Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters










Publication year range
1.
Carbohydr Res ; 538: 109100, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38555657

ABSTRACT

A recombinant exo-α-mannosidase from Solitalea canadensis (Sc3Man) has been characterized to exhibit strict specificity for hydrolyzing α1,3-mannosidic linkages located at the non-reducing end of glycans containing α-mannose. Enzymatic characterization revealed that Sc3Man operates optimally at a pH of 5.0 and at a temperature of 37 °C. The enzymatic activity was notably enhanced twofold in the presence of Ca2+ ions, emphasizing its potential dependency on this metal ion, while Cu2+ and Zn2+ ions notably impaired enzyme function. Sc3Man was able to efficiently cleave the terminal α1,3 mannose residue from various high-mannose N-glycan structures and from the model glycoprotein RNase B. This work not only expands the categorical scope of bacterial α-mannosidases, but also offers new insight into the glycan metabolism of S. canadensis, highlighting the enzyme's utility for glycan analysis and potential biotechnological applications.


Subject(s)
Bacteroidetes , Mannose , Polysaccharides , alpha-Mannosidase/chemistry , alpha-Mannosidase/metabolism , Mannose/chemistry , Polysaccharides/chemistry , Ions , Mannosidases/metabolism
2.
J Biomol Struct Dyn ; 42(5): 2714-2725, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37158092

ABSTRACT

The search for Golgi α-mannosidase II (GMII) potent and specific inhibitors has been a focus of many studies for the past three decades since this enzyme is a key target for cancer treatment. α-Mannosidases, such as those from Drosophila melanogaster or Jack bean, have been used as functional models of the human Golgi α-mannosidase II (hGMII) because mammalian mannosidases are difficult to purify and characterize experimentally. Meanwhile, computational studies have been seen as privileged tools able to explore assertive solutions to specific enzymes, providing molecular details of these macromolecules, their protonation states and their interactions. Thus, modelling techniques can successfully predict hGMII 3D structure with high confidence, speeding up the development of new hits. In this study, Drosophila melanogaster Golgi mannosidase II (dGMII) and a novel human model, developed in silico and equilibrated via molecular dynamics simulations, were both opposed for docking. Our findings highlight that the design of novel inhibitors should be carried out considering the human model's characteristics and the enzyme operating pH. A reliable model is evidenced, showing a good correlation between Ki/IC50 experimental data and theoretical ΔGbinding estimations in GMII, opening the possibility of optimizing the rational drug design of new derivatives.Communicated by Ramaswamy H. Sarma.


Subject(s)
Drosophila melanogaster , Molecular Dynamics Simulation , Animals , Humans , alpha-Mannosidase/chemistry , Drosophila melanogaster/metabolism , Mannosidases/chemistry , Mannosidases/metabolism , Golgi Apparatus/metabolism , Mammals/metabolism
3.
Int J Biol Macromol ; 248: 126022, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37506790

ABSTRACT

Momordica charantia seeds contain a galactose specific lectin and mixture of glycosidases. These bind to lectin-affigel at pH 5.0 and are all eluted at pH 8.0. From the mixture, α-mannosidase was separated by gel filtration (purified enzyme Mr âˆ¼ 238 kDa). In native PAGE (silver staining) it showed three bands that stained with methylumbelliferyl substrate (possible isoforms). Ion exchange chromatography separated two isoforms in 0.5 M eluates and one isoform in 1.0 M eluate. In SDS-PAGE it dissociated to Mr ∼70 and 45 kDa subunits, showing antigenic similarity to jack bean enzyme. MALDI analysis confirmed the 70 kDa band to be α-mannosidase with sequence identity to the genomic sequence of Momordica charantia enzyme (score 83, 29 % sequence coverage). The pH, temperature optima were 5.0 and 60o C respectively. Kinetic parameters KM and Vmax estimated with p-nitrophenyl α-mannopyranoside were 0.85 mM and 12.1 U/mg respectively. Swainsonine inhibits the enzyme activity (IC50 value was 50 nM). Secondary structural analysis at far UV (190-300 nm) showed 11.6 % α-helix and 36.5 % ß-sheets. 2.197 mg of the enzyme was found to interact with 3.75 mg of protein body membrane at pH 5.0 and not at pH 8.0 suggesting a pH dependent interaction.


