Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.378
Filter
1.
J Vis Exp ; (206)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38738900

ABSTRACT

Bacterial cytoskeletal proteins such as FtsZ and MreB perform essential functions such as cell division and cell shape maintenance. Further, FtsZ and MreB have emerged as important targets for novel antimicrobial discovery. Several assays have been developed to identify compounds targeting nucleotide binding and polymerization of these cytoskeletal proteins, primarily focused on FtsZ. Moreover, many of the assays are either laborious or cost-intensive, and ascertaining whether these proteins are the cellular target of the drug often requires multiple methods. Finally, the toxicity of the drugs to eukaryotic cells also poses a problem. Here, we describe a single-step cell-based assay to discover novel molecules targeting bacterial cytoskeleton and minimize hits that might be potentially toxic to eukaryotic cells. Fission yeast is amenable to high-throughput screens based on microscopy, and a visual screen can easily identify any molecule that alters the polymerization of FtsZ or MreB. Our assay utilizes the standard 96-well plate and relies on the ability of the bacterial cytoskeletal proteins to polymerize in a eukaryotic cell such as the fission yeast. While the protocols described here are for fission yeast and utilize FtsZ from Staphylococcus aureus and MreB from Escherichia coli, they are easily adaptable to other bacterial cytoskeletal proteins that readily assemble into polymers in any eukaryotic expression hosts. The method described here should help facilitate further discovery of novel antimicrobials targeting bacterial cytoskeletal proteins.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Cytoskeletal Proteins , Schizosaccharomyces , Schizosaccharomyces/drug effects , Schizosaccharomyces/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Drug Evaluation, Preclinical/methods
2.
Sci Adv ; 10(19): eadj5185, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728403

ABSTRACT

CK1 kinases participate in many signaling pathways, and their regulation is of meaningful biological consequence. CK1s autophosphorylate their C-terminal noncatalytic tails, and eliminating these tails increases substrate phosphorylation in vitro, suggesting that the autophosphorylated C-termini act as inhibitory pseudosubstrates. To test this prediction, we comprehensively identified the autophosphorylation sites on Schizosaccharomyces pombe Hhp1 and human CK1ε. Phosphoablating mutations increased Hhp1 and CK1ε activity toward substrates. Peptides corresponding to the C-termini interacted with the kinase domains only when phosphorylated, and substrates competitively inhibited binding of the autophosphorylated tails to the substrate binding grooves. Tail autophosphorylation influenced the catalytic efficiency with which CK1s targeted different substrates, and truncating the tail of CK1δ broadened its linear peptide substrate motif, indicating that tails contribute to substrate specificity as well. Considering autophosphorylation of both T220 in the catalytic domain and C-terminal sites, we propose a displacement specificity model to describe how autophosphorylation modulates substrate specificity for the CK1 family.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Substrate Specificity , Phosphorylation , Schizosaccharomyces/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/genetics , Humans , Catalytic Domain , Protein Binding , Peptides/metabolism , Peptides/chemistry , Mutation , Casein Kinase 1 epsilon/metabolism , Casein Kinase 1 epsilon/genetics , Amino Acid Sequence
3.
PLoS Comput Biol ; 20(4): e1012027, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598558

ABSTRACT

Although the length and constituting sequences for pericentromeric repeats are highly variable across eukaryotes, the presence of multiple pericentromeric repeats is one of the conserved features of the eukaryotic chromosomes. Pericentromeric heterochromatin is often misregulated in human diseases, with the expansion of pericentromeric repeats in human solid cancers. In this article, we have developed a mathematical model of the RNAi-dependent methylation of H3K9 in the pericentromeric region of fission yeast. Our model, which takes copy number as an explicit parameter, predicts that the pericentromere is silenced only if there are many copies of repeats. It becomes bistable or desilenced if the copy number of repeats is reduced. This suggests that the copy number of pericentromeric repeats alone can determine the fate of heterochromatin silencing in fission yeast. Through sensitivity analysis, we identified parameters that favor bistability and desilencing. Stochastic simulation shows that faster cell division and noise favor the desilenced state. These results show the unexpected role of pericentromeric repeat copy number in gene silencing and provide a quantitative basis for how the copy number allows or protects repetitive and unique parts of the genome from heterochromatin silencing, respectively.


