Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Parasit Vectors ; 14(1): 410, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34407867

ABSTRACT

BACKGROUND: Riverine species of tsetse (Glossina) transmit Trypanosoma brucei gambiense, which causes Gambian human African trypanosomiasis (gHAT), a neglected tropical disease. Uganda aims to eliminate gHAT as a public health problem through detection and treatment of human cases and vector control. The latter is being achieved through the deployment of 'Tiny Targets', insecticide-impregnated panels of material which attract and kill tsetse. We analysed the spatial and temporal distribution of cases of gHAT in Uganda during the period 2010-2019 to assess whether Tiny Targets have had an impact on disease incidence. METHODS: To quantify the deployment of Tiny Targets, we mapped the rivers and their associated watersheds in the intervention area. We then categorised each of these on a scale of 0-3 according to whether Tiny Targets were absent (0), present only in neighbouring watersheds (1), present in the watersheds but not all neighbours (2), or present in the watershed and all neighbours (3). We overlaid all cases that were diagnosed between 2000 and 2020 and assessed whether the probability of finding cases in a watershed changed following the deployment of targets. We also estimated the number of cases averted through tsetse control. RESULTS: We found that following the deployment of Tiny Targets in a watershed, there were fewer cases of HAT, with a sampled error probability of 0.007. We estimate that during the intervention period 2012-2019 we should have expected 48 cases (95% confidence intervals = 40-57) compared to the 36 cases observed. The results are robust to a range of sensitivity analyses. CONCLUSIONS: Tiny Targets have reduced the incidence of gHAT by 25% in north-western Uganda.


Subject(s)
Insect Control/methods , Insect Vectors/drug effects , Insecticides/pharmacology , Public Health/standards , Trypanosoma brucei gambiense/pathogenicity , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control , Tsetse Flies/drug effects , Animals , Gambia , Humans , Incidence , Insect Vectors/parasitology , Public Health/methods , Tsetse Flies/parasitology , Uganda/epidemiology
2.
PLoS One ; 16(7): e0254558, 2021.
Article in English | MEDLINE | ID: mdl-34283848

ABSTRACT

Trypanosomiasis is a significant productivity-limiting livestock disease in sub-Saharan Africa, contributing to poverty and food insecurity. In this paper, we estimate the potential economic gains from adopting Waterbuck Repellent Blend (WRB). The WRB is a new technology that pushes trypanosomiasis-transmitting tsetse fly away from animals, improving animals' health and increasing meat and milk productivity. We estimate the benefits of WRB on the production of meat and milk using the economic surplus approach. We obtained data from an expert elicitation survey, secondary and experimental sources. Our findings show that the adoption of WRB in 5 to 50% of the animal population would generate an economic surplus of US$ 78-869 million per annum for African 18 countries. The estimated benefit-cost ratio (9:1) further justifies an investment in WRB. The technology's potential benefits are likely to be underestimated since our estimates did not include the indirect benefits of the technology adoption, such as the increase in the quantity and quality of animals' draught power services and human and environmental health effects. These benefits suggest that investing in WRB can contribute to nutrition security and sustainable development goals.


Subject(s)
Insect Control/methods , Insect Repellents/pharmacology , Trypanosomiasis, African/prevention & control , Tsetse Flies/drug effects , Africa South of the Sahara/epidemiology , Animals , Cattle , Cost-Benefit Analysis , Humans , Insect Control/economics , Insect Repellents/economics , Insecticides/economics , Insecticides/pharmacology , Livestock/parasitology , Trypanosomiasis, African/economics , Trypanosomiasis, African/transmission , Trypanosomiasis, African/veterinary , Tsetse Flies/pathogenicity
3.
PLoS Negl Trop Dis ; 15(6): e0009463, 2021 06.
Article in English | MEDLINE | ID: mdl-34153040

ABSTRACT

BACKGROUND: Riverine tsetse (Glossina spp.) transmit Trypanosoma brucei gambiense which causes Gambian Human African Trypanosomiasis. Tiny Targets were developed for cost-effective riverine tsetse control, and comprise panels of insecticide-treated blue polyester fabric and black net that attract and kill tsetse. Versus typical blue polyesters, two putatively more attractive fabrics have been developed: Vestergaard ZeroFly blue, and violet. Violet was most attractive to savannah tsetse using large targets, but neither fabric has been tested for riverine tsetse using Tiny Targets. METHODS: We measured numbers of G. f. fuscipes attracted to electrified Tiny Targets in Kenya and Uganda. We compared violets, Vestergaard blues, and a typical blue polyester, using three replicated Latin squares experiments. We then employed Bayesian statistical analyses to generate expected catches for future target deployments incorporating uncertainty in model parameters, and prior knowledge from previous experiments. RESULTS: Expected catches for average future replicates of violet and Vestergaard blue targets were highly likely to exceed those for typical blue. Accounting for catch variability between replicates, it remained moderately probable (70-86% and 59-84%, respectively) that a given replicate of these targets would have a higher expected catch than typical blue on the same day at the same site. Meanwhile, expected catches for average violet replicates were, in general, moderately likely to exceed those for Vestergaard blue. However, the difference in medians was small, and accounting for catch variability, the probability that the expected catch for a violet replicate would exceed a Vestergaard blue equivalent was marginal (46-71%). CONCLUSION: Violet and Vestergaard ZeroFly blue are expected to outperform typical blue polyester in the Tiny Target configuration. Violet is unlikely to greatly outperform Vestergaard blue deployed in this way, but because violet is highly attractive to both riverine and savannah tsetse using different target designs, it may provide the more suitable general-purpose fabric.