Subject(s)
Lectins , Momordica charantia , alpha-Mannosidase/chemistry , Lectins/metabolism , Isoenzymes/metabolism , Seeds/metabolism
4.
Int J Pediatr Otorhinolaryngol ; 169: 111556, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37099947

ABSTRACT

Alpha-mannosidase catalyze lysosomal cleaving of mannose residues from glycoproteins. The enzyme is encoded by the MAN2B1 gene. Biallelic pathogenic variants cause enzymatic deficiency, which clinically results in alpha-mannosidosis (AM), an autosomal recessively inherited condition. Typical features observed in AM patients include intellectual disability, loss of speech, dysmorphic features, progressive motor problems, ataxia, hearing impairment and recurrent otitis. The cause of the latter is mainly attributed to immunodeficiency. The aim of our study was to demonstrate the otolaryngologic and hearing outcomes in patients with AM. The study group consisted of 8 AM patients: 6 males and 2 females, aged 2.5-37 yrs. The clinical course, dysmorphic ENT features, hearing status and the HRCT scans of the temporal bones were analyzed. MS Excel for Windows and Statistica software package were used for the comparison of interaural audiometric loss, mean hearing loss and mean hearing threshold for each patient's audiometric frequency tested. We identified ENT dysmorphic features in all of our AM patients, while the hearing loss was detected in 6 out of our 8 patients. For those cases, the onset of deafness was noted in the first decade of life, this impairment was sensorineural, of cochlear origin, bilateral, of a moderate degree (mean loss 62.76 dB; median 60 dB, standard deviation 12.5 dB), symmetrical and stable. The shape of the audiometric curves of our patients can be described as slightly sloping towards the higher tested frequencies, with a marked improvement at 4 kHz. The radiological examination revealed normal structures of the ears, with the exception of one case where a persistent otitis generated a cochlear gap. We therefore concluded that the hearing loss in our AM patients derived from cochlear impairment unrelated with recurrent otitis.


Subject(s)
Hearing Loss, Sensorineural , Hearing Loss , alpha-Mannosidosis , Male , Female , Humans , alpha-Mannosidosis/diagnostic imaging , alpha-Mannosidosis/genetics , alpha-Mannosidosis/pathology , Poland , Hearing Loss/diagnostic imaging , Hearing Loss/genetics , alpha-Mannosidase/chemistry , alpha-Mannosidase/genetics , Audiometry
5.
Appl Biochem Biotechnol ; 195(3): 1823-1836, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36399304

ABSTRACT

This study focused on the bio-characterization of a GH38 α-mannosidase from the hyperthermophile Pseudothermotoga thermarum DSM 5069. We aimed to successfully express and characterize this thermophilic α-mannosidase and to assess its functional properties. Subsequently, recombinant α-mannosidase PtαMan was expressed in Escherichia coli BL21(DE3) and purified via affinity chromatography, and native protein was verified as a tetramer by size exclusion chromatography. In addition, the activity of α-mannosidase PtαMan was relatively stable at pH 5.0-6.5 and temperatures up to 75 ℃. α-Mannosidase PtαMan was active toward Co2+ and had a good catalytic efficiency deduced from the kinetic parameters. However, its activity was strongly inhibited by Cu2+, Zn2+, SDS, and swainsonine. In summary, this cobalt-required α-mannosidase is putatively involved in the direct modification of glycoproteins.


Subject(s)
Bacteria , Mannosidases , alpha-Mannosidase/genetics , alpha-Mannosidase/chemistry , Bacteria/metabolism , Kinetics , Mannosidases/metabolism
6.
Org Biomol Chem ; 20(45): 8932-8943, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36322142