Subject(s)
Centromere , Heterochromatin , Schizosaccharomyces , Heterochromatin/metabolism , Heterochromatin/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Centromere/metabolism , Centromere/genetics , Models, Genetic , Computational Biology , Gene Silencing , Repetitive Sequences, Nucleic Acid/genetics , Humans , Histones/metabolism , Histones/genetics
4.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673778

ABSTRACT

Pre-mRNA splicing plays a key role in the regulation of gene expression. Recent discoveries suggest that defects in pre-mRNA splicing, resulting from the dysfunction of certain splicing factors, can impact the expression of genes crucial for genome surveillance mechanisms, including those involved in cellular response to DNA damage. In this study, we analyzed how cells with a non-functional spliceosome-associated Gpl1-Gih35-Wdr83 complex respond to DNA damage. Additionally, we investigated the role of this complex in regulating the splicing of factors involved in DNA damage repair. Our findings reveal that the deletion of any component within the Gpl1-Gih35-Wdr83 complex leads to a significant accumulation of unspliced pre-mRNAs of DNA repair factors. Consequently, mutant cells lacking this complex exhibit increased sensitivity to DNA-damaging agents. These results highlight the importance of the Gpl1-Gih35-Wdr83 complex in regulating the expression of DNA repair factors, thereby protecting the stability of the genome following DNA damage.


Subject(s)
DNA Damage , DNA Repair , RNA Splicing , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Spliceosomes/metabolism , Spliceosomes/genetics , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , Gene Expression Regulation, Fungal , RNA Precursors/genetics , RNA Precursors/metabolism
5.
Cell Rep ; 43(4): 114066, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38578823

ABSTRACT

In human cells and yeast, an intact "hydrophobic patch" substrate docking site is needed for mitotic cyclin centrosomal localization. A hydrophobic patch mutant (HPM) of the fission yeast mitotic cyclin Cdc13 cannot enter mitosis, but whether this is due to defective centrosomal localization or defective cyclin-substrate docking more widely is unknown. Here, we show that artificially restoring Cdc13-HPM centrosomal localization promotes mitotic entry and increases CDK (cyclin-dependent kinase) substrate phosphorylation at the centrosome and in the cytoplasm. We also show that the S-phase B-cyclin hydrophobic patch is required for centrosomal localization but not for S phase. We propose that the hydrophobic patch is essential for mitosis due to its requirement for the local concentration of cyclin-CDK with CDK substrates and regulators at the centrosome. Our findings emphasize the central importance of the centrosome as a hub coordinating cell-cycle control and explain why the cyclin hydrophobic patch is essential for mitosis.


Subject(s)
Cell Cycle , Centrosome , Cyclin B , Cyclin-Dependent Kinases , Mitosis , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Centrosome/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Cyclin-Dependent Kinases/metabolism , Phosphorylation , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Hydrophobic and Hydrophilic Interactions , Humans
6.
Life Sci Alliance ; 7(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38575358

ABSTRACT

For establishing sister chromatid cohesion and proper chromosome segregation in mitosis in fission yeast, the acetyltransferase Eso1 plays a key role. Eso1 acetylates cohesin complexes, at two conserved lysine residues K105 and K106 of the cohesin subunit Psm3. Although Eso1 also contributes to reductional chromosome segregation in meiosis, the underlying molecular mechanisms have remained elusive. Here, we purified meiosis-specific Rec8 cohesin complexes localized at centromeres and identified a new acetylation at Psm3-K1013, which largely depends on the meiotic kinetochore factor meikin (Moa1). Our molecular genetic analyses indicate that Psm3-K1013 acetylation cooperates with canonical acetylation at Psm3-K105 and K106, and plays a crucial role in establishing reductional chromosome segregation in meiosis.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Cohesins , Chromosome Segregation/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Acetylation , Meiosis/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism
7.
Yeast ; 41(5): 349-363, 2024 May.
Article in English | MEDLINE | ID: mdl-38583078

