Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.293
Filter
1.
Mol Biol Rep ; 51(1): 655, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739285

ABSTRACT

BACKGROUND: There is limited data regarding the hazardous effect of gentamicin (GM) on the uterus and whether or not vinpocetine (Vinpo) ameliorates it. The present study aimed to identify the possible protective effect of Vinpo in GM-induced uterine injury in rats. METHODS: Female rats were assorted in control-group, Vinpo-group, GM-group, and Vinpo plus GM group. Serum and uterine GM concentration were measured. Uterine oxidative stress parameters besides inflammatory and apoptotic biomarkers were evaluated. Uterine histopathological examination and interlukin-1beta (IL-1ß) immune-histochemical study were detected. RESULTS: GM significantly increased uterine oxidative stress, inflammatory and apoptotic biomarkers. Histopathological picture of uterine damage and increased IL-1ß immunoexpression were detected. Vinpo significantly ameliorated the distributed GM concentration, oxidative stress, inflammatory and apoptotic biomarkers with a prompt improvement in histopathological picture and a decrease in IL-1ß immunoexpression. CONCLUSION: Vinpo protective effect against GM-induced uterine injury involves modulation of inflammasome/caspase-1/IL-1ß signaling pathway.


Subject(s)
Caspase 1 , Gentamicins , Inflammasomes , Interleukin-1beta , Oxidative Stress , Signal Transduction , Uterus , Vinca Alkaloids , Animals , Female , Interleukin-1beta/metabolism , Vinca Alkaloids/pharmacology , Rats , Caspase 1/metabolism , Gentamicins/adverse effects , Inflammasomes/metabolism , Inflammasomes/drug effects , Uterus/drug effects , Uterus/metabolism , Uterus/pathology , Oxidative Stress/drug effects , Signal Transduction/drug effects , Apoptosis/drug effects
2.
Acta Cir Bras ; 39: e391024, 2024.
Article in English | MEDLINE | ID: mdl-38656061

ABSTRACT

PURPOSE: Osteoporosis is a bone disease which commonly occurred in postmenopausal women. Almost 10 percent of world population and approximately 30% of women (postmenopausal) suffer from this disease. Alternative medicine has great success in the treatment of osteoporosis disease. Bryodulcosigenin, a potent phytoconstituent, already displayed the anti-inflammatory and antioxidant effect. In this study, we made effort to analyze the antiosteoporosis effect of bryodulcosigenin against ovariectomy (OVX) induced osteoporosis in rats. METHODS: Swiss albino Wistar rats were grouped into fIve groups and given an oral dose of bryodulcosigenin (10, 20 and 30 mg/kg) for eight weeks. Body weight, uterus, bone mineral density, cytokines, hormones parameters, transforming growth factor (TGF)-ß, insulin-like growth factor (IGF), osteoprotegerin (OPG), receptor activator of nuclear factor kappa-Β ligand (RANKL), and its ratio were estimated. RESULTS: Bryodulcosigenin significantly (p < 0.001) suppressed the body weight and enhanced the uterine weight and significantly (p < 0.001) increased the bone mineral density in whole femur, caput femoris, distal femur and proximal femur. Bryodulcosigenin significantly (P < 0.001) altered the level of biochemical parameters at dose dependent manner, significantly (P < 0.001) improved the level of estrogen and suppressed the level of follicle stimulating hormone and luteinizing hormone. Bryodulcosigenin significantly (P < 0.001) improved the level of OPG and suppressed the level of RANKL. CONCLUSIONS: Bryodulcosigenin reduced the cytokines level and suppressed the TGF-ß and IGF. We concluded that bryodulcosigenin is an antiosteoporosis medication based on the findings.


Subject(s)
Bone Density , Osteoporosis , Ovariectomy , Rats, Wistar , Animals , Female , Bone Density/drug effects , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Osteoporosis/etiology , Rats , Body Weight/drug effects , Disease Models, Animal , Uterus/drug effects , Cytokines/blood , Cytokines/drug effects , Femur/drug effects , Treatment Outcome
3.
Sci Rep ; 14(1): 9511, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664449

ABSTRACT

It is important to study the bacteria that cause endometritis to identify effective therapeutic drugs for dairy cows. In this study, 20% oxytetracycline was used to treat Holstein cows (n = 6) with severe endometritis. Additional 10 Holstein cows (5 for healthy cows, 5 for cows with mild endometritis) were also selected. At the same time, changes in bacterial communities were monitored by high-throughput sequencing. The results show that Escherichia coli, Staphylococcus aureus and other common pathogenic bacteria could be detected by traditional methods in cows both with and without endometritis. However, 16S sequencing results show that changes in the abundance of these bacteria were not significant. Endometritis is often caused by mixed infections in the uterus. Oxytetracycline did not completely remove existing bacteria. However, oxytetracycline could effectively inhibit endometritis and had a significant inhibitory effect on the genera Bacteroides, Trueperella, Peptoniphilus, Parvimonas, Porphyromonas, and Fusobacterium but had no significant inhibitory effect on the bacterial genera Marinospirillum, Erysipelothrix, and Enteractinococcus. During oxytetracycline treatment, the cell motility, endocrine system, exogenous system, glycan biosynthesis and metabolism, lipid metabolism, metabolism of terpenoids, polyketides, cofactors and vitamins, signal transduction, and transport and catabolism pathways were affected.