Subject(s)
Insect Control/methods , Insect Vectors/physiology , Insecticide-Treated Bednets , Tsetse Flies/physiology , Animals , Bayes Theorem , Insect Control/instrumentation , Insect Vectors/drug effects , Insecticides/pharmacology , Kenya , Textiles , Tsetse Flies/drug effects , Uganda
4.
PLoS Pathog ; 17(3): e1009204, 2021 03.
Article in English | MEDLINE | ID: mdl-33647053

ABSTRACT

Trypanosoma brucei, a protist responsible for human African trypanosomiasis (sleeping sickness), is transmitted by the tsetse fly where the procyclic forms of the parasite develop in the proline-rich (1-2 mM) and glucose-depleted digestive tract. Proline is essential for the midgut colonization of the parasite in the insect vector, however other carbon sources could be available and used to feed its central metabolism. Here we show that procyclic trypanosomes can consume and metabolize metabolic intermediates, including those excreted from glucose catabolism (succinate, alanine and pyruvate), with the exception of acetate, which is the ultimate end-product excreted by the parasite. Among the tested metabolites, tricarboxylic acid (TCA) cycle intermediates (succinate, malate and α-ketoglutarate) stimulated growth of the parasite in the presence of 2 mM proline. The pathways used for their metabolism were mapped by proton-NMR metabolic profiling and phenotypic analyses of thirteen RNAi and/or null mutants affecting central carbon metabolism. We showed that (i) malate is converted to succinate by both the reducing and oxidative branches of the TCA cycle, which demonstrates that procyclic trypanosomes can use the full TCA cycle, (ii) the enormous rate of α-ketoglutarate consumption (15-times higher than glucose) is possible thanks to the balanced production and consumption of NADH at the substrate level and (iii) α-ketoglutarate is toxic for trypanosomes if not appropriately metabolized as observed for an α-ketoglutarate dehydrogenase null mutant. In addition, epimastigotes produced from procyclics upon overexpression of RBP6 showed a growth defect in the presence of 2 mM proline, which is rescued by α-ketoglutarate, suggesting that physiological amounts of proline are not sufficient per se for the development of trypanosomes in the fly. In conclusion, these data show that trypanosomes can metabolize multiple metabolites, in addition to proline, which allows them to confront challenging environments in the fly.


Subject(s)
Glucose/metabolism , Proline/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma/drug effects , Tsetse Flies/drug effects , Animals , Citric Acid Cycle/drug effects , Insect Vectors/parasitology , Oxidation-Reduction/drug effects , Proline/metabolism , RNA Interference/physiology , Trypanosoma/metabolism , Trypanosoma brucei brucei/metabolism , Trypanosomiasis, African/drug therapy , Tsetse Flies/parasitology
5.
PLoS Biol ; 19(1): e3000796, 2021 01.
Article in English | MEDLINE | ID: mdl-33497373

ABSTRACT

Tsetse transmit African trypanosomiasis, which is a disease fatal to both humans and animals. A vaccine to protect against this disease does not exist so transmission control relies on eliminating tsetse populations. Although neurotoxic insecticides are the gold standard for insect control, they negatively impact the environment and reduce populations of insect pollinator species. Here we present a promising, environment-friendly alternative to current insecticides that targets the insect tyrosine metabolism pathway. A bloodmeal contains high levels of tyrosine, which is toxic to haematophagous insects if it is not degraded and eliminated. RNA interference (RNAi) of either the first two enzymes in the tyrosine degradation pathway (tyrosine aminotransferase (TAT) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)) was lethal to tsetse. Furthermore, nitisinone (NTBC), an FDA-approved tyrosine catabolism inhibitor, killed tsetse regardless if the drug was orally or topically applied. However, oral administration of NTBC to bumblebees did not affect their survival. Using a novel mathematical model, we show that NTBC could reduce the transmission of African trypanosomiasis in sub-Saharan Africa, thus accelerating current disease elimination programmes.