ABSTRACT

The cAMP-PKA signaling pathway plays a crucial role in sensing and responding to nutrient availability in the fission yeast Schizosaccharomyces pombe. This pathway monitors external glucose levels to control cell growth and sexual differentiation. However, the temporal dynamics of the cAMP-PKA pathway in response to external stimuli remains unclear mainly due to the lack of tools to quantitatively visualize the activity of the pathway. Here, we report the development of the kinase translocation reporter (KTR)-based biosensor spPKA-KTR1.0, which allows us to measure the dynamics of PKA activity in fission yeast cells. The spPKA-KTR1.0 is derived from the transcription factor Rst2, which translocates from the nucleus to the cytoplasm upon PKA activation. We found that spPKA-KTR1.0 translocates between the nucleus and cytoplasm in a cAMP-PKA pathway-dependent manner, indicating that the spPKA-KTR1.0 is a reliable indicator of the PKA activity in fission yeast cells. In addition, we implemented a system that simultaneously visualizes and manipulates the cAMP-PKA signaling dynamics by introducing bPAC, a photoactivatable adenylate cyclase, in combination with spPKA-KTR1.0. This system offers an opportunity for investigating the role of the signaling dynamics of the cAMP-PKA pathway in fission yeast cells with higher temporal resolution.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Optogenetics , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Signal Transduction , Schizosaccharomyces/genetics , Schizosaccharomyces/enzymology , Schizosaccharomyces/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Cyclic AMP/metabolism , Biosensing Techniques , Optical Imaging/methods , Cell Nucleus/metabolism , Cytoplasm/metabolism , Transcription Factors
8.
Mol Biol Cell ; 35(6): ar77, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38598296

ABSTRACT

In favorable conditions, eukaryotic cells proceed irreversibly through the cell division cycle (G1-S-G2-M) in order to produce two daughter cells with the same number and identity of chromosomes of their progenitor. The integrity of this process is maintained by "checkpoints" that hold a cell at particular transition points of the cycle until all requisite events are completed. The crucial functions of these checkpoints seem to depend on irreversible bistability of the underlying checkpoint control systems. Bistability of cell cycle transitions has been confirmed experimentally in frog egg extracts, budding yeast cells and mammalian cells. For fission yeast cells, a recent paper by Patterson et al. (2021) provides experimental evidence for an abrupt transition from G2 phase into mitosis, and we show that these data are consistent with a stochastic model of a bistable switch governing the G2/M checkpoint. Interestingly, our model suggests that their experimental data could also be explained by a reversible/sigmoidal switch, and stochastic simulations confirm this supposition. We propose a simple modification of their experimental protocol that could provide convincing evidence for (or against) bistability of the G2/M transition in fission yeast.


Subject(s)
Mitosis , Schizosaccharomyces , Schizosaccharomyces/metabolism , Mitosis/physiology , Cell Cycle/physiology , G2 Phase Cell Cycle Checkpoints , G2 Phase/physiology , Schizosaccharomyces pombe Proteins/metabolism
9.
Biochem Biophys Res Commun ; 714: 149970, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38663097

ABSTRACT

Movement dynamics in the nucleus involve various biological processes, including DNA repair, which is crucial for cancer prevention. Changes in the movement of the components of the nucleus indicate the changes in movement dynamics in the nucleus. In Schizosaccharomyces pombe, the inner nuclear membrane protein Bqt4 plays an essential role in attaching telomeres to the nuclear envelope. We observed that the deletion of bqt4+ caused a significant decrease in the mean square displacement (MSD) calculated from the distance between the nucleolar center and spindle pole body (SPB), hereafter referred to as MSD(SPB-Nucleolus). The MSD(SPB-Nucleolus) decrease in bqt4Δ was microtubule-dependent. The Rap1-binding ability loss mutant, bqt4F46A, and nonspecific DNA-binding ability mutants, bqt43E-A, did not exhibit an MSD(SPB-Nucleolus) decrease compared to the WT. Moreover, the bqt43E-Arap1Δ double mutant and 1-262 amino acids truncated mutant bqt4ΔN (263-432), which does not have either Rap1-binding or nonspecific DNA-binding abilities, did not exhibit the MSD(SPB-Nucleolus) decrease to the same extent as bqt4Δ. These results suggest that the unknown function of Bqt4 in the C-terminal domain is essential for the maintenance of the pattern of relative movement between SPB and the nucleolus.