ABSTRACT

The development of effective inhibitors of Golgi α-mannosidase II (GMII, E.C.3.2.1.114) with minimal off-target effects on phylogenetically-related lysosomal α-mannosidase (LMan, E.C.3.2.1.24) is a complex task due to the complicated structural and chemical properties of their active sites. The pKa values (and also protonation forms in some cases) of several ionizable amino acids, such as Asp, Glu, His or Arg of enzymes, can be changed upon the binding of the inhibitor. Moreover, GMII and LMan work under different pH conditions. The pKa calculations on large enzyme-inhibitor complexes and FMO-PIEDA energy decomposition analysis were performed on the structures of selected inhibitors obtained from docking and hybrid QM/MM calculations. Based on the calculations, the roles of the amino group incorporated in the ring of the imino-D-lyxitol inhibitors and some ionizable amino acids of Golgi-type (Asp270-Asp340-Asp341 of Drosophila melanogaster α-mannosidase dGMII) and lysosomal-type enzymes (His209-Asp267-Asp268 of Canavalia ensiformis α-mannosidase, JBMan) were explained in connection with the observed inhibitory properties. The pyrrolidine ring of the imino-D-lyxitols prefers at the active site of dGMII the neutral form while in JBMan the protonated form, whereas that of imino-L-lyxitols prefers the protonation form in both enzymes. The calculations indicate that the binding mechanism of inhibitors to the active-site of α-mannosidases is dependent on the inhibitor structure and could be used to design new selective inhibitors of GMII. A series of novel synthetic N-substituted imino-D-lyxitols were evaluated with four enzymes from the glycoside hydrolase GH38 family (two of Golgi-type, Drosophila melanogaster GMIIb and Caenorhabditis elegans AMAN-2, and two of lysosomal-type, Drosophila melanogaster LManII and Canavalia ensiformis JBMan, enzymes). The most potent structures [N-9-amidinononyl and N-2-(1-naphthyl)ethyl derivatives] inhibited GMIIb (Ki = 40 nM) and AMAN-2 (Ki = 150 nM) with a weak selectivity index (SI) toward Golgi-type enzymes of IC50(LManII)/IC50(GMIIb) = 35 or IC50(JBMan)/IC50(AMAN-2) = 86. On the other hand, weaker micromolar inhibitors, such as N-2-naphthylmethyl or 4-iodobenzyl derivatives [IC50(GMIIb) = 2.4 µM and IC50 (AMAN-2) = 7.6 µM], showed a significant SI in the range from 111 to 812.


Subject(s)
Drosophila melanogaster , Mannosidases , Animals , alpha-Mannosidase/chemistry , Drosophila melanogaster/metabolism , Mannosidases/chemistry , Mannosidases/metabolism , Enzyme Inhibitors/chemistry , Amino Acids , Amantadine
7.
Int J Mol Sci ; 22(4)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671632

ABSTRACT

EDEM3 recognizes and directs misfolded proteins to the ER-associated protein degradation (ERAD) process. EDEM3 was predicted to act as lectin or as a mannosidase because of its homology with the GH47 catalytic domain of the Man1B1, but the contribution of the other regions remained unresolved. Here, we dissect the molecular determinants governing EDEM3 function and its cellular interactions. LC/MS analysis indicates very few stable ER interactors, suggesting EDEM3 availability for transient substrate interactions. Sequence analysis reveals that EDEM3 consists of four consecutive modules defined as GH47, intermediate (IMD), protease-associated (PA), and intrinsically disordered (IDD) domain. Using an EDEM3 knock-out cell line, we expressed EDEM3 and domain deletion mutants to address EDEM3 function. We find that the mannosidase domain provides substrate binding even in the absence of mannose trimming and requires the IMD domain for folding. The PA and IDD domains deletions do not impair the trimming, but specifically modulate the turnover of two misfolded proteins, NHK and the soluble tyrosinase mutant. Hence, we demonstrate that EDEM3 provides a unique ERAD timing to misfolded glycoproteins, not only by its mannose trimming activity, but also by the positive and negative feedback modulated by the protease-associated and intrinsically disordered domain, respectively.


Subject(s)
Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , alpha-Mannosidase/chemistry , alpha-Mannosidase/metabolism , Calcium-Binding Proteins/genetics , Catalytic Domain , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum-Associated Degradation , HEK293 Cells , HeLa Cells , Humans , Mannose/metabolism , Mannosidases/genetics , Mannosidases/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Mutation , Protein Domains , Protein Folding , Protein Interaction Maps , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/metabolism , alpha-Mannosidase/genetics
8.
Org Biomol Chem ; 17(34): 7863-7869, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31407758

ABSTRACT

Enzyme transition-state mimics can act as powerful inhibitors and allow structural studies that report on the conformation of the transition-state. Here, mannoimidazole, a mimic of the transition state of mannosidase catalyzed hydrolysis of mannosides, is shown to bind in a B2,5 conformation on the Clostridium perfringens GH125 α-1,6-mannosidase, providing additional evidence of a OS2-B2,5-1S5 conformational itinerary for enzymes of this family.


Subject(s)
Clostridium perfringens/enzymology , Enzyme Inhibitors/metabolism , Imidazoles/metabolism , Mannose/metabolism , alpha-Mannosidase/metabolism , Biocatalysis , Catalytic Domain , Enzyme Inhibitors/chemistry , Imidazoles/chemistry , Mannose/analogs & derivatives , Molecular Conformation , Mutation , Protein Binding , alpha-Mannosidase/chemistry , alpha-Mannosidase/genetics
9.
Int J Biol Macromol ; 138: 1044-1055, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31348972

ABSTRACT

In the present study, out of three isoforms of α-mannosidase identified in the crude extract of defatted Custard apple seed powder, isoform III has been purified to homogeneity by two-step chromatography: hydrophobic interaction and gel filtration. The purified Custard apple α-mannosidase isoform III (CAM) hydrolyzed both chromogenic (p-nitrophenyl-α-D-mannopyranoside) and fluorescent (4-methylumbelliferyl α-D-mannopyranoside) substrates. Custard apple α-mannosidase migrated as a single band in native PAGE, showed about 220 kDa molecular mass in gel filtration and in SDS PAGE, dissociated into four bands (Mr ~ 75, 68, 56 and 50 kDa respectively). Temperature and pH optima were found to be 50 °C and 4.0-5.0 respectively and CAM was stable up to 60-70 °C. The enzymatic activity of CAM was inhibited by EDTA, Ag+, Hg2+, Ni2+ and swainsonine (IC50 value of 1.5 µM). CAM was observed to be a metallo enzyme requiring zinc for its activity. Kinetic parameters KM and Vmax were found to be 1.75 mM and 0.068 U/mL respectively. The CD spectral analysis at far UV region (190-300 nm) shows that purified CAM exists as helix (30.4%), ß turns (18%) and random coils (29.7%) in its secondary structure. Chemical modification studies with N-Bromosuccinimide revealed the presence of tryptophan in its active site.


Subject(s)
Annona/enzymology , Seeds/enzymology , Zinc/chemistry , alpha-Mannosidase/chemistry , alpha-Mannosidase/isolation & purification , Chromatography , Enzyme Activation , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Isoenzymes , Temperature
10.
J Med Chem ; 62(12): 5832-5843, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31017416

ABSTRACT

α-Mannosidosis (AM) results from deficient lysosomal α-mannosidase (LAMAN) activity and subsequent substrate accumulation in the lysosome, leading to severe pathology. Many of the AM-causative mutations compromise enzyme folding and could be rescued with purpose-designed pharmacological chaperones (PCs). We found that PCs combining a LAMAN glycone-binding motif based on the 5 N,6 O-oxomethylidenemannojirimycin (OMJ) glycomimetic core and different aglycones, in either mono- or multivalent displays, elicit binding modes involving glycone and nonglycone enzyme regions that reinforce the protein folding and stabilization potential. Multivalent derivatives exhibited potent enzyme inhibition that generally prevailed over the chaperone effect. On the contrary, monovalent OMJ derivatives with LAMAN aglycone binding area-fitting substituents proved effective as activity enhancers for several mutant LAMAN forms in AM patient fibroblasts and/or transfected MAN2 B1-KO cells. This translated into a significant improvement in endosomal/lysosomal function, reverting not only the primary LAMAN substrate accumulation but also the additional downstream consequences such as cholesterol accumulation.


Subject(s)
Drug Design , Imino Pyranoses/chemistry , Imino Pyranoses/pharmacology , alpha-Mannosidosis/drug therapy , Amino Acid Motifs , Cell Line , Fibroblasts/drug effects , Fibroblasts/metabolism , Glycosides/chemistry , Humans , Imino Pyranoses/therapeutic use , alpha-Mannosidase/chemistry , alpha-Mannosidase/metabolism , alpha-Mannosidosis/metabolism
11.
Bioorg Chem ; 83: 424-431, 2019 03.
Article in English | MEDLINE | ID: mdl-30428432

ABSTRACT

Inhibition of the biosynthesis of complex N-glycans in the Golgi apparatus is one of alternative ways to suppress growth of tumor tissue. Eight N-benzyl substituted 1,4-imino-l-lyxitols with basic functional groups (amine, amidine, guanidine), hydroxyl and fluoro groups were prepared, optimized their syntheses and tested for their ability to inhibit several α-mannosides from the GH family 38 (GMIIb, LManII and JBMan) as models for human Golgi and lysosomal α-mannoside II. All compounds were found to be selective inhibitors of GMIIb. The most potent structure bearing guanidine group, inhibited GMIIb at the micromolar level (Ki = 19 ±â€¯2 µM) while no significant inhibition (>2 mM) of LManII and JBMan was observed. Based on molecular docking and pKa calculations this structure may form two salt bridges with aspartate dyad of the target enzyme improving its inhibitory potency compared with other N-benzyl substituted derivatives published in this and previous studies.


Subject(s)
Enzyme Inhibitors/chemistry , Imino Sugars/chemistry , Sugar Alcohols/chemistry , alpha-Mannosidase/antagonists & inhibitors , Animals , Catalytic Domain , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Enzyme Assays , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Imino Sugars/chemical synthesis , Imino Sugars/metabolism , Molecular Docking Simulation , Protein Binding , Sugar Alcohols/chemical synthesis , Sugar Alcohols/metabolism , alpha-Mannosidase/chemistry , alpha-Mannosidase/metabolism
12.
Enzyme Microb Technol ; 117: 45-55, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30037551

ABSTRACT

Glycans present in biological glycoconjugates have several structural and functional roles. Elucidation of glycan structure and biological function is critical to understand their role in physiological and pathogenic process, enabling the development of diagnostic methods and disease treatment. Immobilized glycosidases are powerful tools for glycan analysis, as they are able to remove specific carbohydrates without altering the protein structure. Here we describe the individual immobilization of Aspergillus oryzae ß-galactosidase and Canavalia ensiformis α-mannosidase onto agarose and silica magnetic nanoparticles activated with cyanate ester groups. High immobilization yields (70-90%) were achieved, keeping above 60% of its original activity. Immobilized glycosidases were effective in the selective deglycosylation of model glycoproteins and a Fasciola hepatica lysate, evidenced by a decrease in specific lectin recognition of 40-50% after enzymatic deglycosylation. Immobilized glycosidases were reused for several deglycosylation cycles without loss of effectiveness. Their use was extended to the elucidation of the glycan role of native glycoconjugates. A decrease in the recognition of lactoferrin treated with α-mannosidase by a C-type lectin receptor, DC-SIGN was found. Also the specific deglycosylation of a F. hepatica lysate demonstrated the relevance of mannosylated glycans in the induction of Th2/Treg immune responses during the infection. Our results show successful immobilization of specific glycosidases in nano-supports and validate their utility to identify glycans biological functions.


Subject(s)
Enzymes, Immobilized/chemistry , Glycoconjugates/analysis , Glycomics , Magnetite Nanoparticles , alpha-Mannosidase/chemistry , beta-Galactosidase/chemistry , Animals , Aspergillus oryzae/enzymology , Bone Marrow/metabolism , Canavalia/enzymology , Cattle , Cell Adhesion Molecules/metabolism , Dendritic Cells/metabolism , Enzymes, Immobilized/metabolism , Fasciola hepatica/metabolism , Glycoconjugates/isolation & purification , Glycoproteins/metabolism , Glycosylation , Lactoferrin/metabolism , Lectins/metabolism , Lectins, C-Type/metabolism , Mice, Inbred BALB C , Polysaccharides/metabolism , Receptors, Cell Surface/metabolism , alpha-Mannosidase/metabolism , beta-Galactosidase/metabolism
13.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt A): 2891-2901, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28782625

ABSTRACT

BACKGROUND: There is a pressing need for biomarkers that can distinguish indolent from aggressive prostate cancer to prevent over-treatment of patients with indolent tumor. METHODS: Golgi targeting of glycosyltransferases was characterized by confocal microscopy after knockdown of GM130, giantin, or both. N-glycans on a trans-Golgi enzyme ß4galactosyltransferase-1 isolated by immunoprecipitation from androgen-sensitive and independent prostate cancer cells were determined by matrix-assisted laser desorption-time of flight-mass spectrometry. In situ proximity ligation assay was employed to determine co-localization of (a) α-mannosidase IA, an enzyme required for processing Man8GlcNAc2 down to Man5GlcNAc2 to enable synthesis of complex-type N-glycans, with giantin, GM130, and GRASP65, and (b) trans-Golgi glycosyltransferases with high mannose N-glycans terminated with α3-mannose. RESULTS: Defective giantin in androgen-independent prostate cancer cells results in a shift of Golgi targeting of glycosyltransferases and α-mannosidase IA from giantin to GM130-GRASP65. Consequently, trans-Golgi enzymes and cell surface glycoproteins acquire high mannose N-glycans, which are absent in cells with functional giantin. In situ proximity ligation assays of co-localization of α-mannosidase IA with GM130 and GRASP65, and trans-Golgi glycosyltransferases with high mannose N-glycans are negative in androgen-sensitive LNCaP C-33 cells but positive in androgen-independent LNCaP C-81 and DU145 cells, and LNCaP C-33 cells devoid of giantin. CONCLUSION: In situ proximity ligation assays of Golgi localization of α-mannosidase IA at giantin versus GM130-GRASP65 site, and absence or presence of N-glycans terminated with α3-mannose on trans-Golgi glycosyltransferases may be useful for distinguishing indolent from aggressive prostate cancer cells.


