determined. Results: Initially, UV-vis and FTIR analyses indicated the possible loading of rutin on rCNPs. Further, the rutin load was quantitatively measured using Ultra-Performance Liquid Chromatography (UPLC) and the concentration was 88 µg/mL for 0.22 micron filtered rCNPs. The drug loading capacity (LC%) of the rCNPs was observed to be 13.29 ± 0.68%, and encapsulation efficiency (EE%) was 19.55 ± 1.01%. The drug release was pH-responsive as 88.58% of the drug was released after 24 hrs at the lysosomal pH 5.5, whereas 91.44% of the drug was released at physiological pH 7.4 after 102 hrs. The cytotoxic effects were prominent in 0.22 micron filtered samples of 5 mg/mL rutin precursor. The particle size for the rCNPs at this concentration was 144.1 nm and the polydispersity index (PDI) was 0.244, which is deemed to be ideal for tumor targeting. A zeta potential (ζ-potential) value of 16.4 mV indicated rCNPs with good stability. The IC50 value for the cytotoxic effects of rCNPs on human hepatoma Hep3B cells was 9.7 ± 0.19 µg/mL of rutin load. In addition, the increased production of reactive oxygen species (ROS) and changes in mitochondrial membrane potential (MMP) were observed. Gene expression studies indicated that the mechanism for cytotoxic effects of rCNPs on Hep3B cells was due to the activation of Unc-51-like autophagy-activating kinase (ULK1) mediated autophagy and nuclear factor kappa B (NF-κB) signaling besides inhibiting the epithelial-mesenchymal Transition (EMT). In addition, the rCNPs were less toxic on NCTC clone 929 (L929) fibroblasts in comparison to the Hep3B cells and possessed excellent hemocompatibility (less than 2% of hemolysis). Conclusion: The synthesized rCNPs were pH-responsive and possessed the physicochemical properties suitable for tumor targeting. The particles were effectively cytotoxic on Hep3B cells in comparison to normal cells and possessed excellent hemocompatibility. The very low hemolytic profile of rCNPs indicates that the drug could be administered intravenously for cancer therapy.


Subject(s)
Autophagy , Carcinoma, Hepatocellular , Chitosan , Liver Neoplasms , NF-kappa B , Nanoparticles , Rutin , Signal Transduction , Rutin/pharmacology , Rutin/chemistry , Rutin/administration & dosage , Rutin/pharmacokinetics , Chitosan/chemistry , Chitosan/pharmacology , Humans , NF-kappa B/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Nanoparticles/chemistry , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Autophagy/drug effects , Cell Line, Tumor , Signal Transduction/drug effects , Epithelial-Mesenchymal Transition/drug effects , Mice , Animals , Drug Carriers/chemistry , Drug Carriers/pharmacology , Cell Survival/drug effects
18.
J Agric Food Chem ; 72(22): 12630-12640, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38779919

ABSTRACT

Tartary buckwheat is highly valued for its abundant rutin (quercetin 3-O-rutinoside). As a flavonoid glycoside, rutin is synthesized with the crucial involvement of UDP-dependent glycosyltransferases (UGTs). However, the functions and transcriptional regulation of the UGT-encoded genes remain poorly understood. This study identified a key gene, FtUFGT163, potentially encoding flavonol 3-O-glucoside (1 → 6) rhamnosyltransferase in Tartary buckwheat through omics analysis and molecular docking methods. The recombinant FtUFGT163 expressed in Escherichia coli demonstrated the capacity to glycosylate isoquercetin into rutin. Overexpression of FtUFGT163 significantly enhanced the rutin content in Tartary buckwheat. Further investigation identified a novel bZIP transcription factor, FtGBF1, that enhances FtUFGT163 expression by binding to the G-box element within its promoter, thereby augmenting rutin biosynthesis. Additional molecular biology experiments indicated that the specific positive regulator of rutin, FtMYB5/6, could directly activate the FtGBF1 promoter. Collectively, this study elucidates a novel regulatory module, termed "FtMYB5/6-FtGBF1-FtUFGT163", which effectively coordinates the biosynthesis of rutin in Tartary buckwheat, offering insights into the genetic enhancement of nutraceutical components in crops.