Subject(s)
Cell Nucleolus , DNA-Binding Proteins , Nuclear Proteins , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Spindle Pole Bodies , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Cell Nucleolus/metabolism , Spindle Pole Bodies/metabolism , Mutation , Microtubules/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Protein Binding
10.
PLoS One ; 19(4): e0300732, 2024.
Article in English | MEDLINE | ID: mdl-38662722

ABSTRACT

KAT5 (S. pombe Mst1, human TIP60) is a MYST family histone acetyltransferase conserved from yeast to humans that is involved in multiple cellular activities. This family is characterized in part by containing a chromodomain, a motif associated with binding methylated histones. We show that a chromodomain mutation in the S. pombe Kat5, mst1-W66R, has defects in pericentromere silencing. mst1-W66R is sensitive to camptothecin (CPT) but only at an increased temperature of 36°C, although it is proficient for growth at this temperature. We also describe a de-silencing effect at the pericentromere by CPT that is independent of RNAi and methylation machinery. We also show that mst1-W66R disrupts recruitment of proteins to repair foci in response to camptothecin-induced DNA damage. Our data suggest a function of Mst1 chromodomain in centromere heterochromatin formation and a separate role in genome-wide damage repair in CPT.


Subject(s)
Centromere , DNA Repair , Mutation , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/drug effects , Schizosaccharomyces/metabolism , Centromere/metabolism , Centromere/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Camptothecin/pharmacology , Lysine Acetyltransferase 5/metabolism , Lysine Acetyltransferase 5/genetics , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , DNA Damage , Heterochromatin/metabolism , Heterochromatin/genetics , Humans
11.
Free Radic Biol Med ; 218: 16-25, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574974

ABSTRACT

A critical feature of the cellular antioxidant response is the induction of gene expression by redox-sensitive transcription factors. In many cells, activating these transcription factors is a dynamic process involving multiple redox steps, but it is unclear how these dynamics should be measured. Here, we show how the dynamic profile of the Schizosaccharomyces pombe Pap1 transcription factor is quantifiable by three parameters: signal amplitude, signal time and signal duration. In response to increasing hydrogen peroxide concentrations, the Pap1 amplitude decreased while the signal time and duration showed saturable increases. In co-response plots, these parameters showed a complex, non-linear relationship to the mRNA levels of four Pap1-regulated genes. We also demonstrate that hydrogen peroxide and tert-butyl hydroperoxide trigger quantifiably distinct Pap1 activation profiles and transcriptional responses. Based on these findings, we propose that different oxidants and oxidant concentrations modulate the Pap1 dynamic profile, leading to specific transcriptional responses. We further show how the effect of combination and pre-exposure stresses on Pap1 activation dynamics can be quantified using this approach. This method is therefore a valuable addition to the redox signalling toolbox that may illuminate the role of dynamics in determining appropriate responses to oxidative stress.


Subject(s)
Hydrogen Peroxide , Oxidation-Reduction , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Signal Transduction , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces/genetics , Hydrogen Peroxide/metabolism , tert-Butylhydroperoxide/pharmacology , Pancreatitis-Associated Proteins/metabolism , Pancreatitis-Associated Proteins/genetics , Gene Expression Regulation, Fungal , Oxidative Stress , Transcription Factors/metabolism , Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Oxidants/pharmacology , Oxidants/metabolism
12.
Mitochondrion ; 76: 101881, 2024 May.
Article in English | MEDLINE | ID: mdl-38604460

ABSTRACT

DEAD-box helicases are important players in mitochondrial gene expression, which is necessary for mitochondrial respiration. In this study, we characterized Schizosaccharomyces pombe Mss116 (spMss116), a member of the family of DEAD-box RNA helicases. Deletion of spmss116 in a mitochondrial intron-containing background significantly reduced the levels of mitochondrial DNA (mtDNA)-encoded cox1 and cob1 mRNAs and impaired mitochondrial translation, leading to a severe respiratory defect and a loss of cell viability during stationary phase. Deletion of mitochondrial introns restored the levels of cox1 and cob1 mRNAs to wide-type (WT) levels but could not restore mitochondrial translation and respiration in Δspmss116 cells. Furthermore, deletion of spmss116 in both mitochondrial intron-containing and intronless backgrounds impaired mitoribosome assembly and destabilization of mitoribosomal proteins. Our findings suggest that defective mitochondrial translation caused by deletion of spmss116 is most likely due to impaired mitoribosome assembly.