Subject(s)
Autoantigens/genetics , Biomarkers, Tumor/biosynthesis , Membrane Proteins/genetics , Membrane Proteins/metabolism , Prostatic Neoplasms/metabolism , alpha-Mannosidase/metabolism , Autoantigens/metabolism , Biomarkers, Tumor/chemistry , Cell Line, Tumor , Glycosyltransferases/chemistry , Glycosyltransferases/metabolism , Golgi Apparatus/enzymology , Golgi Apparatus/metabolism , Golgi Apparatus/pathology , Golgi Matrix Proteins , Humans , Male , Mannose/metabolism , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Membrane Proteins/antagonists & inhibitors , Polysaccharides/biosynthesis , Polysaccharides/chemistry , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Protein Binding , Protein Transport/genetics , alpha-Mannosidase/chemistry
14.
Chembiochem ; 18(15): 1496-1501, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28493500

ABSTRACT

The varied yet family-specific conformational pathways used by individual glycoside hydrolases (GHs) offer a tantalising prospect for the design of tightly binding and specific enzyme inhibitors. A cardinal example of a GH-family-specific inhibitor, and one that finds widespread practical use, is the natural product kifunensine, which is a low-nanomolar inhibitor that is selective for GH family 47 inverting α-mannosidases. Here we show, through quantum-mechanical approaches, that kifunensine is restrained to a "ring-flipped" 1 C4 conformation with another accessible, but higher-energy, region around the 1,4 B conformation. The conformations of kifunensine in complex with a range of GH47 enzymes-including an atomic-level resolution (1 Å) structure of kifunensine with Caulobacter sp. CkGH47 reported herein and with GH family 38 and 92 α-mannosidases-were mapped onto the kifunensine free-energy landscape. These studies revealed that kifunensine has the ability to mimic the product state of GH47 enzymes but cannot mimic any conformational states relevant to the reaction coordinate of mannosidases from other families.


Subject(s)
Alkaloids/chemistry , Caulobacter/enzymology , alpha-Mannosidase/chemistry , Calorimetry , Molecular Conformation , Quantum Theory , alpha-Mannosidase/antagonists & inhibitors
15.
J Am Chem Soc ; 139(3): 1085-1088, 2017 01 25.
Article in English | MEDLINE | ID: mdl-28026180

ABSTRACT

Conformational analysis of enzyme-catalyzed mannoside hydrolysis has revealed two predominant conformational itineraries through B2,5 or 3H4 transition-state (TS) conformations. A prominent unassigned catalytic itinerary is that of exo-1,6-α-mannosidases belonging to CAZy family 125. A published complex of Clostridium perfringens GH125 enzyme with a nonhydrolyzable 1,6-α-thiomannoside substrate mimic bound across the active site revealed an undistorted 4C1 conformation and provided no insight into the catalytic pathway of this enzyme. We show through a purely computational approach (QM/MM metadynamics) that sulfur-for-oxygen substitution in the glycosidic linkage fundamentally alters the energetically accessible conformational space of a thiomannoside when bound within the GH125 active site. Modeling of the conformational free energy landscape (FEL) of a thioglycoside strongly favors a mechanistically uninformative 4C1 conformation within the GH125 enzyme active site, but the FEL of corresponding O-glycoside substrate reveals a preference for a Michaelis complex in an OS2 conformation (consistent with catalysis through a B2,5 TS). This prediction was tested experimentally by determination of the 3D X-ray structure of the pseudo-Michaelis complex of an inactive (D220N) variant of C. perfringens GH125 enzyme in complex with 1,6-α-mannobiose. This complex revealed unambiguous distortion of the -1 subsite mannoside to an OS2 conformation, matching that predicted by theory and supporting an OS2 → B2,5 → 1S5 conformational itinerary for GH125 α-mannosidases. This work highlights the power of the QM/MM approach and identified shortcomings in the use of nonhydrolyzable substrate analogues for conformational analysis of enzyme-bound species.