Subject(s)
Anti-Bacterial Agents , Endometritis , Oxytetracycline , Uterus , Oxytetracycline/pharmacology , Oxytetracycline/therapeutic use , Animals , Female , Cattle , Endometritis/microbiology , Endometritis/veterinary , Endometritis/drug therapy , Uterus/microbiology , Uterus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/drug effects , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Cattle Diseases/microbiology , Cattle Diseases/drug therapy , RNA, Ribosomal, 16S/genetics , Microbiota/drug effects
4.
Mol Pain ; 20: 17448069241252385, 2024.
Article in English | MEDLINE | ID: mdl-38631845

ABSTRACT

Preemptive analgesia is used for postoperative pain management, providing pain relief with few adverse effects. In this study, the effect of a preemptive regime on rat behavior and c-fos expression in the spinal cord of the uterine surgical pain model was evaluated. It was a lab-based experimental study in which 60 female Sprague-Dawley rats; eight to 10 weeks old, weighing 150-300 gm were used. The rats were divided into two main groups: (i) superficial pain group (SG) (with skin incision only), (ii) deep pain group (with skin and uterine incisions). Each group was further divided into three subgroups based on the type of preemptive analgesia administered i.e., "tramadol, buprenorphine, and saline subgroups." Pain behavior was evaluated using the "Rat Grimace Scale" (RGS) at 2, 4, 6, 9 and 24 h post-surgery. Additionally, c-fos immunohistochemistry was performed on sections from spinal dorsal horn (T12-L2), and its expression was evaluated using optical density and mean cell count 2 hours postoperatively. Significant reduction in the RGS was noted in both the superficial and deep pain groups within the tramadol and buprenorphine subgroups when compared to the saline subgroup (p ≤ .05). There was a significant decrease in c-fos expression both in terms of number of c-fos positive cells and the optical density across the superficial laminae and lamina X of the spinal dorsal horn in both SD and DG (p ≤ .05). In contrast, the saline group exhibited c-fos expression primarily in laminae I-II and III-IV for both superficial and deep pain groups and lamina X in the deep pain group only (p ≤ .05). Hence, a preemptive regimen results in significant suppression of both superficial and deep components of pain transmission. These findings provide compelling evidence of the analgesic efficacy of preemptive treatment in alleviating pain response associated with uterine surgery.


Subject(s)
Disease Models, Animal , Pain, Postoperative , Proto-Oncogene Proteins c-fos , Rats, Sprague-Dawley , Uterus , Animals , Female , Proto-Oncogene Proteins c-fos/metabolism , Pain, Postoperative/drug therapy , Uterus/surgery , Uterus/drug effects , Anesthesia, General/methods , Analgesia/methods , Tramadol/pharmacology , Tramadol/therapeutic use , Pain Measurement , Rats , Anesthesia, Local/methods , Behavior, Animal/drug effects , Buprenorphine/pharmacology , Buprenorphine/therapeutic use
5.
Ecotoxicol Environ Saf ; 277: 116399, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677070

ABSTRACT

Perfluoroalkyl and polyfluoroalkyl substances (PFASs), as pollutants, can cause palpable environmental and health impacts around the world, as endocrine disruptors, can disrupt endocrine homeostasis and increase the risk of diseases. Chlorinated polyfluoroalkyl ether sulfonate (F-53B), as a substitute for PFAS, was determined to have potential toxicity. Puberty is the stage when sexual organs develop and hormones change dramatically, and abnormal uterine development can increase the risk of uterine lesions and lead to infertility. This study was designed to explore the impact of F-53B on uterine development during puberty. Four-week-old female SD rats were exposed to 0.125 and 6.25 mg/L F-53B during puberty. The results showed that F-53B interfered with growth and sex hormone levels and bound to oestrogen-related receptors, which affected their function, contributed to the accumulation of reactive oxygen species, promoted cell apoptosis and inhibited cell proliferation, ultimately causing uterine dysplasia.


Subject(s)
Apoptosis , Endocrine Disruptors , Rats, Sprague-Dawley , Reactive Oxygen Species , Sexual Maturation , Uterus , Animals , Female , Uterus/drug effects , Apoptosis/drug effects , Rats , Reactive Oxygen Species/metabolism , Endocrine Disruptors/toxicity , Sexual Maturation/drug effects , Fluorocarbons/toxicity , Cell Proliferation/drug effects , Environmental Pollutants/toxicity , Receptors, Estrogen/metabolism
6.
Food Funct ; 15(9): 4852-4861, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38573228

ABSTRACT

This study elucidates the mechanism of obesity-related adverse pregnancy outcomes and further investigates the effect of resveratrol on reproductive performance in a short- or long-term HFD-induced obese mouse model. Results show that maternal weight had a significant positive correlation with litter mortality in mice. A long-term HFD increased body weight and litter mortality with decreased expression of uterine cytochrome oxidase 4 (COX4), which was recovered by resveratrol in mice. Moreover, HFD decreased the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factors-1 (Nrf-1), and phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (p-AMPK) and increased the expression of phosphorylated extracellular regulated protein kinases (p-ERK) in the uterus. Resveratrol, a polyphenol that can directly bind to the ERK protein, suppressed the phosphorylation of ERK, increased the expression of p-AMPK, PGC-1α and Nrf-1, and decreased litter mortality in mice.