Subject(s)
DEAD-box RNA Helicases , Mitochondrial Ribosomes , Protein Biosynthesis , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Mitochondrial Ribosomes/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Mitochondria/metabolism , Mitochondria/genetics , Gene Deletion , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics
13.
Mitochondrion ; 76: 101875, 2024 May.
Article in English | MEDLINE | ID: mdl-38499131

ABSTRACT

Pentatricopeptide repeat proteins are involved in mitochondrial both transcriptional and posttranscriptional regulation. Schizosaccharomyces pombe Ppr2 is a general mitochondrial translation factor that plays a critical role in the synthesis of all mitochondrial DNA-encoded oxidative phosphorylation subunits, which are essential for mitochondrial respiration. Our previous analysis showed that ppr2 deletion resulted in increased expression of iron uptake genes and caused ferroptosis-like cell death in S. pombe. In the present work, we showed that deletion of ppr2 reduced viability on glycerol- and galactose-containing media.Php4 is a transcription repressor that regulates iron homeostasis in fission yeast. We found that in the ppr2 deletion strain, Php4 was constitutively active and accumulated in the nucleus in the stationary phase. We also found that deletion of ppr2 decreased the ferroptosis-related protein Gpx1 in the mitochondria. Overexpression of Gpx1 improves the viability of Δppr2 cells. We showed that the deletion of ppr2 increased the production of ROS, downregulated heme synthesis and iron-sulfur cluster proteins, and induced stress proteins. Finally, we observed the nuclear accumulation of Pap1-GFP and Sty1-GFP, suggesting that Sty1 and Pap1 in response to cellular stress in the ppr2 deletion strain. These results suggest thatppr2 deletion may cause mitochondrial dysfunction, which is likely to lead to iron-sensing defect and iron starvation response, resulting in perturbation of iron homeostasis and increased hydroxyl radical production. The increased hydroxyl radical production triggers cellular responses in theppr2 deletion strain.


Subject(s)
Gene Deletion , Iron , Oxidative Stress , Pancreatitis-Associated Proteins , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Iron/metabolism , Pancreatitis-Associated Proteins/metabolism , Pancreatitis-Associated Proteins/genetics , Gene Expression Regulation, Fungal , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Reactive Oxygen Species/metabolism , Microbial Viability , CCAAT-Binding Factor , Basic-Leucine Zipper Transcription Factors
14.
Life Sci Alliance ; 7(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38514187

ABSTRACT

RNA polymerase II transcription elongation directs an intricate pattern of histone modifications. This pattern includes a regulatory cascade initiated by the elongation factor Rtf1, leading to monoubiquitylation of histone H2B, and subsequent methylation of histone H3 on lysine 4. Previous studies have defined the molecular basis for these regulatory relationships, but it remains unclear how they regulate gene expression. To address this question, we investigated a drug resistance phenotype that characterizes defects in this axis in the model eukaryote Schizosaccharomyces pombe (fission yeast). The mutations caused resistance to the ribonucleotide reductase inhibitor hydroxyurea (HU) that correlated with a reduced effect of HU on dNTP pools, reduced requirement for the S-phase checkpoint, and blunting of the transcriptional response to HU treatment. Mutations in the C-terminal repeat domain of the RNA polymerase II large subunit Rpb1 led to similar phenotypes. Moreover, all the HU-resistant mutants also exhibited resistance to several azole-class antifungal agents. Our results suggest a novel, shared gene regulatory function of the Rtf1-H2Bub1-H3K4me axis and the Rpb1 C-terminal repeat domain in controlling fungal drug tolerance.


Subject(s)
Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Histone Code , Histones/genetics , Histones/metabolism , Drug Resistance, Multiple
15.
BMC Biol ; 22(1): 71, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38523261

ABSTRACT

BACKGROUND: Mitogen-activated protein kinases (MAPKs) preserve cell homeostasis by transducing physicochemical fluctuations of the environment into multiple adaptive responses. These responses involve transcriptional rewiring and the regulation of cell cycle transitions, among others. However, how stress conditions impinge mitotic progression is largely unknown. The mitotic checkpoint is a surveillance mechanism that inhibits mitotic exit in situations of defective chromosome capture, thus preventing the generation of aneuploidies. In this study, we investigate the role of MAPK Pmk1 in the regulation of mitotic exit upon stress. RESULTS: We show that Schizosaccharomyces pombe cells lacking Pmk1, the MAP kinase effector of the cell integrity pathway (CIP), are hypersensitive to microtubule damage and defective in maintaining a metaphase arrest. Epistasis analysis suggests that Pmk1 is involved in maintaining spindle assembly checkpoint (SAC) signaling, and its deletion is additive to the lack of core SAC components such as Mad2 and Mad3. Strikingly, pmk1Δ cells show up to twofold increased levels of the anaphase-promoting complex (APC/C) activator Cdc20Slp1 during unperturbed growth. We demonstrate that Pmk1 physically interacts with Cdc20Slp1 N-terminus through a canonical MAPK docking site. Most important, the Cdc20Slp1 pool is rapidly degraded in stressed cells undergoing mitosis through a mechanism that requires MAPK activity, Mad3, and the proteasome, thus resulting in a delayed mitotic exit. CONCLUSIONS: Our data reveal a novel function of MAPK in preventing mitotic exit and activation of cytokinesis in response to stress. The regulation of Cdc20Slp1 turnover by MAPK Pmk1 provides a key mechanism by which the timing of mitotic exit can be adjusted relative to environmental conditions.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism , Cell Cycle Proteins/metabolism , Mitosis , Spindle Apparatus/metabolism
16.
Biol Open ; 13(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38526189