Subject(s)
Mannose/chemistry , Molecular Dynamics Simulation , Quantum Theory , alpha-Mannosidase/chemistry , Clostridium perfringens/enzymology , Mannose/analogs & derivatives , Mannose/metabolism , Molecular Structure , Protein Conformation , alpha-Mannosidase/metabolism
16.
Zygote ; 24(5): 775-82, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27189235

ABSTRACT

The sea urchin embryo is a United States National Institutes of Health (NIH) designated model system to study mechanisms that may be involved in human health and disease. In order to examine the importance of high-mannose glycans and polysaccharides in gastrulation, Lytechinus pictus embryos were incubated with Jack bean α-mannosidase (EC 3.2.1.24), an enzyme that cleaves terminal mannose residues that have α1-2-, α1-3-, or α1-6-glycosidic linkages. The enzyme treatment caused a variety of morphological deformations in living embryos, even with α-mannosidase activities as low as 0.06 U/ml. Additionally, formaldehyde-fixed, 48-hour-old L. pictus embryos were microdissected and it was demonstrated that the adhesion of the tip of the archenteron to the roof of the blastocoel in vitro is abrogated by treatment with α-mannosidase. These results suggest that terminal mannose residues are involved in the adhesion between the archenteron and blastocoel roof, perhaps through a lectin-like activity that is not sensitive to fixation.


Subject(s)
Gastrulation/physiology , Mannosides/chemistry , Mannosides/metabolism , Sea Urchins/embryology , Animals , Embryo, Nonmammalian/metabolism , Gastrula/growth & development , Gastrula/metabolism , Sea Urchins/metabolism , alpha-Mannosidase/chemistry , alpha-Mannosidase/metabolism
17.
J Mol Graph Model ; 66: 47-57, 2016 05.
Article in English | MEDLINE | ID: mdl-27035259

ABSTRACT

Human Golgi α-mannosidase II (GMII), a zinc ion co-factor dependent glycoside hydrolase (E.C.3.2.1.114), is a pharmaceutical target for the design of inhibitors with anti-cancer activity. The discovery of an effective inhibitor is complicated by the fact that all known potent inhibitors of GMII are involved in unwanted co-inhibition with lysosomal α-mannosidase (LMan, E.C.3.2.1.24), a relative to GMII. Routine empirical QSAR models for both GMII and LMan did not work with a required accuracy. Therefore, we have developed a fast computational protocol to build predictive models combining interaction energy descriptors from an empirical docking scoring function (Glide-Schrödinger), Linear Interaction Energy (LIE) method, and quantum mechanical density functional theory (QM-DFT) calculations. The QSAR models were built and validated with a library of structurally diverse GMII and LMan inhibitors and non-active compounds. A critical role of QM-DFT descriptors for the more accurate prediction abilities of the models is demonstrated. The predictive ability of the models was significantly improved when going from the empirical docking scoring function to mixed empirical-QM-DFT QSAR models (Q(2)=0.78-0.86 when cross-validation procedures were carried out; and R(2)=0.81-0.83 for a testing set). The average error for the predicted ΔGbind decreased to 0.8-1.1kcalmol(-1). Also, 76-80% of non-active compounds were successfully filtered out from GMII and LMan inhibitors. The QSAR models with the fragmented QM-DFT descriptors may find a useful application in structure-based drug design where pure empirical and force field methods reached their limits and where quantum mechanics effects are critical for ligand-receptor interactions. The optimized models will apply in lead optimization processes for GMII drug developments.


Subject(s)
Enzyme Inhibitors/therapeutic use , Neoplasms/drug therapy , Quantitative Structure-Activity Relationship , alpha-Mannosidase/chemistry , Binding Sites/drug effects , Drug Design , Enzyme Inhibitors/chemistry , Golgi Apparatus/enzymology , Humans , Ligands , Models, Molecular , Neoplasms/enzymology , Quantum Theory , alpha-Mannosidase/antagonists & inhibitors
18.
Chemistry ; 22(15): 5151-5, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-26917097

ABSTRACT

A series of cyclopeptoid-based iminosugar clusters has been evaluated to finely probe the ligand content-dependent increase in α-mannosidase inhibition. This study led to the largest binding enhancement ever reported for an enzyme inhibitor (up to 4700-fold on a valency-corrected basis), which represents a substantial advance over the multivalent glycosidase inhibitors previously reported. Electron microscopy imaging and analytical data support, for the best multivalent effects, the formation of a strong chelate complex in which two mannosidase molecules are cross-linked by one inhibitor.