Subject(s)
Diet, High-Fat , Mitochondria , Pregnancy Outcome , Resveratrol , Uterus , Animals , Resveratrol/pharmacology , Female , Pregnancy , Mice , Diet, High-Fat/adverse effects , Mitochondria/drug effects , Mitochondria/metabolism , Uterus/metabolism , Uterus/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mice, Inbred C57BL , Obesity/metabolism , AMP-Activated Protein Kinases/metabolism
7.
J Pharm Biomed Anal ; 245: 116166, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38669816

ABSTRACT

The study aimed to investigate the relieving effect of QingYan Formula (QYF) in treating perimenopausal syndrome. A combination of metabonomic analysis and in vitro pharmacodynamic experiments was employed to achieve this objective.Over a period of 12 weeks, ovariectomized (OVX) rats were orally administered QYF's 70 % ethanol extract or estradiol valerate (EV). The results demonstrate that QYF restored the estrous cycle of ovariectomized rats and exhibited significant estrogenic activity, as indicated by reversal of uterine and vagina atrophy, improvement of serum estradiol level and decrease of serum luteinizing hormone(LH) level. Additionally, QYF administration effectively reduced high bone turnover and repaired trabecular microstructure damage. Metabonomic analysis of the OVX rats treated with QYF revealed the identification of 55 different metabolites in the serum, out of which 35 may be potential biomarkers. QYF could regulate the disturbed metabolic pathways including the Biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, bile secretion, and steroid hormone biosynthesis. PI3KCA, SRC, and MAPK3 are potential therapeutic targets for QYF therapeutic effects. These findings support the efficacy of QYF in alleviating perimenopausal syndrome and regulating lipid metabolic disorders in OVX rats.


Subject(s)
Drugs, Chinese Herbal , Metabolomics , Ovariectomy , Perimenopause , Rats, Sprague-Dawley , Animals , Female , Metabolomics/methods , Drugs, Chinese Herbal/pharmacology , Rats , Perimenopause/drug effects , Estradiol/blood , Estradiol/pharmacology , Chromatography, High Pressure Liquid/methods , Biomarkers/blood , Luteinizing Hormone/blood , Estrous Cycle/drug effects , Uterus/drug effects , Uterus/metabolism , Disease Models, Animal
8.
J Endocrinol ; 261(3)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38579817

ABSTRACT

Exposure to glyphosate-based herbicides (GBH) and consumption of cafeteria (CAF) diet, which are widespread in Western society, seem to be associated with endometrial hyperplasia (EH). Here, we aimed to evaluate the effects of a subchronic low dose of GBH added to the CAF diet on the rat uterus. Female Wistar rats were fed from postnatal day (PND)21 until PND240 with chow (control) or CAF diet. Since PND140, rats also received GBH (2 mg of glyphosate/kg/day) or water through food, yielding four experimental groups: control, CAF, GBH, and CAF+GBH. On PND240, CAF and CAF+GBH animals showed an increased adiposity index. With respect to the control group, no changes in the serum levels of 17ß-estradiol and progesterone were found. However, progesterone levels were higher in the CAF+GBH group than in the CAF and GBH groups. In the uterus, both studied factors alone and in combination induced morphological and molecular changes associated with EH. Furthermore, the addition of GBH provoked an increased thickness of subepithelial stroma in rats fed with the CAF diet. As a consequence of GBH exposure, CAF+GBH rats exhibited an increased density of abnormal gland area, considered preneoplastic lesions, as well as a reduced PTEN and p27 expression, both tumor suppressor molecules that inhibit cell proliferation, with respect to control rats. These results indicate that the addition of GBH exacerbates the CAF effects on uterine lesions and that the PTEN/p27 signaling pathway seems to be involved. Further studies focusing on the interaction between unhealthy diets and environmental chemicals should be encouraged to better understand uterine pathologies.


Subject(s)
Glycine , Glyphosate , Herbicides , Rats, Wistar , Uterus , Animals , Female , Uterus/drug effects , Uterus/pathology , Uterus/metabolism , Herbicides/toxicity , Glycine/analogs & derivatives , Rats , Endometrial Hyperplasia/chemically induced , Endometrial Hyperplasia/pathology , Endometrial Hyperplasia/metabolism , Progesterone/blood , Diet , Estradiol/blood , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics
9.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 839-853, 2024 May.
Article in English | MEDLINE | ID: mdl-38323934

ABSTRACT

This experiment was designed to investigate the impact of curcumin-olive oil nanocomposite (CONC) supplementation on uteroplacental hemodynamics and ultrasonographic measurements as well as maternal oxidative status in midgestating goats. Twelve synchronized pregnant goats (85.58 ± 1.08 days of gestation; mean ± SD) were uniformly assigned to two groups (n = 6/group); the first group received daily oral supplementation of CONC (3 mg/kg body weight; nanocurcumin [NC] group) for 32 days, and the second group was offered physiological saline (control) following the NC group timeline. The goats of both groups were examined at 3-day intervals for middle uterine (MUA) and umbilical (UMA) arteries hemodynamics (pulsatility index [PI], resistive index [RI], systole/diastole [S/D] and blood flow rate [BFR]) and diameters, uteroplacental thickness (UPT), placentomes' diameter (PD) and echogenicity, steroid hormones (progesterone and estradiol 17ß), oxidative biomarkers (total antioxidant capacity [TAC], catalase [CAT], malondialdehyde [MDA]), nitric oxide (NO) and blood cells DNA integrity. The UPT (p = 0.012) and PD (p = 0.021) values were higher in the NC group than in their counterparts' control group (D11-32). There were increases in diameter (p = 0.021 and p = 0.012) and decreases (p = 0.021, p = 0.016 and p = 0.041 [MUA]; p = 0.015, p = 0.023 and p = 0.011 [UMA] respectively) in Doppler indices (PI, RI and S/D) of the MUA and UMA in the NC group compared to the control group (D14-32). On D20-32 (MUA) and D14-32 (UMA), the NC goats had higher BFR than the control group (p = 0.021, 0.018 respectively). The means of blood cells with fragmented DNA were lower (p = 0.022) in the NC group than in the control group on Days 8 and 21 postsupplementation. There were increases in CAT and NO (D20-32; p = 0.022 and p = 0.004 respectively), and TAC (D17-32; p = 0.007) levels in the NC goats compared to the control ones. The NC group had lower (p = 0.029) concentrations of MDA than the control group on Day 20 postsupplementation onward. In conclusion, oral supplementation of CONC improved uteroplacental blood flow and the antioxidant capacity of midgestating goats.


Subject(s)
Antioxidants , Curcumin , Dietary Supplements , Goats , Placenta , Uterus , Animals , Female , Pregnancy , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Antioxidants/pharmacology , Antioxidants/metabolism , Curcumin/pharmacology , Curcumin/administration & dosage , Diet/veterinary , Goats/physiology , Nanocomposites/chemistry , Placenta/drug effects , Placental Circulation/drug effects , Uterus/drug effects , Uterus/blood supply
10.
Reprod Toxicol ; 116: 108335, 2023 03.
Article in English | MEDLINE | ID: mdl-36642194

ABSTRACT

Vinclozolin (VCZ) has been identified as a broad-spectrum fungicide and an environmental endocrine disruptor. Also, the Hippo signaling pathway controls organ size by regulating cell proliferation and apoptosis, and moreover, overexpression of microRNA-132 (miR-132) and microRNA-195 (miR-195) inhibits cell proliferation and promotes apoptosis. So, in this study, the experimental mice were orally given 400 mg/kg/day VCZ (suspended in corn oil) at gestational day 12-18, while those of the control group were fed with corn oil of equal volume. Then unilateral ovaries and mid-uteri were isolated from 10 randomly-selected mice at the postnatal 1st week (7 days), 3rd week (20-21 days), and 7th week (48-49 days) respectively to observe gene levels, while 6 of the contralateral ovaries and uteri were subsequently examined for proteins respectively. Besides, 16 from both groups were determined with serum estradiol (E2) at week 7, of which 6 were randomized for histological observation. Here we found the levels of E2 reduced in VCZ-group at week 7, with fewer follicles and injured endometrium. Meanwhile, in VCZ mice of all ages, increased miR-132 and miR-195a, decreased G protein-coupled estrogen receptor (GPER), elevated phosphorylated large tumor suppressor (pLATS) and phosphorylated yes-associated protein (pYAP), and decreased yes-associated protein (YAP) were observed in their ovaries and uteri. These findings suggested ovarian and uterine dysplasia in the offspring induced by gestational VCZ-exposure were mainly attributed to higher miR-132 and miR-195a and accentuated Hippo-pathway.


Subject(s)
Fungicides, Industrial , Hippo Signaling Pathway , MicroRNAs , Ovary , Prenatal Exposure Delayed Effects , Uterus , Animals , Female , Humans , Mice , Pregnancy , Corn Oil , MicroRNAs/genetics , Ovary/abnormalities , Ovary/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Proteins/metabolism , Uterus/abnormalities , Uterus/drug effects , YAP-Signaling Proteins , Fungicides, Industrial/toxicity
11.
Reprod Toxicol ; 115: 17-28, 2023 01.
Article in English | MEDLINE | ID: mdl-36435455

ABSTRACT

Phthalates are one of the ubiquitous chemicals found in day-to-day products like food packaging, children's toys, and other consumer commodities. There is rising concern that repeated exposure to phthalates during pregnancy and lactation could have long-term effects on maternal and fetal health. We hypothesize that exposure to DEHP during the developmental windows might affect the expression of molecules that regulate uterine function and that this effect would be passed on to further generations. Rat dams were treated with olive oil (vehicle) or DEHP (100 mg/kg b.wt./day) orally from gestational day 9 (GD 9) to the end of lactation (PND 21). F0 maternal DEHP exposure resulted in multigenerational (F1 and F2) reproductive toxicity, as evidenced by an extended estrous cycle, decreased mating, fertility, and fecundity indices. Serum progesterone and estradiol levels were decreased and their cognate receptors (PR and ERα) in the uterus were decreased in the DEHP-exposed offspring rats. Further analysis of the expression of estrogen and progesterone regulatory genes such as Hox a11, VEGF A, Ihh, LIFR, EP4, PTCH, NR2F2, BMP2, and Wnt4 were reduced in the uteri of adult F1 and F2 generation rats born from DEHP-exposed F0 dams. Decreased expression of these crucial proteins due to DEHP exposure may lead to defects in epithelial proliferation and secretion, uterine receptivity, and decidualization in the uteri of successive generations. This study showed that maternal DEHP exposure impairs the expression of molecules that regulate uterine function and this multigenerational effect is transmitted via maternal lineage.


Subject(s)
Diethylhexyl Phthalate , Endocrine Disruptors , Maternal Exposure , Prenatal Exposure Delayed Effects , Uterus , Animals , Female , Humans , Pregnancy , Rats , Diethylhexyl Phthalate/toxicity , Endocrine Disruptors/toxicity , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/etiology , Progesterone/pharmacology , Uterus/drug effects , Uterus/growth & development , Uterus/metabolism
12.
BMC Pregnancy Childbirth ; 22(1): 881, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36447142

ABSTRACT

BACKGROUND: Repeated implantation failure (RIF) is defined as the case whereby the transferred embryos fail to implant after several attempts of In vitro fertilization (IVF) which causes a profound impact on the quality of life and financial burden. Some clinical studies have confirmed that Granulocyte colony-stimulating factor (G-CSF) and human chorionic gonadotropin (HCG) can improve pregnancy outcomes and implantation rates. Hence, our study aims to compare the efficacy of G-CSF and HCG on pregnancy outcomes in RIF women who undergo intra-cytoplasmic sperm injection (ICSI). METHODS: This randomized, single-blinded study was conducted et al.-Azhar University Hospitals, Cairo, Egypt, between 10th October 2020 and 20th December 2020. The study included 100 women aged 20-43 years old undergoing ICSI cycles, with a history of RIF. Patients were divided randomly into two groups: group (1): included 50 patients injected with 500 IU of intrauterine HCG on embryo transfer day, and group (2): Included 50 patients injected with G-CSF on the embryo transfer day. RESULTS: In 100 RIF women, we found a significant improvement in pregnancy outcomes favoring G-CSF over HCG including implantation rate, chemical pregnancy, and clinical pregnancy (P < 0.0001, P = 0.0003, and P = 0.0006, respectively). CONCLUSION: For the first time, we demonstrated a significant improvement in pregnancy outcomes favoring G-CSF over HCG in terms of implantation rate, chemical pregnancy, and clinical pregnancy. TRIAL REGISTRATION: The study was registered on Pan African Clinical Trials Registry with the following number: PACTR202010482774275 and was approved on 2nd October 2020.


Subject(s)
Chorionic Gonadotropin , Embryo Implantation , Granulocyte Colony-Stimulating Factor , Sperm Injections, Intracytoplasmic , Adult , Female , Humans , Male , Pregnancy/drug effects , Young Adult , Abortion, Spontaneous/prevention & control , Chorionic Gonadotropin/administration & dosage , Chorionic Gonadotropin/pharmacology , Chorionic Gonadotropin/therapeutic use , Granulocyte Colony-Stimulating Factor/administration & dosage , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocyte Colony-Stimulating Factor/therapeutic use , Quality of Life , Semen , Sperm Injections, Intracytoplasmic/methods , Spermatozoa , Fertilization in Vitro/methods , Embryo Implantation/drug effects , Pregnancy Outcome , Single-Blind Method , Injections, Intramuscular , Uterus/drug effects , Embryo Transfer
13.
J Exp Zool A Ecol Integr Physiol ; 337(6): 600-611, 2022 07.
Article in English | MEDLINE | ID: mdl-35286779

ABSTRACT

d-galactose (DG)-induced rodent aging model has widely been used for the study of age-related dysfunctions of various organs, including gonads and uterus. Antidiabetic drug metformin has gained an attention as antiaging drug in model organism and human but its effect on uterus has not been studied in relation to induced aging. Therefore, we investigated the effect of metformin on uterus of DG-induced aging mice model. Mice were randomly divided into three groups, that is, control (CN), DG-induced aging model and aging model treated with metformin. Histomorphometric results showed significantly decreased number of uterine glands, endometrial thickness, and increased luminal epithelium height in aging model. Furthermore, metformin resumed the number of uterine glands, endometrial thickness, and luminal epithelium height up to CN group. Metformin has also significantly decreased the age-associated oxidative stress (malondialdehyde and lipid hydroperoxide). Superoxide dismutase was significantly decreased in both treated groups compared to the CN group. However, catalase and glutathione peroxidase enzymes were significantly increased by metformin compared to the aging model. Immunostaining of active caspase3 and BAX were intense in the endometrium of aging model compare to CN- and metformin-treated groups. Localization of B-cell lymphoma 2 (Bcl2) showed intense immunostaining in the uterus of CN- and metformin-treated groups, with mild immunostaining in aging model. Our observations suggested that metformin treatment might be helpful for management of age-associated uterine dysfunctions. Moreover, it may be concluded that metformin might ameliorate uterine dysfunctions by reducing oxidative stress, suppressing apoptosis, and increasing the survival/antiapoptotic protein Bcl2.


Subject(s)
Aging , Metformin , Oxidative Stress , Uterus , Aging/drug effects , Animals , Caspase 3 , Female , Galactose , Metformin/pharmacology , Mice , Uterus/drug effects , bcl-2-Associated X Protein/metabolism
14.
J Ethnopharmacol ; 290: 115115, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35181487

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Guizhi Fuling Capsule (GFC) is a famous traditional Chinese medicine (TCM) formula recorded in Synopsis of the Golden Chamber, which has achieved obvious effects in the treatment of uterine fibroids (UFs). AIM OF STUDY: Mediator complex subunit 12 (Med12) mutations were closely related to UFs in 85% of fibroid cases. The Wnt/ß-Catenin signaling pathway plays an important role in the occurrence and development of UFs. This study aims to explore the pharmacological mechanism of GFC against UFs in which the Med12-mediated Wnt/ß-Catenin pathway is involved. MATERIALS AND METHODS: Med12 was silenced in uterine fibroid cells (UFCs) using a lentivirus-based Med12 gene-specific RNA interference (RNAi) strategy. Cell proliferation was performed by CCK-8 assay, cell apoptosis and cell cycle were measured by flow cytometry. The rat model of UFs was established by injecting estradiol benzoate and progesterone. Forty-eight rats were divided into six groups, the low-dose GFC (L-GFC) group, the medium-dose GFC (M-GFC) group and the high-dose GFC (H-GFC) group were intragastrically treated with GFC solution at 0.25 g/kg, 0.50 g/kg and 1.00 g/kg per day for 8 weeks, the positive control (PC) group was administrated with mifepristone (2.70 mg/kg/day), the normal control (NC) group and the model control (MC) group were given equal volume of normal saline once a day for 8 weeks. The histopathological changes of uterine tissues were evaluated by H&E staining. The expression of Med12 in uterine tissues were detected by immunohistochemistry. The protein and mRNA levels of associated genes were evaluated by western bolt and real time-PCR, respectively. Related indicators involved in Wnt/ß-Catenin pathway, such as Wnt1, ß-Catenin, Cyclin D1, TCF1/TCF7 and C-myc, were compared among different groups. RESULTS: The Wnt/ß-Catenin signaling pathway was inhibited after Med12 gene was knocked out in UFCs. GFC-containing serum could induce cell apoptosis, make the cell cycle stagnated in G0/G1 phase to inhibiting the proliferation and reduce the expression of Wnt1, ß-Catenin, Cyclin D1, TCF1/TCF7, and C-myc in control-shRNA cells, while had no significant effect on Med12-shRNA cells. Compared with the MC group, the weight, endometrial thickness, and pathological structure of the uterus in the GFC treated groups were significantly improved. The expression of Med12, Wnt1, ß-Catenin, Cyclin D1, TCF1/TCF7, and C-myc that related to Wnt/ß-Catenin pathway in the GFC treated groups were decreased with the increase of dosage administration. CONCLUSIONS: GFC inhibited UFs growth, which was directly associated with Med12 modulated Wnt/ß-Catenin signaling pathway. This study provided new perspective to understand the therapeutic mechanism of UFs.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Leiomyoma/pathology , Mediator Complex/drug effects , Uterine Neoplasms/pathology , Wnt Signaling Pathway/drug effects , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Endometrium/drug effects , Female , Humans , Rats , Rats, Sprague-Dawley , Uterus/drug effects
15.
J Ethnopharmacol ; 290: 115099, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35167934

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The species Lippia origanoides Kunth, popularly known as "salva-de-marajó", is used in Brazilian traditional "quilombola" communities to treat menstrual cramps and uterine inflammation. AIM OF THE STUDY: Evaluate the spasmolytic activity of Lippia origanoides essential oil (LOO) on experimental models of uterine conditions related to menstrual cramps and investigate its mechanism of action. MATERIALS AND METHODS: Virgin rat-isolated uterus was mounted in the organ bath apparatus to evaluate the spasmolytic effect of LOO on basal tonus and contractions induced by carbachol, KCl, or oxytocin. We used pharmacological agents to verify the relaxation mechanism of LOO. The evaluation of uterine contractility in virgin rats, after treatment with LOO for three consecutive days, was carried out by the construction of a concentration-response curve with oxytocin or carbachol. The primary dysmenorrhea animal model was replicated with an injection of estradiol cypionate in female mice for three consecutive days, followed by intraperitoneal application of oxytocin. RESULTS: LOO relaxed the rat uterus precontracted with 10-2 IU/mL oxytocin (logEC50 = 1.98 ± 0.07), 1 µM carbachol (logEC50 = 1.42 ± 0.07) or 60 mM KCl (logEC50 = 1.53 ± 0.05). It was also able relax uterus on spontaneous contractions (logEC50 = 0.41 ± 0.05). Preincubation with glibenclamide, propranolol, phentolamine or L-NAME in contractions induced by carbachol did not alter significantly the relaxing effect of LOO. However, in the presence of 4-aminopyridine, CsCl or tetraethylammonium there was a reduction of LOO potency, whereas the blockers methylene blue, ODQ, aminophylline and heparin potentiated the LOO relaxing effect. Preincubation with LOO in a Ca2+ free medium at concentrations of 27 µg/mL or 81 µg/mL reduced the contraction induced by carbachol. The administration of LOO for 3 days did not alter uterus contractility. The treatment with LOO at 30 or 100 mg/kg intraperitoneally, or 100 mg/kg orally, inhibited writhing in female mice. The association of LOO at 10 mg/kg with nifedipine or mefenamic acid potentiated writhing inhibition in mice. CONCLUSIONS: The essential oil of L. origanoides has tocolytic activity in rat isolated uterus pre-contracted with KCl, oxytocin, or carbachol. This effect is possibly related to the opening of potassium channels (Kir, KV, and KCa), cAMP increase, and diminution of intracellular Ca2+. This relaxant effect, probably, contributed to reduce the number of writhings in an animal model of dysmenorrhea being potentiated by nifedipine or mefenamic acid. Taken together, the results here presented indicate that this species has a pharmacological potential for the treatment of primary dysmenorrhea, supporting its use in folk medicine.


Subject(s)
Dysmenorrhea/pathology , Lippia , Oils, Volatile/pharmacology , Tocolytic Agents/pharmacology , Uterus/drug effects , Animals , Calcium/metabolism , Carbachol/pharmacology , Cyclic AMP/metabolism , Female , Mefenamic Acid/pharmacology , Muscle Contraction/drug effects , Nifedipine/pharmacology , Oxytocin/pharmacology , Potassium Channels/drug effects , Potassium Chloride/pharmacology , Rats , Uterine Contraction/drug effects
16.
Endocrinology ; 163(3)2022 03 01.
Article in English | MEDLINE | ID: mdl-35134138

ABSTRACT

Female mice homozygous for an engineered Gnrhr E90K mutation have reduced gonadotropin-releasing hormone signaling, leading to infertility. Their ovaries have numerous antral follicles but no corpora lutea, indicating a block to ovulation. These mutants have high levels of circulating estradiol and low progesterone, indicating a state of persistent estrus. This mouse model provided a unique opportunity to examine the lack of cyclic levels of ovarian hormones on uterine gland biology. Although uterine gland development appeared similar to controls during prepubertal development, it was compromised during adolescence in the mutants. By age 20 weeks, uterine gland development was comparable to controls, but pathologies, including cribriform glandular structures, were observed. Induction of ovulations by periodic human chorionic gonadotropin treatment did not rescue postpubertal uterine gland development. Interestingly, progesterone receptor knockout mice, which lack progesterone signaling, also have defects in postpubertal uterine gland development. However, progesterone treatment did not rescue postpubertal uterine gland development. These studies indicate that chronically elevated levels of estradiol with low progesterone and therefore an absence of cyclic ovarian hormone secretion disrupts postpubertal uterine gland development and homeostasis.


Subject(s)
Estradiol/blood , Estrus/physiology , Infertility, Female/genetics , Progesterone/blood , Receptors, LHRH/genetics , Uterus/growth & development , Animals , Chorionic Gonadotropin/pharmacology , Estrus/drug effects , Female , Infertility, Female/blood , Mice , Mice, Knockout , Ovarian Follicle/drug effects , Ovulation/drug effects , Progesterone/pharmacology , Uterus/drug effects
17.
Toxicol Appl Pharmacol ; 438: 115907, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35123988

ABSTRACT

Endometritis is a serious reproductive disease in mammals that commonly results in reproductive loss and even permanent infertility. Kynurenic acid (KYNA) is the main bioactive metabolite of tryptophan degradation and exhibits neuroprotective and anticonvulsant properties. However, little is known about the role of KYNA in achieving endometritis remission. This study investigated the protective effects and mechanisms of KYNA using a mouse model of against lipopolysaccharide (LPS)-induced endometritis. The endometritis model was induced by an intrauterine injection of LPS, and KYNA was intraperitoneally injected before and two hours after LPS treatment. Twenty-four hours after LPS administration, pathological changes in uterine tissues were observed by hematoxylin- and eosin (H&E) staining. The levels of the inflammatory factors, TNF-α and IL-1ß, were measured by ELISA. The myeloperoxidase (MPO) activity in uterine tissues was detected using MPO kits and immunohistochemistry. Furthermore, the expression of signaling pathway proteins and tight junction proteins occludin and ZO-1 in uterine tissues was detected by western blot. KYNA prominently inhibited uterine pathological injury and neutrophil infiltration and restricted the secretion of TNF-α and IL-1ß in the uteri of subjects with endometritis. Furthermore, KYNA upregulated the levels of the tight junction proteins (TJPs)occludin and ZO-1 in the uterus. In vitro, KYNA inhibited LPS-induced TNF-α and IL-1ß production, and NF-κB activation in mouse endometrial epithelial cells (mEECs). In addition, KYNA increased the expression of G protein-coupled receptor 35 (GPR35) and inhibition of GPR35 reversed the anti-inflammatory effects of KYNA. In conclusion, KYNA protected against LPS-induced endometritis by maintaining epithelial barrier permeability and suppressing proinflammatory responses via the GRP35/NF-κB signaling pathway.


Subject(s)
Endometritis/drug therapy , Endometritis/metabolism , Kynurenic Acid/pharmacology , NF-kappa B/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Animals , Cells, Cultured , Cytokines/metabolism , Endometritis/chemically induced , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred BALB C , Peroxidase/metabolism , Uterus/drug effects , Uterus/metabolism
18.
J Dev Orig Health Dis ; 13(1): 39-48, 2022 02.
Article in English | MEDLINE | ID: mdl-33781367

ABSTRACT

Through drinking water, humans are commonly exposed to atrazine, a herbicide that acts as an endocrine and metabolic disruptor. It interferes with steroidogenesis, including promoting oestrogen production and altering cell metabolism. However, its precise impact on uterine development remains unknown. This study aimed to determine the effect of prolonged atrazine exposure on the uterus. Pregnant mice (n = 5/group) received 5 mg/kg body weight/day atrazine or DMSO in drinking water from gestational day 9.5 until weaning. Offspring continued to be exposed until 3 or 6 months of age (n = 5-9/group), when uteri were collected for morphological and molecular analyses and steroid quantification. Endometrial hyperplasia and leiomyoma were evident in the uteri of atrazine-exposed mice. Uterine oestrogen concentration, oestrogen receptor expression, and localisation were similar between groups, at both ages (P > 0.1). The expression and localisation of key epithelial-to-mesenchymal transition (EMT) genes and proteins, critical for tumourigenesis, remained unchanged between treatments, at both ages (P > 0.1). Hence, oestrogen-mediated changes to established EMT markers do not appear to underlie abnormal uterine morphology evident in atrazine exposure mice. This is the first report of abnormal uterine morphology following prolonged atrazine exposure starting in utero, it is likely that the abnormalities identified would negatively affect female fertility, although mechanisms remain unknown and require further study.


Subject(s)
Atrazine/adverse effects , Prenatal Exposure Delayed Effects/etiology , Uterus/drug effects , Animals , Atrazine/metabolism , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/pathology , Uterus/pathology , Uterus/physiopathology
19.
Food Chem Toxicol ; 159: 112695, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34813928

ABSTRACT

Glyphosate-based herbicides (GBHs) have been associated with endocrine disrupting effects on reproductive organs. We examined whether postnatal exposure to GBH affects developmental programming of the uterus with long-term consequences. Female Wistar pups received vehicle (control) or GBH (2 mg of glyphosate/kg/day) from postnatal day (PND) 1 to PND7, where the developing uterus is highly sensitive to endocrine disruption. Short-, mid- and long-term effects were evaluated on PND8, PND120 and PND600, respectively. GBH induced hyperplasia and epigenetic alterations in the uterus of neonatal females (PND8). DNA hypermethylation, enrichment of H3K9me3 and reductions of H3K27me3 at regulatory regions of the morphoregulatory gene Hoxa10 resulted in gene downregulation. In young adult females (PND120), GBH increased 17ß-estradiol (E2) and decreased progesterone (P4) serum levels, altering estrous cyclicity. Aged females (PND600) exposed to GBH developed leiomyoma and pre-neoplastic glandular lesions in the uterus. Vaginal rhabdomyosarcoma and intrahepatic bile duct adenoma were also observed. In conclusion, neonatal exposure to GBH altered the expression and induced hypermethylation of the Hoxa10 gene in uterine tissue at early life, and increased E2/P4 ratio serum level at middle-age. We propose that epigenetic reprogramming of Hoxa10 in association with hormonal imbalance could be among the possible mechanisms underlying the long-term adverse effects detected in GBH-exposed rats.


Subject(s)
Endocrine Disruptors/toxicity , Epigenesis, Genetic/drug effects , Glycine/analogs & derivatives , Herbicides/toxicity , Uterus/drug effects , Animals , DNA Methylation/drug effects , Female , Glycine/toxicity , Rats , Rats, Wistar , Uterus/growth & development , Glyphosate
20.
Biochem Biophys Res Commun ; 589: 139-146, 2022 01 22.
Article in English | MEDLINE | ID: mdl-34920379

ABSTRACT

The ω3 polyunsaturated fatty acids (PUFAs) are known to have beneficial effects on health and diseases, and hence their intake is encouraged. However, it remains unknown as to how ω3 PUFAs affect female reproduction processes, in which ω6 PUFA-derived prostaglandin (PG) E2 and PGF2α play crucial roles. We therefore compared female reproductive performance between ω3 PUFA-biased linseed oil diet-fed (Lin) mice and ω6 PUFA-biased soybean oil diet-fed (Soy) mice. In Lin mice, the uterine levels of arachidonic acid (AA) and eicosapentaenoic acid (EPA) were 0.42 fold and 16 fold of those in Soy mice, respectively, with the EPA/AA ratio being 0.7 (vs 0.02 in Soy mice). Lin mice showed no alterations in any of the fertility indexes, including luteolysis and parturition. The uterine PG synthesis profiles of Lin mice were similar to those of Soy mice, but the levels of PGF2α and PGE2 were 50% of those in Soy mice, as a result of the increased EPA/AA ratio. PGF3α and PGE3 were undetectable in the uterine tissues of Soy and Lin mice. Interestingly, in Lin mice, 'luteolytic' PGF2α synthesis was considerably maintained even in the ω6 PUFA-reduced condition. These results suggest the existence of an elaborate mechanism securing PGF2α synthesis to a level that is sufficient for triggering luteolysis and parturition, even under ω6 PUFA-reduced conditions.


Subject(s)
Diet , Fatty Acids, Omega-3/pharmacology , Luteolysis/physiology , Parturition/physiology , Prostaglandins/biosynthesis , Uterus/metabolism , Animals , Female , Luteolysis/drug effects , Mice, Inbred C57BL , Parturition/drug effects , Placenta/drug effects , Placenta/metabolism , Pregnancy , Reproduction/drug effects , Uterus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...