ABSTRACT

CENP-A determines the identity of the centromere. Because the position and size of the centromere and its number per chromosome must be maintained, the distribution of CENP-A is strictly regulated. In this study, we have aimed to understand mechanisms to regulate the distribution of CENP-A (Cnp1SP) in fission yeast. A mutant of the ufd1+ gene (ufd1-73) encoding a cofactor of Cdc48 ATPase is sensitive to Cnp1 expressed at a high level and allows mislocalization of Cnp1. The level of Cnp1 in centromeric chromatin is increased in the ufd1-73 mutant even when Cnp1 is expressed at a normal level. A preexisting mutant of the cdc48+ gene (cdc48-353) phenocopies the ufd1-73 mutant. We have also shown that Cdc48 and Ufd1 proteins interact physically with centromeric chromatin. Finally, Cdc48 ATPase with Ufd1 artificially recruited to the centromere of a mini-chromosome (Ch16) induce a loss of Cnp1 from Ch16, leading to an increased rate of chromosome loss. It appears that Cdc48 ATPase, together with its cofactor Ufd1 remove excess Cnp1 from chromatin, likely in a direct manner. This mechanism may play a role in centromere disassembly, a process to eliminate Cnp1 to inactivate the kinetochore function during development, differentiation, and stress response.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Chromatin/genetics , Chromatin/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Centromere Protein A/genetics , Centromere Protein A/metabolism , Histones/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Centromere/genetics , Centromere/metabolism , Adenosine Triphosphatases/metabolism , Plant Extracts/metabolism
17.
Arch Microbiol ; 206(4): 155, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480568

ABSTRACT

Glucose, which plays an essential role in carbon and energy metabolism in eukaryotes, is vital in directing various energy-consuming cellular processes. In S. cerevisiae, transcription factors involved in regulating hexose transporters and their mechanisms of action under different carbon sources were revealed in detail. However, there is limited information on these processes in S. pombe. In this study, the effect of SPCC320.03 (named SpRgt1), the ortholog of ScRgt1 whose molecular mechanism is known in detail in S. cerevisiae, on the transcriptional regulation of hexose transporters (ght1-8) dependent on different carbon sources was investigated. We measured the transcript levels of ght1-8 using the qPCR technique and performed relative evaluation in S. pombe strains (parental, rgt1 deleted mutant, rgt1 overexpressed, and vectoral rgt1 carrying mutant). We aimed to investigate the transcriptional changes caused by the protein product of the rgt1 (SPCC320.03) gene in terms of ght1-8 genes in strains that are grown in different carbon sources (2% glucose, 2% glycerol + 0.1% glucose, and 2% gluconate). Here, we show that SpRgt1 is involved in the regulation of the ght3, ght4, ght6, and ght7 genes but that the ght1, ght2, ght5, and ght8 gene expression vary depending on carbon sources, independently of SpRgt1.