Subject(s)
Enzyme Inhibitors/chemistry , Glycoside Hydrolases/antagonists & inhibitors , Glycoside Hydrolases/chemistry , Imino Sugars/chemistry , Peptides, Cyclic/chemistry , alpha-Mannosidase/chemistry , Enzyme Inhibitors/pharmacology , Glycoside Hydrolases/pharmacology , Imino Sugars/pharmacology , Ligands , alpha-Mannosidase/pharmacology
19.
Glycoconj J ; 33(2): 159-68, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26864077

ABSTRACT

Two putative α-mannosidase genes isolated from the rather unexplored soil bacterium Solitalea canadensis were cloned and biochemically characterised. Both recombinant enzymes were highly selective in releasing α-linked mannose but no other sugars. The α-mannosidases were designated Sca2/3Man2693 and Sca6Man4191, and showed the following biochemical properties: the temperature optimum for both enzymes was 37 °C, and their pH optima lay at 5.0 and 5.5, respectively. The activity of Sca2/3Man2693 was found to be dependent on Ca(2+) ions, whereas Cu(2+) and Zn(2+) ions almost completely inhibited both α-mannosidases. Specificity screens with various substrates revealed that Sca2/3Man2693 could release both α1-2- and α1-3-linked mannose, whereas Sca6Man4191 only released α1-6-linked mannose. The combined enzymatic action of both recombinant α-mannosidases allowed the sequential degradation of high-mannose-type N-glycans. The facile expression and purification procedures in combination with strict substrate specificities make α-mannosidases from S. canadensis promising candidates for bioanalytical applications.


Subject(s)
Bacterial Proteins/chemistry , Bacteroidetes/enzymology , Mannose/chemistry , alpha-Mannosidase/chemistry , Bacteroidetes/genetics , Substrate Specificity , alpha-Mannosidase/genetics
20.
Insect Biochem Mol Biol ; 67: 94-104, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26187253

ABSTRACT

α-Mannosidases are enzymes which remove non-reducing terminal residues from glycoconjugates. Data on both GH47 and GH38 (Golgi and lysosomal) enzymes are available. Data on insect midgut α-mannosidases acting in digestion are preliminary and do not include enzyme sequences. Tenebrio molitor midgut α-mannosidases were separated by chromatography into two activity peaks: a major (Man1) and a minor (Man2). An antibody generated against a synthetic peptide corresponding to a sequence of α-mannosidase fragment recognizes Man2 but not Man1. That fragment was later found to correspond to TmMan2 (GenBank access KP892646), showing that the cDNA coding for Man2 is actually TmMan2. TmMan2 codes for a mature α-mannosidase with 107.5 kDa. Purified Man2 originates after SDS-PAGE one band of about 72 kDa and another of 51 kDa, which sums 123 kDa, in agreement with gel filtration (123 kDa) data. These results suggest that Man2 is processed into peptides that remain noncovalently linked within the functional enzyme. The physical and kinetical properties of purified Man1 and Man2 are similar. They have a molecular mass of 123 kDa (gel filtration), pH optimum (5.6) and response to inhibitors like swainsonine (Man1 Ki, 68 nM; Man2 Ki, 63 nM) and deoxymannojirimycin (Man1 Ki, 0.12 mM; Man2 Ki, 0.15 mM). Their substrate specificities are a little different as Man2 hydrolyzes α-1,3 and α-1,6 bonds better than α-1,2, whereas the contrary is true for Man1. Thus, they pertain to Class II (GH38 α-mannosidases), that are catabolic α-mannosidases similar to lysosomal α-mannosidase. However, Man2, in contrast to true lysosomal α-mannosidase, is secreted (immunocytolocalization data) into the midgut contents. There, Man2 may participate in digestion of fungal cell walls, known to have α-mannosides in their outermost layer. The amount of family 38 α-mannosidase sequences found in the transcriptome (454 pyrosequencing) of the midgut of 9 insects pertaining to 5 orders is perhaps related to the diet of these organisms, as suggested by a large number of lysosomal α-mannosidase in the T. molitor midgut.


Subject(s)
Insect Proteins/chemistry , Tenebrio/enzymology , alpha-Mannosidase/chemistry , Animals , Female , Gastrointestinal Tract/enzymology , Insect Proteins/isolation & purification , Kinetics , Larva/enzymology , Male , Mannans/metabolism , Substrate Specificity , Tenebrio/genetics , alpha-Mannosidase/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...