Subject(s)
Cyclohexanones/therapeutic use , Drug Repositioning , Infection Control/methods , Nitrobenzoates/therapeutic use , Trypanosomiasis, African/prevention & control , 4-Hydroxyphenylpyruvate Dioxygenase/antagonists & inhibitors , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Animals , Bees/drug effects , Female , Humans , Insecticides/therapeutic use , Male , Metabolome/drug effects , Mice , Models, Theoretical , Neglected Diseases/prevention & control , Orphan Drug Production , Rats , Rats, Wistar , Toxicity Tests , Trypanosomiasis, African/transmission , Tsetse Flies/drug effects , Tsetse Flies/metabolism , Tyrosine/metabolism
6.
Acta Trop ; 211: 105597, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32592683

ABSTRACT

Previous comparison of the body odors of tsetse-refractory waterbuck and those of tsetse-attractive ox and buffalo showed that a blend of 15 EAG-active compounds specific to waterbuck, including C5-C10 straight chain carboxylic acid homologues, methyl ketones (C8-C12 straight chain homologues and geranyl acetone), phenols (guaiacol and carvacrol) and δ-octalactone, was repellent to tsetse. A blend of four components selected from each class of compounds (δ-octalactone, pentanoic acid, guaiacol, and geranylacetone) showed repellence that is comparable to that of the 15 components blend and can provide substantial protection to cattle (more than 80%) from tsetse bites and trypanosome infections. Structure-activity studies with the lactone and phenol analogues showed that δ-nonalactone and 4-methylguaiacol are significantly more repellent than δ-octalactone and guaiacol, respectively. In the present study, we compared the responses of Glossina pallidipes and Glossina morsitans to i) blends comprising of various combinations of the most active analogues from each class of compounds, and ii) a four-component blend of δ-nonalactone, heptanoic acid, 4-methylguaiacol and geranyl acetone in different ratios in a two-choice wind-tunnel, followed by a field study with G. pallidipes population in a completely randomized Latin Square Design set ups. In the wind tunnel experiments, the blend of the four compounds in 6:4:2:1 ratio was found to be significantly more repellent (94.53%) than that in 1:1:1:1 proportion and those in other ratios. G. m. morsitans also showed a similar pattern of results. In field experiments with G. pallidipes population, the 6:4:2:1 blend of the four compounds also gave similar results. The results lay down useful groundwork in the large-scale development of more effective 'push' and 'push-pull' control tactics of the tsetse flies.


Subject(s)
Antelopes , Insect Repellents/pharmacology , Odorants , Tsetse Flies/physiology , Animals , Cattle , Cresols , Insect Control/methods , Male , Tsetse Flies/drug effects
7.
Sci Rep ; 10(1): 9947, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32561776

ABSTRACT

Tsetse flies (Diptera: Glossinidae) are the main vectors of animal and human trypanosomoses in Africa. The Sterile Insect Technique (SIT) has proven effective in controlling tsetse flies when applied to isolated populations but necessitates the production of large numbers of sterile males. A new approach, called boosted SIT, combining SIT with the contamination of wild females by sterile males coated with biocides has been proposed for large-scale control of vector populations. The aim of the study was to evaluate this new approach using pyriproxyfen on the riverine species Glossina palpalis gambiensis (Vanderplank, 1949) in the laboratory. The contamination dose and persistence of pyriproxyfen on sterile males, the impact of pyriproxyfen on male survival, and the dynamics of pyriproxyfen transfer from a sterile male to a female during mating, as well as the impact of pyriproxyfen on pupal production and adult emergence, were evaluated in the laboratory. For this purpose, a method of treatment by impregnating sterile males with a powder containing 40% pyriproxyfen has been developed. The results showed that the pyriproxyfen has no impact on the survival of sterile males. Pyriproxyfen persisted on sterile males for up to 10 days at a dose of 100 ng per fly. In addition, the horizontal transfer of pyriproxyfen from a treated sterile male to a female during mating could be measured with an average of 50 ng of pyriproxyfen transferred. After contacts without mating, the average quantity transferred was more than 10 ng. Finally, the pyriproxyfen powder was very effective on G. p. gambiensis leading to 0% emergence of the pupae produced by contaminated females. These promising results must be confirmed in the field. A large-scale assessment of this boosted pyriproxyfen-based SIT approach will be carried out against tsetse flies in Senegal (West Africa).


Subject(s)
Insect Control/methods , Insect Vectors/drug effects , Insecticides/toxicity , Pyridines/toxicity , Tsetse Flies/drug effects , Animals , Female , Infertility, Male/genetics , Insect Vectors/physiology , Insect Vectors/radiation effects , Insecticides/pharmacology , Male , Pyridines/pharmacology , Radiation, Ionizing , Reproduction , Tsetse Flies/physiology , Tsetse Flies/radiation effects
8.
Sci Rep ; 10(1): 9962, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32561880

ABSTRACT

Tsetse flies are the transmitting vector of trypanosomes causing human sleeping sickness and animal trypanosomiasis in sub-saharan Africa. 3-alkylphenols are used as attractants in tsetse fly traps to reduce the spread of the disease. Here we present an inexpensive production method for 3-ethylphenol (3-EP) and 3-propylphenol (3-PP) by microbial fermentation of sugars. Heterologous expression in the yeast Saccharomyces cerevisiae of phosphopantetheinyltransferase-activated 6-methylsalicylic acid (6-MSA) synthase (MSAS) and 6-MSA decarboxylase converted acetyl-CoA as a priming unit via 6-MSA into 3-methylphenol (3-MP). We exploited the substrate promiscuity of MSAS to utilize propionyl-CoA and butyryl-CoA as alternative priming units and the substrate promiscuity of 6-MSA decarboxylase to produce 3-EP and 3-PP in yeast fermentations. Increasing the formation of propionyl-CoA by expression of a bacterial propionyl-CoA synthetase, feeding of propionate and blocking propionyl-CoA degradation led to the production of up to 12.5 mg/L 3-EP. Introduction of a heterologous 'reverse ß-oxidation' pathway provided enough butyryl-CoA for the production of 3-PP, reaching titers of up to 2.6 mg/L. As the concentrations of 3-alkylphenols are close to the range of the concentrations deployed in tsetse fly traps, the yeast broths might become promising and inexpensive sources for attractants, producible on site by rural communities in Africa.


Subject(s)
Phenols/metabolism , Polyketide Synthases/metabolism , Saccharomyces cerevisiae/metabolism , Tsetse Flies/drug effects , Acetyl Coenzyme A/metabolism , Acyl Coenzyme A/metabolism , Africa , Animals , Coenzyme A Ligases/metabolism , Escherichia coli/metabolism , Humans , Trypanosomiasis, African/parasitology
9.
PLoS Negl Trop Dis ; 13(6): e0007460, 2019 06.
Article in English | MEDLINE | ID: mdl-31181060

ABSTRACT

BACKGROUND: African trypanosomosis, primarily transmitted by tsetse flies, remains a serious public health and economic challenge in sub-Saharan Africa. Interventions employing natural repellents from non-preferred hosts of tsetse flies represent a promising management approach. Although zebras have been identified as non-preferred hosts of tsetse flies, the basis for this repellency is poorly understood. We hypothesized that zebra skin odors contribute to their avoidance by tsetse flies. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the effect of crude zebra skin odors on catches of wild savannah tsetse flies (Glossina pallidipes Austen, 1903) using unbaited Ngu traps compared to the traps baited with two known tsetse fly management chemicals; a repellent blend derived from waterbuck odor, WRC (comprising geranylacetone, guaiacol, pentanoic acid and δ-octalactone), and an attractant comprising cow urine and acetone, in a series of Latin square-designed experiments. Coupled gas chromatography-electroantennographic detection (GC/EAD) and GC-mass spectrometry (GC/MS) analyses of zebra skin odors identified seven electrophysiologically-active components; 6-methyl-5-hepten-2-one, acetophenone, geranylacetone, heptanal, octanal, nonanal and decanal, which were tested in blends and singly for repellency to tsetse flies when combined with Ngu traps baited with cow urine and acetone in field trials. The crude zebra skin odors and a seven-component blend of the EAD-active components, formulated in their natural ratio of occurrence in zebra skin odor, significantly reduced catches of G. pallidipesby 66.7% and 48.9% respectively, and compared favorably with the repellency of WRC (58.1%- 59.2%). Repellency of the seven-component blend was attributed to the presence of the three ketones 6-methyl-5-hepten-2-one, acetophenone and geranylacetone, which when in a blend caused a 62.7% reduction in trap catch of G. pallidipes. CONCLUSIONS/SIGNIFICANCE: Our findings reveal fundamental insights into tsetse fly ecology and the allomonal effect of zebra skin odor, and potential integration of the three-component ketone blend into the management toolkit for tsetse and African trypanosomosis control.


Subject(s)
Equidae/physiology , Insect Repellents/analysis , Odorants/analysis , Skin Physiological Phenomena , Tsetse Flies/drug effects , Tsetse Flies/physiology , Animals , Female , Gas Chromatography-Mass Spectrometry , Male
11.
Parasit Vectors ; 11(1): 270, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29703229

ABSTRACT

BACKGROUND: Tsetse flies are the sole vectors of human and animal trypanosomosis. In Burkina Faso, a project aiming to create zones free of tsetse flies and trypanosomosis was executed from June 2006 to December 2013. After the determination of tsetse distribution in the intervention area from December 2007 to November 2008, the control campaign was launched in November 2009 and ended in December 2013. The goal was to eliminate tsetse flies from 40,000 km2 of area, through an integrated control campaign including insecticide targets, traps and cattle, sequential aerial treatment (SAT) and the mass treatment of livestock using trypanocides. The campaign involved assistance of the beneficiary communities at all the steps of the control strategy with insecticide impregnated targets. METHODS: This study was carried out to assess the impact of the control project on tsetse apparent density per trap per day (ADT). To evaluate the effectiveness of tsetse control, 201 sites were selected based on the baseline survey results carried out from December 2007 to November 2008. These sites were monitored bi-monthly from January 2010 to November 2012. At the end-of-study in 2013 a generalized entomological survey was carried out in 401 infested sites found during the longitudinal survey done before the control. Barrier and tsetse persistence areas were treated by ground spraying and evaluated. Controls were also done before and after aerial spraying. RESULTS: In the insecticide-impregnated target area, the control showed that ADT of tsetse flies declined from 10.73 (SD 13.27) to 0.43 (SD 2.51) fly/trap/day from the third month of campaign onwards (P < 0.0001) and remained low thereafter. At the end of the campaign in 2013, an 83% reduction of ADT was observed for Glossina palpalis gambiensis and a 92% reduction for G. tachinoides. Tsetse flies were captured only in 29% of the sites found infested in 2008. CONCLUSIONS: Tsetse flies could be suppressed efficiently but their elimination from the targeted area may require the use integrated methods including the Sterile Insect Technique, which is programmed through the development of the Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC Burkina) insectarium. The challenge will remain the sustainability of the achievement.


Subject(s)
Insect Control/methods , Trypanosomiasis/veterinary , Tsetse Flies/physiology , Animal Distribution , Animals , Burkina Faso , Female , Insect Vectors/drug effects , Insect Vectors/parasitology , Insect Vectors/physiology , Insecticides/pharmacology , Livestock/parasitology , Male , Trypanocidal Agents/administration & dosage , Trypanosoma/drug effects , Trypanosoma/physiology , Trypanosomiasis/parasitology , Trypanosomiasis/prevention & control , Trypanosomiasis/transmission , Tsetse Flies/drug effects , Tsetse Flies/parasitology
12.
Parasitol Res ; 116(11): 2927-2932, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28932909

ABSTRACT

In order to assess the residual effects of fipronil 1% on tsetse fly survival, male Glossina palpalis gambiensis were released on non-treated and treated cattle, with 0.1 ml of fipronil/kg b.w. as a pour-on formulation. In a second trial, the female fecundity performances were evaluated by feeding teneral females on the same cattle. These females were then mated and their production parameters monitored, as well as the survival of freshly emerged flies. Fipronil had a significant effect on tsetse fly survival (p < 0.001). Over a period of 30 days, up to 40% of tsetse fly mortality was observed within 72 h after tsetse were released. The residual effects ranged between 51 and 74 days when tsetse flies were released twice within a 15-day interval in the presence of a treated animal. When tsetse flies were fed on treated cattle through a parafilm membrane, 92 days after the treatment, no significant effect of fipronil was observed on the reproductive performance of females, i.e., as well as on fecundity (p = 0.948) and emergence rates (p = 0.743), or puparial weight (p = 0.422). This was also the case for the survival of young flies, with no difference observed between the two groups. After this study, it is confirmed that fipronil is highly effective against tsetse flies. Its efficacy in controlling ticks is already known but other externalities such as the control of biting insects add value to its use.


Subject(s)
Insecticides , Pyrazoles , Tsetse Flies/drug effects , Animals , Cattle , Cattle Diseases/parasitology , Cattle Diseases/prevention & control , Female , Fertility/drug effects , Male
13.
Parasit Vectors ; 10(1): 18, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28069065

ABSTRACT

BACKGROUND: Malaria vector mosquitoes with exophilic and zoophilic tendencies, or with a high acceptance of alternative blood meal sources when preferred human blood-hosts are unavailable, may help maintain low but constant malaria transmission in areas where indoor vector control has been scaled up. This residual transmission might be addressed by targeting vectors outside the house. Here we investigated the potential of insecticide-treated cattle, as routinely used for control of tsetse and ticks in East Africa, for mosquito control. METHODS: The malaria vector population in the study area was investigated weekly for 8 months using two different trapping tools: light traps indoors and cattle-baited traps (CBTs) outdoors. The effect of the application of the insecticide deltamethrin and the acaricide amitraz on cattle on host-seeking Anopheles arabiensis was tested experimentally in field-cages and the impact of deltamethrin-treated cattle explored under field conditions on mosquito densities on household level. RESULTS: CBTs collected on average 2.8 (95% CI: 1.8-4.2) primary [Anopheles gambiae (s.s.), An. arabiensis and An. funestus (s.s.)] and 6.3 (95% CI: 3.6-11.3) secondary malaria vectors [An. ivulorum and An. coustani (s.l.)] per trap night and revealed a distinct, complementary seasonality. At the same time on average only 1.4 (95% CI: 0.8-2.3) primary and 1.1 (95% CI: 0.6-2.0) secondary malaria vectors were collected per trap night with light traps indoors. Amitraz had no effect on survival of host-seeking An. arabiensis under experimental conditions but deltamethrin increased mosquito mortality (OR 19, 95% CI: 7-50), but only for 1 week. In the field, vector mortality in association with deltamethrin treatment was detected only with CBTs and only immediately after the treatment (OR 0.25, 95% CI: 0.13-0.52). CONCLUSIONS: Entomological sampling with CBTs highlights that targeting cattle for mosquito control has potential since it would not only target naturally zoophilic malaria vectors but also opportunistic feeders that lack access to human hosts as is expected in residual malaria transmission settings. However, the deltamethrin formulation tested here although used widely to treat cattle for tsetse and tick control, is not suitable for the control of malaria vectors since it causes only moderate initial mortality and has little residual activity.


Subject(s)
Anopheles/physiology , Cattle , Insect Vectors/physiology , Kenya/epidemiology , Malaria/transmission , Animal Husbandry , Animals , Anopheles/drug effects , Biological Assay , Female , Insecticides/pharmacology , Malaria/epidemiology , Nitriles/pharmacology , Pilot Projects , Population Dynamics , Pyrethrins/pharmacology , Seasons , Species Specificity , Tsetse Flies/drug effects
14.
PLoS Negl Trop Dis ; 10(12): e0005248, 2016 12.
Article in English | MEDLINE | ID: mdl-28027324

ABSTRACT

BACKGROUND: African animal trypanosomosis (AAT), transmitted by tsetse flies and tick-borne diseases are the main constraints to livestock production in sub-Saharan Africa. Vector control methods such as pour-on offer individual protection against ticks but not against tsetse so far, for which protection has always been communal, through a reduction of their density. The latter requires the treatment of a large part of the herd in a given landscape and is not instantaneous. METHODOLOGY/PRINCIPAL FINDINGS: Two prospective surveys were conducted to evaluate the efficacy and persistence of a pour-on formulation composed of cypermetrhin, chlorpyrifos, piperonyl butoxid and citronella (Vectoclor, CEVA Santé Animal). In experimental conditions, tsetse flies were exposed to treated and control cattle. Flies knockdown and engorgement rates were determined and the product persistence was assessed as the time for these parameters to drop below 50% (T50). T50 was 37 days (95%CI: [33-41] days) and 46 days (95%CI: [39-56] days) for the knockdown and engorgement rates respectively. In field conditions, two cattle herds were monitored following a case-control experimental design, in the Adamaoua region of Cameroon. One herd was treated once with Vectoclor pour-on (treated group) and the second used as a control group (not treated). Ticks infestation rate, trypanosomosis prevalence and packed-cell volume were measured over the two months following treatment. The treatment was highly effective against ticks with a complete elimination three days after application in the treated group. Trypanosomosis prevalence was also significantly reduced during the study (by 4, P<0.001) and PCV of the treated group increased significantly in the same time (P<0.001), contrary to the control group. CONCLUSIONS/SIGNIFICANCE: The protection of this new pour-on against tsetse bites and trypanosomosis is demonstrated here for the first time. Moreover, this insecticide and repellent mixture offer a longer persistence of the efficacy against both tsetse and ticks than similar products currently on the market. It offers a great new opportunity for an integrated AAT control strategy including the treatment of residual cases with trypanocides. It might also allow controlling the spread of resistance against these trypanocides.


Subject(s)
Insect Repellents/administration & dosage , Insecticides/administration & dosage , Trypanocidal Agents/administration & dosage , Trypanosomiasis, Bovine/prevention & control , Animals , Cameroon , Case-Control Studies , Cattle , Insect Control , Prospective Studies , Seasons , Ticks/drug effects , Trypanosoma , Trypanosomiasis, Bovine/epidemiology , Tsetse Flies/drug effects
15.
Parasit Vectors ; 9: 263, 2016 May 04.
Article in English | MEDLINE | ID: mdl-27146309

ABSTRACT

BACKGROUND: Research efforts to identify possible alternative control tools for malaria and African trypanosomiasis are needed. One promising approach relies on the use of traditional plant remedies with insecticidal activities. METHODS: In this study, we assessed the effect of blood treated with different doses of NeemAzal ® (NA, neem seed extract) on mosquitoes (Anopheles coluzzii) and tsetse flies (Glossina palpalis gambiensis) (i) avidity to feed on the treated blood, (ii) longevity, and (iii) behavioural responses to human and calf odours in dual-choice tests. We also gauged NeemAzal ® toxicity in mice. RESULTS: In An. coluzzii, the ingestion of NA in bloodmeals offered by membrane feeding resulted in (i) primary antifeedancy; (ii) decreased longevity; and (iii) reduced response to host odours. In G. palpalis gambiensis, NA caused (i) a knock-down effect; (ii) decreased or increased longevity depending on the dose; and (iii) reduced response to host stimuli. In both cases, NA did not affect the anthropophilic rate of activated insects. Overall, the most significant effects were observed with NA treated bloodmeals at a dose of 2000 µg/ml for mosquitoes and 50 µg/ml for tsetse flies. Although no mortality in mice was observed after 14 days of follow-up at oral doses of 3.8, 5.6, 8.4 and 12.7 g/kg, behavioural alterations were noticed at doses above 8 g/kg. CONCLUSION: This study revealed promising activity of NA on A. coluzzii and G. palpalis gambiensis but additional research is needed to assess field efficacy of neem products to be possibly integrated in vector control programmes.


Subject(s)
Anopheles/drug effects , Azadirachta/chemistry , Feeding Behavior/drug effects , Plant Extracts/pharmacology , Tsetse Flies/drug effects , Animals , Female , Insecticides/chemistry , Insecticides/pharmacology , Male , Mice , Plant Extracts/adverse effects , Plant Extracts/chemistry
16.
Rev Sci Tech ; 34(1): 265-75, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26470462

ABSTRACT

Control of insect vector populations is an integral part of disease management but has many challenges. Area-wide campaigns, mainly based on insecticide administration, are most effective for control of insect populations, whereas disease prevention is more localised and protects a smaller number of animals against insect vector contact. Various control and prevention techniques are available for use against most insectvectors and are illustrated here by focusing on two important insect groups: biting midges and tsetse flies. Biting midges (Culicoides) present a major threat and challenge to disease and vector control because of limited large-scale control options and the huge population sizes and wide distribution of these insects. Localised disease prevention forms the basis for control, and there is a need for better understanding of the ecology and biology of these insects in order to develop large-scale control techniques. The necessary techniques to effectively control tsetse flies (Glossina) and trypanosomosis exist for both localised and area-wide control. The development of a new, cost-efficient device has had a significant impact in the control of both human and animal trypanosomosis. This is especially relevant in Uganda, where the movement of livestock for trading purposes is implicated in disease distribution and poses an immediate health threat where the two forms of the disease overlap. Although many successes have been achieved, continued research and development is needed to keep abreast of the multitude of challenges in insect vector control.


Subject(s)
Ceratopogonidae/physiology , Insect Control/methods , Insect Vectors/physiology , Insecticides/pharmacology , Tsetse Flies/physiology , Animals , Ceratopogonidae/drug effects , Insecticide Resistance , Tsetse Flies/drug effects
17.
Infect Genet Evol ; 36: 184-189, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26391183

ABSTRACT

Tsetse flies (Diptera: Glossinidae) are the vectors of trypanosomes causing sleeping sickness in humans, and nagana (animal trypanosomosis) in domestic animals, in Subsaharan Africa. They have been described as being strictly hematophagous, and transmission of trypanosomes occurs when they feed on a human or an animal. There have been indications however in old papers that tsetse may have the ability to digest sugar. Here we show that hungry tsetse (Glossina palpalis gambiensis) in the lab do feed on water and on water with sugar when no blood is available, and we also show that wild tsetse have detectable sugar residues. We showed in laboratory conditions that at a low concentration (0.1%) or provided occasionally (0.1%, 0.5%, 1%), glucose had no significant impact on female longevity and fecundity. However, regular provision of water with 1% glucose increased the mortality and reduced the fecundity of female G. p. gambiensis. The proportion of wild tsetse caught by traps, which have detectable sugar residue in their midgut varied between 5 and 10% according to species (p<10(-3)) and sex, with more females being found with sugar residues than males (p<10(-3)). We also observed a higher frequency of sugar residues in the dry season than in the rainy season (p<10(3)). The infection status did not affect the frequency of sugar residues found (p=0.65), neither did age (p=0.23). These observations represent a fundamental change in our knowledge of this insect vector. They open the way for further research on the field to know more on tsetse feeding behavior regarding other sources of meal than blood, in particular with plants, and may constitute future new means of controlling this vector of neglected tropical diseases.


Subject(s)
Feeding Behavior/physiology , Insect Vectors/physiology , Tsetse Flies/physiology , Animals , Anthracenes , Blood , Female , Fertility/drug effects , Glucose/pharmacology , Humans , Longevity/drug effects , Male , Trypanosomiasis , Tsetse Flies/chemistry , Tsetse Flies/drug effects
18.
Parasit Vectors ; 8: 387, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26198109

ABSTRACT

BACKGROUND: Tsetse-transmitted African trypanosomes cause both nagana (African animal Trypanosomiasis-AAT) and sleeping sickness (human African Trypanosomiasis - HAT) across Sub-Saharan Africa. Vector control and chemotherapy are the contemporary methods of tsetse and trypanosomiasis control in this region. In most African countries, including Uganda, veterinary services have been decentralised and privatised. As a result, livestock keepers meet the costs of most of these services. To be sustainable, AAT control programs need to tailor tsetse control to the inelastic budgets of resource-poor small scale farmers. To guide the process of tsetse and AAT control toolkit selection, that now, more than ever before, needs to optimise resources, the costs of different tsetse and trypanosomiasis control options need to be determined. METHODS: A detailed costing of the restricted application protocol (RAP) for African trypanosomiasis control in Tororo District was undertaken between June 2012 and December 2013. A full cost calculation approach was used; including all overheads, delivery costs, depreciation and netting out transfer payments to calculate the economic (societal) cost of the intervention. Calculations were undertaken in Microsoft Excel without incorporating probabilistic elements. RESULTS: The cost of delivering RAP to the project was US$ 6.89 per animal per year while that of 4 doses of a curative trypanocide per animal per year was US$ 5.69. However, effective tsetse control does not require the application of RAP to all animals. Protecting cattle from trypanosome infections by spraying 25%, 50% or 75% of all cattle in a village costs US$ 1.72, 3.45 and 5.17 per animal per year respectively. Alternatively, a year of a single dose of curative or prophylactic trypanocide treatment plus 50% RAP would cost US$ 4.87 and US$ 5.23 per animal per year. Pyrethroid insecticides and trypanocides cost 22.4 and 39.1% of the cost of RAP and chemotherapy respectively. CONCLUSIONS: Cost analyses of low cost tsetse control options should include full delivery costs since they constitute 77.6% of all project costs. The relatively low cost of RAP for AAT control and its collateral impact on tick control make it an attractive option for livestock management by smallholder livestock keepers.


Subject(s)
Cattle Diseases/economics , Trypanosomiasis, African/veterinary , Animals , Cattle , Cattle Diseases/drug therapy , Cattle Diseases/transmission , Costs and Cost Analysis , Insect Control/economics , Insect Control/methods , Insecticides/pharmacology , Trypanocidal Agents/administration & dosage , Trypanocidal Agents/economics , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/economics , Trypanosomiasis, African/transmission , Tsetse Flies/drug effects , Tsetse Flies/physiology , Uganda
19.
Parasitol Res ; 114(8): 2919-23, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25944739

ABSTRACT

One zebu bull of 365 kg live weight was treated along the back line with 36 mL of fipronil as a pour-on formulation. Long-lasting mortalities of Glossina palpalis gambiensis were recorded despite exposure to sunlight and regular rinsing with 50 L of water during the following 5 months. Significantly higher mortalities were still observed even 140, 170 and 190 days after treatment following their triple releases or triple feeding of caged tsetse on the treated bull. Mortalities of 70, 80 and 44%, respectively, were recorded after 15 days of observation. This contrasted with the mortalities of control flies that were released in the presence of the untreated bull or fed in cages on the animal, amounting to 20 and twice 10% after 170 and 190 days. The feeding successes of the released or caged flies were higher than 95% and did not differ between control and experimental groups, indicating no repulsive or irritant effects of fipronil. The findings of this study are discussed, particularly in view of the potential of fipronil as an effective means for tsetse control.


Subject(s)
Insecticides/pharmacology , Pyrazoles/pharmacology , Tsetse Flies/drug effects , Administration, Topical , Animals , Cattle , Insect Control/methods , Insecticides/administration & dosage , Male , Pyrazoles/administration & dosage
20.
PLoS Negl Trop Dis ; 9(3): e0003624, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25811956

ABSTRACT

INTRODUCTION: To evaluate the relative effectiveness of tsetse control methods, their costs need to be analysed alongside their impact on tsetse populations. Very little has been published on the costs of methods specifically targeting human African trypanosomiasis. METHODOLOGY/PRINCIPAL FINDINGS: In northern Uganda, a 250 km2 field trial was undertaken using small (0.5 X 0.25 m) insecticide-treated targets ("tiny targets"). Detailed cost recording accompanied every phase of the work. Costs were calculated for this operation as if managed by the Ugandan vector control services: removing purely research components of the work and applying local salaries. This calculation assumed that all resources are fully used, with no spare capacity. The full cost of the operation was assessed at USD 85.4 per km2, of which USD 55.7 or 65.2% were field costs, made up of three component activities (target deployment: 34.5%, trap monitoring: 10.6% and target maintenance: 20.1%). The remaining USD 29.7 or 34.8% of the costs were for preliminary studies and administration (tsetse surveys: 6.0%, sensitisation of local populations: 18.6% and office support: 10.2%). Targets accounted for only 12.9% of the total cost, other important cost components were labour (24.1%) and transport (34.6%). DISCUSSION: Comparison with the updated cost of historical HAT vector control projects and recent estimates indicates that this work represents a major reduction in cost levels. This is attributed not just to the low unit cost of tiny targets but also to the organisation of delivery, using local labour with bicycles or motorcycles. Sensitivity analyses were undertaken, investigating key prices and assumptions. It is believed that these costs are generalizable to other HAT foci, although in more remote areas, with denser vegetation and fewer people, costs would increase, as would be the case for other tsetse control techniques.


Subject(s)
Insect Control/economics , Insecticides/pharmacology , Trypanosomiasis, African/prevention & control , Animals , Humans , Insect Vectors/drug effects , Insecticides/economics , Tsetse Flies/drug effects , Uganda
SELECTION OF CITATIONS
SEARCH DETAIL
...