Subject(s)
Schizosaccharomyces , Carbon/metabolism , DNA , Gene Expression , Gene Expression Regulation, Fungal , Glucose/metabolism , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Saccharomyces cerevisiae/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Genes Dev ; 38(3-4): 189-204, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38479839

ABSTRACT

Chromatin-based epigenetic memory relies on the accurate distribution of parental histone H3-H4 tetramers to newly replicated DNA strands. Mcm2, a subunit of the replicative helicase, and Dpb3/4, subunits of DNA polymerase ε, govern parental histone H3-H4 deposition to the lagging and leading strands, respectively. However, their contribution to epigenetic inheritance remains controversial. Here, using fission yeast heterochromatin inheritance systems that eliminate interference from initiation pathways, we show that a Mcm2 histone binding mutation severely disrupts heterochromatin inheritance, while mutations in Dpb3/4 cause only moderate defects. Surprisingly, simultaneous mutations of Mcm2 and Dpb3/4 stabilize heterochromatin inheritance. eSPAN (enrichment and sequencing of protein-associated nascent DNA) analyses confirmed the conservation of Mcm2 and Dpb3/4 functions in parental histone H3-H4 segregation, with their combined absence showing a more symmetric distribution of parental histone H3-H4 than either single mutation alone. Furthermore, the FACT histone chaperone regulates parental histone transfer to both strands and collaborates with Mcm2 and Dpb3/4 to maintain parental histone H3-H4 density and faithful heterochromatin inheritance. These results underscore the importance of both symmetric distribution of parental histones and their density at daughter strands for epigenetic inheritance and unveil distinctive properties of parental histone chaperones during DNA replication.


Subject(s)
Histones , Schizosaccharomyces , Histones/metabolism , Histone Chaperones/genetics , Histone Chaperones/metabolism , Heterochromatin/genetics , DNA Replication/genetics , DNA/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Epigenesis, Genetic
19.
Nucleic Acids Res ; 52(8): 4198-4214, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38442274

ABSTRACT

Precise positioning of the histone-H3 variant, CENP-A, ensures centromere stability and faithful chromosomal segregation. Mislocalization of CENP-A to extra-centromeric loci results in aneuploidy and compromised cell viability associated with formation of ectopic kinetochores. The mechanism that retargets mislocalized CENP-A back to the centromere is unclarified. We show here that the downregulation of the histone H3 lysine 36 (H3K36) methyltransferase Set2 can preserve centromere localization of a temperature-sensitive mutant cnp1-1 Schizosaccharomyces pombe CENP-A (SpCENP-A) protein and reverse aneuploidy by redirecting mislocalized SpCENP-A back to centromere from ribosomal DNA (rDNA) loci, which serves as a sink for the delocalized SpCENP-A. Downregulation of set2 augments Swc2 (SWR1 complex DNA-binding module) expression and releases histone chaperone Ccp1 from the centromeric reservoir. Swc2 and Ccp1 are directed to the rDNA locus to excavate the SpCENP-Acnp1-1, which is relocalized to the centromere in a manner dependent on canonical SpCENP-A loaders, including Mis16, Mis17 and Mis18, thereby conferring cell survival and safeguarding chromosome segregation fidelity. Chromosome missegregation is a severe genetic instability event that compromises cell viability. This mechanism thus promotes CENP-A presence at the centromere to maintain genomic stability.


Subject(s)
Centromere Protein A , Centromere , Chromosomal Proteins, Non-Histone , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Centromere/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Centromere Protein A/metabolism , Centromere Protein A/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosome Segregation , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Kinetochores/metabolism , Aneuploidy , Histones/metabolism , Histones/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics
20.
J Cell Sci ; 137(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38482739

ABSTRACT

CSL proteins [named after the homologs CBF1 (RBP-Jκ in mice), Suppressor of Hairless and LAG-1] are conserved transcription factors found in animals and fungi. In the fission yeast Schizosaccharomyces pombe, they regulate various cellular processes, including cell cycle progression, lipid metabolism and cell adhesion. CSL proteins bind to DNA through their N-terminal Rel-like domain and central ß-trefoil domain. Here, we investigated the importance of DNA binding for CSL protein functions in fission yeast. We created CSL protein mutants with disrupted DNA binding and found that the vast majority of CSL protein functions depend on intact DNA binding. Specifically, DNA binding is crucial for the regulation of cell adhesion, lipid metabolism, cell cycle progression, long non-coding RNA expression and genome integrity maintenance. Interestingly, perturbed lipid metabolism leads to chromatin structure changes, potentially linking lipid metabolism to the diverse phenotypes associated with CSL protein functions. Our study highlights the critical role of DNA binding for CSL protein functions in fission yeast.


Subject(s)
Cell Cycle Proteins , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Transcription Factors , Schizosaccharomyces/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/genetics , Protein Binding , Lipid Metabolism/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Cycle/genetics , Gene Expression Regulation, Fungal , DNA, Fungal/metabolism , DNA, Fungal/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...