Subject(s)
Fagopyrum , Gene Expression Regulation, Plant , Plant Proteins , Rutin , Fagopyrum/genetics , Fagopyrum/metabolism , Fagopyrum/chemistry , Rutin/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Molecular Docking Simulation
19.
Biomolecules ; 14(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38785985

ABSTRACT

Aronia melanocarpa berries contain many compounds with potential benefits for human health. The food flavonoids quercetin and rutin, found in significant amounts in the fruits of A. melanocarpa, are known to have favourable effects on animal and human organisms. However, data on the effect of flavonols isolated from black chokeberry on immune functions during immunosuppression are not available in the literature. Thus, the aim of this study was to evaluate the effect of flavonol fraction isolated from A. melanocarpa fruits, in comparison with pure quercetin and rutin substances, on the dysfunctional state of rat thymus and spleen in immunodeficiency. The study was performed on Wistar rats. The animals were orally administered solutions of the investigated substances for 7 days: water, a mixture of quercetin and rutin and flavonol fraction of A. melanocarpa. For induction of immunosuppression, the animals were injected once intraperitoneally with cyclophosphamide. Substance administration was then continued for another 7 days. The results showed that under the influence of flavonols, there was a decrease in cyclophosphamide-mediated reaction of lipid peroxidation enhancement and stimulation of proliferation of lymphocytes of thymus and spleen in rats. At that, the effect of the flavonol fraction of aronia was more pronounced.


Subject(s)
Cyclophosphamide , Flavonols , Fruit , Photinia , Rats, Wistar , Spleen , Thymus Gland , Animals , Photinia/chemistry , Cyclophosphamide/pharmacology , Rats , Fruit/chemistry , Thymus Gland/drug effects , Flavonols/pharmacology , Flavonols/chemistry , Spleen/drug effects , Male , Plant Extracts/pharmacology , Plant Extracts/chemistry , Immunosuppression Therapy , Quercetin/pharmacology , Quercetin/chemistry , Lipid Peroxidation/drug effects , Immunosuppressive Agents/pharmacology , Cell Proliferation/drug effects , Rutin/pharmacology , Rutin/chemistry
20.
Int J Biol Macromol ; 270(Pt 1): 132314, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740160

ABSTRACT

Tartary buckwheat (Fagopyrum tataricum) is an annual coarse cereal from the Polygonaceae family, known for its high content of flavonoid compounds, particularly rutin. But so far, the mechanisms of the flavonoid transport and storage in Tartary buckwheat (TB) remain largely unexplored. This study focuses on ATP-binding cassette transporters subfamily C (ABCC) members, which are crucial for the biosynthesis and transport of flavonoids in plants. The evolutionary and expression pattern analyses of the ABCC genes in TB identified an ABCC protein gene, FtABCC2, that is highly correlated with rutin synthesis. Subcellular localization analysis revealed that FtABCC2 protein is specifically localized to the vacuole membrane. Heterologous expression of FtABCC2 in Saccharomyces cerevisiae confirmed that its transport ability of flavonoid glycosides such as rutin and isoquercetin, but not the aglycones such as quercetin and dihydroquercetin. Overexpression of FtABCC2 in TB hairy root lines resulted in a significant increase in total flavonoid and rutin content (P < 0.01). Analysis of the FtABCC2 promoter revealed potential cis-acting elements responsive to hormones, cold stress, mechanical injury and light stress. Overall, this study demonstrates that FtABCC2 can efficiently facilitate the transport of rutin into vacuoles, thereby enhancing flavonoids accumulation. These findings suggest that FtABCC2 is a promising candidate for molecular-assisted breeding aimed at developing high-flavonoid TB varieties.


Subject(s)
Fagopyrum , Gene Expression Regulation, Plant , Plant Proteins , Rutin , Rutin/metabolism , Fagopyrum/genetics , Fagopyrum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/genetics , Biological Transport , Flavonoids/metabolism , Phylogeny , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL