Your browser doesn't support javascript.
: 20 | 50 | 100
1 - 20 de 27.239
BMC Oral Health ; 24(1): 713, 2024 Jun 20.
Article En | MEDLINE | ID: mdl-38902666

BACKGROUND: Low mechanical properties are the main limitation of glass ionomer cements (GICs). The incorporation of elastomeric micelles is expected to enhance the strength of GICs without detrimentally affecting their physical properties and biocompatibility. This study compared the chemical and mechanical properties, as well as the cytotoxicity, of elastomeric micelles-containing glass ionomer cement (DeltaFil, DT) with commonly used materials, including EQUIA Forte Fil (EF), Fuji IX GP Extra (F9), and Ketac Molar (KT). METHOD: Powder particles of GICs were examined with SEM-EDX. Setting kinetics were assessed using ATR-FTIR. Biaxial flexural strength/modulus and Vickers surface microhardness were measured after immersion in water for 24 h and 4 weeks. The release of F, Al, Sr, and P in water over 8 weeks was analyzed using a fluoride-specific electrode and ICP-OES. The toxicity of the material extract on mouse fibroblasts was also evaluated. RESULTS: High fluoride levels in the powder were detected with EF and F9. DT demonstrated an initial delay followed by a faster acid reaction compared to other cements, suggesting an improved snap set. DT also exhibited superior flexural strength than other materials at both 24 h and 4 weeks but lower surface microhardness (p < 0.05). EF and F9 showed higher release of F, Al, and P than DT and KT. There was no statistically significant difference in fibroblast viability among the tested materials (p > 0.05). CONCLUSIONS: Elastomeric micelles-containing glass ionomer cement (DT) exhibited satisfactory mechanical properties and cytocompatibility compared with other materials. DT could, therefore, potentially be considered an alternative high-strength GIC for load-bearing restorations.

Elastomers , Fibroblasts , Flexural Strength , Glass Ionomer Cements , Hardness , Materials Testing , Micelles , Glass Ionomer Cements/toxicity , Glass Ionomer Cements/chemistry , Animals , Mice , Fibroblasts/drug effects , Elastomers/chemistry , Elastomers/toxicity , Aluminum/chemistry , Fluorides/chemistry , Strontium/chemistry , Polycarboxylate Cement/chemistry , Polycarboxylate Cement/toxicity , Cell Survival/drug effects , Microscopy, Electron, Scanning , Surface Properties , Pliability , Kinetics , Spectroscopy, Fourier Transform Infrared , Stress, Mechanical , Time Factors , Biocompatible Materials/chemistry
Mikrochim Acta ; 191(7): 401, 2024 06 17.
Article En | MEDLINE | ID: mdl-38884887

The simultaneous discrimination and detection of multiple anions in an aqueous solution has been a major challenge due to their structural similarity and low charge radii. In this study, we have constructed a supramolecular fluorescence sensor array based on three host-guest complexes to distinguish five anions (F-, Cl-, Br-, I-, and ClO-) in an aqueous solution using anionic-induced fluorescence quenching combined with linear discriminant analysis. Due to the different affinities of the three host-guest complexes for each anion the anion quenching efficiency for each host-guest complex was likewise different, and the five anions were well recognized. The fluorescence sensor array not only distinguished anions at different concentrations (0.5, 10, and 50 µM) with 100% accuracy but also showed good linearity within a certain concentration range. The limit of detection (LOD) was < 0.5 µM. Our interference study showed that the developed sensor array had good anti-interference ability. The practicability of the developed sensor array was also verified by the identification and differentiation of toothpaste brands with different fluoride content and the prediction of the iodine concentration in urine combined with machine learning.

Anions , Iodine , Limit of Detection , Machine Learning , Spectrometry, Fluorescence , Anions/urine , Anions/chemistry , Iodine/urine , Iodine/chemistry , Spectrometry, Fluorescence/methods , Toothpastes/chemistry , Fluorescent Dyes/chemistry , Fluorides/chemistry , Fluorides/urine , Discriminant Analysis
BMC Oral Health ; 24(1): 708, 2024 Jun 19.
Article En | MEDLINE | ID: mdl-38898439

BACKGROUND: Dental fluorosis (DF) is caused by excessive exposure to fluoride during odontogenesis and leads to various changes in the development of tooth enamel. Some regions in Mexico are considered endemic fluorosis zones due to the high fluoride content in drinking water. The objective of this study was to perform a systematic review and meta-analysis to identify the association between the concentration of fluoride in drinking water and the severity of dental fluorosis in northern and western Mexico. METHODS: This protocol was registered in the PROSPERO database (ID: CRD42023401519). The search for information was carried out in the PubMed/Medline, Scopus, SpringerLink, and Google Scholar databases between January 2015 and October 2023. The overall relative risk was calculated using the inverse of variance approach with the random effects method. The RoB 2.0 tool was used to construct risk plots. RESULTS: Eleven articles were analyzed qualitatively, and most of the included studies presented at least one level of DF severity; six articles were analyzed quantitatively, dividing them into two regions. In North region it was observed a higher prevalence of severe TF cases, corresponding to ≥ TF 5 category (4.78) [3.55, 6.42]. In the West region, most of the included studies presented a higher prevalence of less severe cases, corresponding to ≤ TF 4, in comparison with the North region (0.01) [0.00, 0.52], interpreted as a protective effect. CONCLUSION: The concentrations of fluorides in drinking water are reportedly high in these regions and are directly related to the severity of dental fluorosis experienced by the inhabitants. In the Northern region exists a major concentration of fluoride in drinking water compared with the Western region as well as a prevalence of higher severity cases of dental fluorosis.

Drinking Water , Fluorides , Fluorosis, Dental , Fluorosis, Dental/epidemiology , Fluorosis, Dental/etiology , Humans , Mexico/epidemiology , Fluorides/analysis , Fluorides/adverse effects , Drinking Water/chemistry , Severity of Illness Index , Prevalence
Cochrane Database Syst Rev ; 6: CD007693, 2024 06 20.
Article En | MEDLINE | ID: mdl-38899538

BACKGROUND: This is an update of a review first published in 2010. Use of topical fluoride has become more common over time. Excessive fluoride consumption from topical fluorides in young children could potentially lead to dental fluorosis in permanent teeth. OBJECTIVES: To describe the relationship between the use of topical fluorides in young children and the risk of developing dental fluorosis in permanent teeth. SEARCH METHODS: We carried out electronic searches of the Cochrane Oral Health Trials Register, CENTRAL, MEDLINE, Embase, three other databases, and two trials registers. We searched the reference lists of relevant articles. The latest search date was 28 July 2022. SELECTION CRITERIA: We included randomized controlled trials (RCTs), quasi-RCTs, cohort studies, case-control studies, and cross-sectional surveys comparing fluoride toothpaste, mouth rinses, gels, foams, paint-on solutions, and varnishes to a different fluoride therapy, placebo, or no intervention. Upon the introduction of topical fluorides, the target population was children under six years of age. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures expected by Cochrane and used GRADE to assess the certainty of the evidence. The primary outcome measure was the percentage prevalence of fluorosis in the permanent teeth. Two authors extracted data from all included studies. In cases where both adjusted and unadjusted risk ratios or odds ratios were reported, we used the adjusted value in the meta-analysis. MAIN RESULTS: We included 43 studies: three RCTs, four cohort studies, 10 case-control studies, and 26 cross-sectional surveys. We judged all three RCTs, one cohort study, one case-control study, and six cross-sectional studies to have some concerns for risk of bias. We judged all other observational studies to be at high risk of bias. We grouped the studies into five comparisons. Comparison 1. Age at which children started toothbrushing with fluoride toothpaste Two cohort studies (260 children) provided very uncertain evidence regarding the association between children starting to use fluoride toothpaste for brushing at or before 12 months versus after 12 months and the development of fluorosis (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.81 to 1.18; very low-certainty evidence). Similarly, evidence from one cohort study (3939 children) and two cross-sectional studies (1484 children) provided very uncertain evidence regarding the association between children starting to use fluoride toothpaste for brushing before or after the age of 24 months (RR 0.83, 95% CI 0.61 to 1.13; very low-certainty evidence) or before or after four years (odds ratio (OR) 1.60, 95% CI 0.77 to 3.35; very low-certainty evidence), respectively. Comparison 2. Frequency of toothbrushing with fluoride toothpaste Two case-control studies (258 children) provided very uncertain evidence regarding the association between children brushing less than twice per day versus twice or more per day and the development of fluorosis (OR 1.63, 95% CI 0.81 to 3.28; very low-certainty evidence). Two cross-sectional surveys (1693 children) demonstrated that brushing less than once per day versus once or more per day may be associated with a decrease in the development of fluorosis in children (OR 0.62, 95% CI 0.53 to 0.74; low-certainty evidence). Comparison 3. Amount of fluoride toothpaste used for toothbrushing Two case-control studies (258 children) provided very uncertain evidence regarding the association between children using less than half a brush of toothpaste, versus half or more of the brush, and the development of fluorosis (OR 0.77, 95% CI 0.41 to 1.46; very low-certainty evidence). The evidence from cross-sectional surveys was also very uncertain (OR 0.92, 95% CI 0.66 to 1.28; 3 studies, 2037 children; very low-certainty evidence). Comparison 4. Fluoride concentration in toothpaste There was evidence from two RCTs (1968 children) that lower fluoride concentration in the toothpaste used by children under six years of age likely reduces the risk of developing fluorosis: 550 parts per million (ppm) fluoride versus 1000 ppm (RR 0.75, 95% CI 0.57 to 0.99; moderate-certainty evidence); 440 ppm fluoride versus 1450 ppm (RR 0.72, 95% CI 0.58 to 0.89; moderate-certainty evidence). The age at which the toothbrushing commenced was 24 months and 12 months, respectively. Two case-control studies (258 children) provided very uncertain evidence regarding the association between fluoride concentrations under 1000 ppm, versus concentrations of 1000 ppm or above, and the development of fluorosis (OR 0.89, 95% CI 0.52 to 1.52; very low-certainty evidence). Comparison 5. Age at which topical fluoride varnish was applied There was evidence from one RCT (123 children) that there may be little to no difference between a fluoride varnish application before four years, versus no application, and the development of fluorosis (RR 0.77, 95% CI 0.45 to 1.31; low-certainty evidence). There was low-certainty evidence from two cross-sectional surveys (982 children) that the application of topical fluoride varnish before four years of age may be associated with the development of fluorosis in children (OR 2.18, 95% CI 1.46 to 3.25). AUTHORS' CONCLUSIONS: Most evidence identified mild fluorosis as a potential adverse outcome of using topical fluoride at an early age. There is low- to very low-certainty and inconclusive evidence on the risk of having fluorosis in permanent teeth for: when a child starts receiving topical fluoride varnish application; toothbrushing with fluoride toothpaste; the amount of toothpaste used by the child; and the frequency of toothbrushing. Moderate-certainty evidence from RCTs showed that children who brushed with 1000 ppm or more fluoride toothpaste from one to two years of age until five to six years of age probably had an increased chance of developing dental fluorosis in permanent teeth. It is unethical to propose new RCTs to assess the development of dental fluorosis. However, future RCTs focusing on dental caries prevention could record children's exposure to topical fluoride sources in early life and evaluate the dental fluorosis in their permanent teeth as a long-term outcome. In the absence of these studies and methods, further research in this area will come from observational studies. Attention needs to be given to the choice of study design, bearing in mind that prospective controlled studies will be less susceptible to bias than retrospective and uncontrolled studies.

Fluorides, Topical , Fluorosis, Dental , Randomized Controlled Trials as Topic , Fluorosis, Dental/epidemiology , Humans , Child, Preschool , Fluorides, Topical/administration & dosage , Fluorides, Topical/adverse effects , Child , Toothpastes/adverse effects , Bias , Case-Control Studies , Cariostatic Agents/adverse effects , Cariostatic Agents/administration & dosage , Cohort Studies , Cross-Sectional Studies , Fluorides/administration & dosage , Fluorides/adverse effects
BMC Oral Health ; 24(1): 673, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38851679

BACKGROUND: Early childhood caries (ECC) remain a serious oral health problem on a global scale. Risk-based caries management (RBCM) implemented in some parts of the world has been effective in preventing ECC. However, there is a lack of prospective research on the application of RBCM among Chinese children, and little is known about its effectiveness. The purpose of this study was to evaluate the effectiveness of RBCM in preventing caries among children aged 3-5 years in Wanzhou District, Chongqing Municipality, China. METHODS: Three- to five-year-old children from four kindergartens in Wanzhou were randomly selected for baseline dental examination and caries risk assessment (CRA) and randomly assigned to the experimental group (EG) or the control group (CG) according to the kindergarten. The EG received caries prevention measures of different intensities based on the child's caries risk level. The CG received full-mouth fluoride twice a year according to standard prevention, regardless of their caries risk. One year later, another dental examination and CRA were conducted, to observe changes in the decayed, missing, and filled teeth (dmft) index and caries risk, and to analyze potential factors that may affect the incidence of new caries. RESULTS: Complete data were collected from 291 children (EG, N = 140, 84.8%; CG, N = 181, 83.4%). A total of 25.7% of the EG and 50.3% of the CG children developed new caries, with newly added dmft scores of 0.54 ± 1.12 and 1.32 ± 1.72, respectively (P < 0.05). Multivariate logistic regression indicated that children living in rural areas, assigned to the CG, and rated as high-risk at baseline were more likely to develop new caries (P < 0.05). The proportion of children with an increased caries risk in the EG was significantly lower than that in the CG (P < 0.05). CONCLUSIONS: RBCM effectively prevented new caries in 3- to 5-year-old Wanzhou children and reduced the proportion of children at increased risk of caries. It is an effective approach for preventing ECC. CLINICAL TRIAL REGISTRATION: This trial was registered in the Chinese Clinical Trials Register. The registration number was ChiCTR230067551 (11/01/2023).

Cariostatic Agents , DMF Index , Dental Caries , Humans , Dental Caries/prevention & control , Dental Caries/epidemiology , Child, Preschool , China/epidemiology , Single-Blind Method , Male , Female , Cariostatic Agents/therapeutic use , Risk Assessment , Prospective Studies , Dental Caries Susceptibility , Follow-Up Studies , Treatment Outcome , Fluorides/therapeutic use , East Asian People
Food Chem Toxicol ; 189: 114773, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823497

Fluoride, a ubiquitous environmental compound, carries significant health risks at excessive levels. This study investigated the reproductive toxicity of fluoride exposure during puberty in mice, focusing on its impact on testicular development, spermatogenesis, and underlying mechanisms. The results showed that fluoride exposure during puberty impaired testicular structure, induced germ cell apoptosis, and reduced sperm counts in mice. Additionally, the SOD activity and GSH content were significantly decreased, while MDA content was significantly elevated in the NaF group. Immunohistochemistry showed an increase in the number of cells positive for GRP78, a key ER stress marker. Moreover, qRT-PCR and Western blot analyses confirmed the upregulation of both Grp78 mRNA and protein expression, as well as increased mRNA expression of other ER stress-associated genes (Grp94, chop, Atf6, Atf4, and Xbp1) and enhanced protein expression of phosphorylated PERK, IRE1α, eIF2α, JNK, XBP-1, ATF-6α, ATF-4, and CHOP. In conclusion, our findings demonstrate that fluoride exposure during puberty impairs testicular structure, induces germ cell apoptosis, and reduces sperm counts in mice. ER stress may participate in testicular cell apoptosis, and contribute to the testicular damage and decreased sperm counts induced by fluoride.

Apoptosis , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Fluorides , Testis , Animals , Male , Endoplasmic Reticulum Stress/drug effects , Apoptosis/drug effects , Testis/drug effects , Testis/metabolism , Fluorides/toxicity , Mice , Sexual Maturation/drug effects , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Sperm Count , Spermatogenesis/drug effects
BMC Oral Health ; 24(1): 701, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38890627

BACKGROUND: One of the most prevalent health problems affecting children worldwide is untreated caries in primary teeth. Agents to arrest caries are used to manage untreated decay in children in disadvantaged communities. Nano Silver Fluoride (NSF) overcomes the staining problems of Silver Diamine Fluoride (SDF). This study compared the clinical cariostatic effect of NSF to 38% SDF for arresting caries lesions. METHODS: The study included 360 children younger than 4 years, with at least one active lesion, ICDAS score ≥ 3, recruited from nurseries in a rural area in Alexandria, Egypt, in 2022. They were randomly assigned to receive a single application of NSF at baseline, or two applications of SDF at baseline and after 6 months. The arrest of active carious lesions was assessed after 6 and 12 months using ICDAS criteria, and parents' satisfaction with child appearance was also assessed. Chi-Square test was used to compare the groups and multi-level multiple logistic regression was used to assess the effect of the intervention on caries arrest at lesion level and binary logistic regression was used to assess the effect at patient level. RESULTS: 1853 active lesions were included in children whose mean (SD) age was 42.3 (8.2) months. The arrest rate was significantly higher in the NSF than the SDF group at lesion level (78.4% and 65.0% at 6 months and 71.3% and 56.3% at 12 months, p < 0.001). In regression analysis, NSF had significantly higher odds of caries arrest than SDF at lesion level (at 6 months, AOR = 2.57, 95% CI: 1.55, 4.26 and at 12 month, AOR = 3.27, 95% CI: 1.89, 5.67). Parents of children receiving NSF had significantly greater satisfaction with their children's dental appearance than those receiving SDF: (97.2% and 76.1%, respectively, p < 0.001). CONCLUSION: NSF demonstrated greater effectiveness in arresting caries in preschool children without inducing black staining of teeth and with greater parental satisfaction than SDF. NSF can be an alternative to SDF in arresting caries especially in underprivileged communities. TRIAL REGISTRATION: The trial was registered in the registry (#NCT05255913)-16/02/2022.

Cariostatic Agents , Dental Caries , Fluorides, Topical , Quaternary Ammonium Compounds , Silver Compounds , Humans , Dental Caries/prevention & control , Silver Compounds/therapeutic use , Fluorides, Topical/therapeutic use , Quaternary Ammonium Compounds/therapeutic use , Child, Preschool , Female , Male , Cariostatic Agents/therapeutic use , Fluorides/therapeutic use , Infant , Treatment Outcome
Clin Oral Investig ; 28(7): 379, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38886263

OBJECTIVES: Longitudinal assessment of the role of specific proteins on radiotherapy caries (RC) onset in head and neck cancer patients(HNC) up to one-year post-IMRT using a 5000ppm fluoride paste daily. MATERIALS AND METHODS: Dental status/salivary protein data were obtained from 40 HNC patients pre-IMRT, six months (T1) and 12 months (T2) post-IMRT (ethical approval/consent). DMFT/salivary parameters were quantified, including flow rate, mucin 5B/7, Immunoglobulin A (IgA), cystatin S and α-amylase. RESULTS: 45% patients had at least one carious lesion at T2, a significant reduction in the number of remaining teeth (65% <21), salivary flow rate (< 50%) and, protein secretion (< 0.05) post-IMRT. T1 IgA concentration/secretion rate was associated with RC (p < 0.05). Finally, IgA and total protein concentration obtained at T1 could provide a predictive pattern (AUC 82.3%) for the patients more predisposed to developing RC at T2. CONCLUSIONS: This study demonstrated the significant association of RC with salivary proteins in HNC patients treated with IMRT, revealing the potential role of salivary proteins in the early diagnosis of RC. CLINICAL RELEVANCE: This research contributes to revealing salivary proteins association with RC, and its role in early diagnosis. Therefore, this could be the first step towards personalized medicine approaches to improve this group quality-of-life.

Dental Caries , Dentifrices , Head and Neck Neoplasms , Radiotherapy, Intensity-Modulated , Salivary Proteins and Peptides , Humans , Dental Caries/prevention & control , Dental Caries/etiology , Male , Head and Neck Neoplasms/radiotherapy , Female , Middle Aged , Longitudinal Studies , Dentifrices/therapeutic use , Aged , Fluorides/therapeutic use , Adult , DMF Index , Immunoglobulin A/analysis , Saliva/metabolism
Int J Biol Macromol ; 272(Pt 1): 132925, 2024 Jun.
Article En | MEDLINE | ID: mdl-38844281

An eco-friendly macroparticle biochar (BC)-based Ce(III)-La(III) crosslinked sodium alginate (SA) hybrid hydrogel (BC/Ce-SA-La) was synthesized by droplet polymerization and characterized by SEM-EDS, XRD, FTIR, UV-Vis and XPS. The effects of dosage, pH, contact time, temperature and coexisting ions on the F- ions removal by hybrid hydrogel, and the adsorption performance, interaction mechanism and reusability were investigated. The results demonstrate that the composite has a fancy wrinkle structure with a particle size of about 1.8 mm and abundant porosity on the surface. The removal rate of F- ions by BC/Ce-SA-La reached 90.2 % under the conditions of pH 2.0, 200 min of contact time and 298 K. The adsorption behavior was perfectly explained by Langmuir model, and the maximum adsorption capacity reached 129 mg/g. The adsorption process was an endothermic spontaneous reaction and followed Pseudo-second-order rate model. The strong adsorption was attributed to multi-interactions including complexation, hydrogen bonding and electrostatic adsorption between the composite and F- ions. Coexisting ions hardly interfered with the adsorption of F- ions by BC/Ce-SA-La except for a slight effect of phosphate. The composite after F- ion adsorption was easily separated and could be reused at least three times. BC/Ce-SA-La is a cost-effective and promising granular biosorbent.

Alginates , Charcoal , Fluorides , Hydrogels , Water Pollutants, Chemical , Water Purification , Charcoal/chemistry , Alginates/chemistry , Adsorption , Fluorides/chemistry , Fluorides/isolation & purification , Hydrogels/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Hydrogen-Ion Concentration , Cerium/chemistry , Lanthanum/chemistry , Temperature , Kinetics , Water/chemistry
J Transl Med ; 22(1): 528, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824544

Given the insidious and high-fatality nature of cardiovascular diseases (CVDs), the emergence of fluoride as a newly identified risk factor demands serious consideration alongside traditional risk factors. While vascular smooth muscle cells (VSMCs) play a pivotal role in the progression of CVDs, the toxicological impact of fluoride on VSMCs remains largely uncharted. In this study, we constructed fluorosis model in SD rats and A7R5 aortic smooth muscle cell lines to confirm fluoride impaired VSMCs. Fluoride aggravated the pathological damage of rat aorta in vivo. Then A7R5 were exposed to fluoride with concentration ranging from 0 to 1200 µmol/L over a 24-h period, revealing a dose-dependent inhibition of cell proliferation and migration. The further metabolomic analysis showed alterations in metabolite profiles induced by fluoride exposure, notably decreasing organic acids and lipid molecules level. Additionally, gene network analysis underscored the frequency of fluoride's interference with amino acids metabolism, potentially impacting the tricarboxylic acid (TCA) cycle. Our results also highlighted the ATP-binding cassette (ABC) transporters pathway as a central element in VSMC impairment. Moreover, we observed a dose-dependent increase in osteopontin (OPN) and α-smooth muscle actin (α-SMA) mRNA level and a dose-dependent decrease in ABC subfamily C member 1 (ABCC1) and bestrophin 1 (BEST1) mRNA level. These findings advance our understanding of fluoride as a CVD risk factor and its influence on VSMCs and metabolic pathways, warranting further investigation into this emerging risk factor.

Amino Acids , Cell Proliferation , Fluorides , Muscle, Smooth, Vascular , Rats, Sprague-Dawley , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/drug effects , Fluorides/pharmacology , Cell Line , Amino Acids/metabolism , Cell Proliferation/drug effects , Rats , Cell Movement/drug effects , Male , Aorta/pathology , Aorta/drug effects , Aorta/metabolism , Metabolomics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Gene Regulatory Networks/drug effects
ACS Appl Bio Mater ; 7(6): 3821-3827, 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38787698

Near-infrared fluorescence (NIRF) thermometry is an emerging method for the noncontact measurement of in vivo deep temperatures. Fluorescence-lifetime-based methods are effective because they are unaffected by optical loss due to excitation or detection paths. Moreover, the physiological changes in body temperature in deep tissues and their pharmacological effects are yet to be fully explored. In this study, we investigated the potential application of the NIRF lifetime-based method for temperature measurement of in vivo deep tissues in the abdomen using rare-earth-based particle materials. ß-NaYF4 particles codoped with Nd3+ and Yb3+ (excitation: 808 nm, emission: 980 nm) were used as NIRF thermometers, and their fluorescence decay curves were exponential. Slope linearity analysis (SLA), a screening method, was proposed to extract pixels with valid data. This method involves performing a linearity evaluation of the semilogarithmic plot of the decay curve collected at three delay times after cutting off the pulsed laser irradiation. After intragastric administration of the thermometer, the stomach temperature was monitored by using an NIRF time-gated imaging setup. Concurrently, a heater was attached to the lower abdomens of the mice under anesthesia. A decrease in the stomach temperature under anesthesia and its recovery via the heater indicated changes in the fluorescence lifetime of the thermometer placed inside the body. Thus, NaYF4:Nd3+/Yb3+ functions as a fluorescence thermometer that can measure in vivo temperature based on the temperature dependence of the fluorescence lifetime at 980 nm under 808 nm excitation. This study demonstrated the ability of a rare-earth-based NIRF thermometer to measure deep tissues in live mice, with the proposed SLA method for excluding the noisy deviations from the analysis for measuring temperature using the NIRF lifetime of a rare-earth-based thermometer.

Fluorides , Optical Imaging , Ytterbium , Yttrium , Animals , Mice , Yttrium/chemistry , Ytterbium/chemistry , Fluorides/chemistry , Neodymium/chemistry , Biocompatible Materials/chemistry , Materials Testing , Particle Size , Temperature , Thermometry/methods , Infrared Rays
Microb Genom ; 10(5)2024 May.
Article En | MEDLINE | ID: mdl-38743050

Natural products from Actinomycetota have served as inspiration for many clinically relevant therapeutics. Despite early triumphs in natural product discovery, the rate of unearthing new compounds has decreased, necessitating inventive approaches. One promising strategy is to explore environments where survival is challenging. These harsh environments are hypothesized to lead to bacteria developing chemical adaptations (e.g. natural products) to enable their survival. This investigation focuses on ore-forming environments, particularly fluoride mines, which typically have extreme pH, salinity and nutrient scarcity. Herein, we have utilized metagenomics, metabolomics and evolutionary genome mining to dissect the biodiversity and metabolism in these harsh environments. This work has unveiled the promising biosynthetic potential of these bacteria and has demonstrated their ability to produce bioactive secondary metabolites. This research constitutes a pioneering endeavour in bioprospection within fluoride mining regions, providing insights into uncharted microbial ecosystems and their previously unexplored natural products.

Actinobacteria , Actinobacteria/genetics , Actinobacteria/metabolism , Metagenomics , Fluorides/metabolism , Biological Products/metabolism , Bioprospecting , Metabolomics , Biodiversity , Genome, Bacterial , Phylogeny , Hydrogen-Ion Concentration , Salinity
Talanta ; 276: 126300, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38795647

N-myristoylation is one of the most widespread and important lipidation in eukaryotes and some prokaryotes, which is formed by covalently attaching various fatty acids (predominantly myristic acid C14:0) to the N-terminal glycine of proteins. Disorder of N-myristoylation is critically implicated in numerous physiological and pathological processes. Here, we presented a method for purification and comprehensive characterization of endogenous, intact N-glycine lipid-acylated peptides, which combined the negative selection method for N-terminome and the nanographite fluoride-based solid-phase extraction method (NeS-nGF SPE). After optimizing experimental conditions, we conducted the first global profiling of the endogenous and heterogeneous modification states for N-terminal glycine, pinpointing the precise sites and their associated lipid moieties. Totally, we obtained 76 N-glycine lipid-acylated peptides, including 51 peptides with myristate (C14:0), 10 with myristoleate (C14:1), 6 with tetradecadienoicate (C14:2), 5 with laurate (C12:0) and 4 with lauroleate (C12:1). Therefore, our proteomic methodology could significantly facilitate precise and in-depth analysis of the endogenous N-myristoylome and its heterogeneity.

Myristic Acid , Solid Phase Extraction , Solid Phase Extraction/methods , Myristic Acid/chemistry , Myristic Acid/analysis , Proteomics/methods , Fluorides/chemistry , Fluorides/analysis , Glycine/chemistry , Glycine/analysis , Peptides/chemistry , Peptides/analysis
Environ Geochem Health ; 46(6): 190, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695943

A magnetic nanocomposite of hydroxyapatite and biomass (HAp-CM) was synthesized through a combined ultrasonic and hydrothermal method, aiming for efficient adsorption of arsenic (As) and fluoride (F-) from drinking water in natural environments. The characterization of HAp-CM was carried out using TG, FTIR, XRD, SEM, SEM-EDS, and TEM techniques, along with the determination of pHpzc charge. FTIR analysis suggested that coordinating links are the main interactions that allow the formation of the nanocomposite. XRD data indicated that the crystalline structure of the constituent materials remained unaffected during the formation of HAp-CM. SEM-EDS analysis revelated a Ca/P molar ratio of 1.78. Adsorption assays conducted in batches demonstrated that As and F- followed a PSO kinetic model. Furthermore, As adsorption fitting well to the Langmuir model, while F- adsorption could be explained by both Langmuir and Freundlich models. The maximum adsorption capacity of HAp-CM was found to be 5.0 mg g-1 for As and 10.2 mg g-1 for F-. The influence of sorbent dosage, pH, and the presence of coexisting species on adsorption capacity was explored. The pH significantly affected the nanocomposite's efficiency in removing both pollutants. The presence of various coexisting species had different effects on F- removal efficiency, while As adsorption efficiency was generally enhanced, except in the case of PO43-. The competitive adsorption between F- and As on HAp-CM was also examined. The achieved results demonstrate that HAp-CM has great potential for use in a natural environment, particularly in groundwater remediation as a preliminary treatment for water consumption.

Arsenic , Durapatite , Fluorides , Nanocomposites , Water Pollutants, Chemical , Water Purification , Fluorides/chemistry , Adsorption , Nanocomposites/chemistry , Durapatite/chemistry , Water Pollutants, Chemical/chemistry , Arsenic/chemistry , Water Purification/methods , Hydrogen-Ion Concentration , Biomass , Kinetics , Drinking Water/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
Environ Geochem Health ; 46(6): 184, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695941

Excessive fluoride can adversely affect bone mineral density (BMD). Oxidative stress and mitochondrial dysfunction are crucial mechanisms of health damage induced by fluoride. Here, a cross-sectional survey involving 907 Chinese farmers (aged 18-60) was carried out in Tongxu County in 2017, aiming to investigate the significance of mitochondrial DNA copy number (mtDNAcn) and oxidative stress in fluoride-related BMD change. Concentrations of urinary fluoride (UF), serum oxidative stress biomarkers, including total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA), as well as relative mtDNAcn in peripheral blood were determined. The multivariable linear model and mediation analysis were performed to assess associations between UF, oxidative stress, and relative mtDNAcn with BMD. Results showed that GSH-Px levels increased by 6.98 U/mL [95% confidence interval (CI) 3.41-10.56)] with each 1.0 mg/L increment of UF. After stratification, the T-AOC, relative mtDNAcn, and BMD decreased by 0.04 mmol/L (-0.08 ~ -0.01), 0.29-unit (-0.55 ~ -0.04), and 0.18-unit (-0.33 ~ -0.03) with every 1.0 mg/L elevation of UF in the excessive fluoride group (EFG, adults with UF > 1.6 mg/L), respectively. Furthermore, T-AOC and relative mtDNAcn were favorably related to the BMD in the EFG (ß = 0.82, 95%CI 0.16-1.48 for T-AOC; ß = 0.11, 95%CI 0.02-0.19 for relative mtDNAcn). Mediation analysis showed that relative mtDNAcn and T-AOC mediated 15.4% and 17.1% of the connection between excessive fluoride and reduced BMD, respectively. Findings suggested that excessive fluoride was related to lower BMD in adults, and the decrement of T-AOC and relative mtDNAcn partially mediate this relationship.

Bone Density , DNA, Mitochondrial , Farmers , Fluorides , Oxidative Stress , Fluorides/toxicity , Humans , Bone Density/drug effects , Adult , Middle Aged , Male , Cross-Sectional Studies , Adolescent , China , Young Adult , Female , DNA Copy Number Variations , Occupational Exposure/adverse effects , Biomarkers/blood
J Dent ; 146: 105039, 2024 Jul.
Article En | MEDLINE | ID: mdl-38714243

OBJECTIVE: The aim of this work was to evaluate the antibiofilm and anticaries properties of the association of arginine (Arg) with calcium glycerophosphate (CaGP) and fluoride (F). METHODS: An active attachment, polymicrobial biofilm model obtained from saliva and bovine teeth discs were used. After the initial biofilm growth period, the enamel discs were transferred to culture medium. The treatment solutions were added to the culture media to achieve the desired final concentration. The following groups were used: negative control (Control); F (110 ppm F); CaGP (0.05 %); Arg (0.8 %) and their associations (F + CaGP; Arg + F; Arg + CaGP; Arg +F + CaGP). The following analyses were carried out: bacterial viability (total bacteria, aciduric bacteria and mutans streptococci), pH assessment of the spent culture medium, dry weight quantification, evaluation of surface hardness loss (%SH) and subsurface mineral content. Normality and homoscedasticity were tested (Shapiro-Wilk and Levene's test) and the following tests were applied: two-way ANOVA (acidogenicity), Kruskall-Wallis (microbial viability) and one way ANOVA (dry weight, %SH, mineral content). RESULTS: The association Arg + F + CaGP resulted in the lowest surface hardness loss in tooth enamel (-10.9 ± 2.3 %; p < 0.05). Arg +F + CaGP exhibited highest values of subsurface mineral content (10.1 ± 2.9 gHAP/cm3) in comparison to Control and F (p < 0.05). In comparison to Control and F, Arg +F + CaGP promoted the highest reduction in aciduric bacteria and mutans streptococci (5.7 ± 0.4; 4.4 ± 0.5 logCFU/mL, p < 0.05). CONCLUSIONS: The Arg-F-Ca association demonstrated to be the most effective combination in protecting the loss of surface hardness and subsurface mineral content, in addition to controlling important virulence factors of the cariogenic biofilm. CLINICAL SIGNIFICANCE: Our findings provide evidence that the Arg-F-Ca association showed an additive effect, particularly concerning protection against enamel demineralization. The combination of these compounds may be a strategy for patients at high risk of caries.

Arginine , Biofilms , Cariostatic Agents , Dental Caries , Dental Enamel , Fluorides , Glycerophosphates , Microbial Viability , Saliva , Streptococcus mutans , Arginine/pharmacology , Biofilms/drug effects , Cattle , Animals , Dental Enamel/drug effects , Dental Enamel/microbiology , Streptococcus mutans/drug effects , Fluorides/pharmacology , Glycerophosphates/pharmacology , Cariostatic Agents/pharmacology , Saliva/microbiology , Hydrogen-Ion Concentration , Dental Caries/prevention & control , Dental Caries/microbiology , Microbial Viability/drug effects , Hardness , Humans , Tooth Demineralization/prevention & control , Tooth Demineralization/microbiology , Surface Properties
J Dent ; 146: 105038, 2024 Jul.
Article En | MEDLINE | ID: mdl-38714242

OBJECTIVES: This laboratory study assessed the performance of a novel fluoride dentifrice containing micro-fibrillated cellulose (MFC) and entrapped silica. METHODS: Removal of extrinsic stains was assessed using the pellicle cleaning ratio (PCR) method, and radioactive dentin abrasivity (RDA) was measured, to calculate a cleaning efficiency index (CEI). Fluoride efficacy was evaluated using widely used remineralization and fluoride uptake methods. The test product (Protegera™) was compared to common dentifrices (Crest - Cavity Protection™ and ProHealth™, Sensodyne Pronamel™, Arm & Hammer™ Advanced Whitening, Crest ProHealth™, and Colgate Optic White™). RESULTS: The PCR for the MFC dentifrice (141) was comparable to three known marketed stain-removing dentifrices (Arm & Hammer™ Advanced Whitening, Crest ProHealth™, and Colgate Optic White™) but it had a significantly lower RDA (88 ± 6) than 5 other products. This gave it the highest CEI of the tested products (2.0). In a 10-day pH cycling study, the fluoride efficacy of the MFC product was comparable to Sensodyne Pronamel and Crest Cavity Protection. The MFC dentifrice was superior for promoting fluoride uptake into incipient enamel lesions compared to the USP reference dentifrice. CONCLUSION: The MFC dentifrice has low abrasion, but despite this, it is highly effective in removing stained pellicle. It also is an efficacious fluoride source when compared to relevant commercially available fluoride dentifrices with high dentin abrasivity. CLINICAL SIGNIFICANCE: The addition of micro-fibrillated cellulose to a fluoride dentifrice gives a low abrasive product that can effectively remove external stains, and serve as an effective fluoride source. This combination of benefits seems well suited to enamel protection and caries prevention.

Cellulose , Dentifrices , Dentin , Tooth Abrasion , Tooth Discoloration , Tooth Remineralization , Dentifrices/therapeutic use , Dentifrices/chemistry , Tooth Discoloration/prevention & control , Cellulose/analogs & derivatives , Humans , Tooth Abrasion/prevention & control , Dentin/drug effects , Tooth Remineralization/methods , Cariostatic Agents/therapeutic use , Cariostatic Agents/chemistry , Dental Pellicle/drug effects , Fluorides/therapeutic use , Silicon Dioxide/chemistry , Materials Testing , Dental Enamel/drug effects , Hydrogen-Ion Concentration , Phosphates/therapeutic use , Toothpastes/chemistry , Toothpastes/therapeutic use
J Dent ; 146: 105073, 2024 Jul.
Article En | MEDLINE | ID: mdl-38782176

OBJECTIVES: Evaluate, in vitro, the effect of incorporating nano-sized sodium trimetaphosphate (TMPnano) and phosphorylated chitosan (Chi-Ph) into resin-modified glass ionomer cement (RMGIC) used for orthodontic bracket cementation, on mechanical, fluoride release, antimicrobial and cytotoxic properties. METHODS: RMGIC was combined with Chi-Ph (0.25%/0.5%) and/or TMPnano (14%). The diametral compressive/tensile strength (DCS/TS), surface hardness (SH) and degree of conversion (%DC) were determined. For fluoride (F) release, samples were immersed in des/remineralizing solutions. Antimicrobial/antibiofilm activity was evaluated by the agar diffusion test and biofilm metabolism (XTT). Cytotoxicity in fibroblasts was assessed with the resazurin method. RESULTS: After 24 h, the RMGIC-14%TMPnano group showed a lower TS value (p < 0.001); after 7 days the RMGIC-14%TMPnano-0.25%Chi-Ph group showed the highest value (p < 0.001). For DCS, the RMGIC group (24 h) showed the highest value (p < 0.001); after 7 days, the highest value was observed for the RMGIC-14%TMPnano-0.25%Chi-Ph (p < 0.001). RMGIC-14%TMPnano, RMGIC-14%TMPnano-0.25%Chi-Ph, RMGIC-14%TMPnano-0.5%Chi-Ph showed higher and similar release of F (p > 0.001). In the SH, the RMGIC-0.25%Chi-Ph; RMGIC-0.5%Chi-Ph; RMGIC-14%TMPnano-0.5%Chi-Ph groups showed similar results after 7 days (p > 0.001). The RMGIC-14%TMPnano-0.25%Chi-Ph group showed a better effect on microbial/antibiofilm growth, and the highest efficacy on cell viability (p < 0.001). After 72 h, only the RMGIC-14%TMPnano-0.25%Chi-Ph group showed cell viability (p < 0.001). CONCLUSION: The RMGIC-14%TMPnano-0.25%Chi-Ph did not alter the physical-mechanical properties, was not toxic to fibroblasts and reduced the viability and metabolism of S. mutans. CLINICAL RELEVANCE: The addition of phosphorylated chitosan and organic phosphate to RMGIC could provide an antibiofilm and remineralizing effect on the tooth enamel of orthodontic patients, who are prone to a high cariogenic challenge due to fluctuations in oral pH and progression of carious lesions.

Anti-Bacterial Agents , Biofilms , Chitosan , Fibroblasts , Fluorides , Glass Ionomer Cements , Materials Testing , Chitosan/pharmacology , Anti-Bacterial Agents/pharmacology , Glass Ionomer Cements/pharmacology , Glass Ionomer Cements/chemistry , Biofilms/drug effects , Fibroblasts/drug effects , Phosphorylation , Fluorides/pharmacology , Hardness , Tensile Strength , Surface Properties , Compressive Strength , Nanoparticles , Resin Cements/chemistry , Polyphosphates/pharmacology , Dental Cements/pharmacology , Dental Cements/chemistry , Cell Survival/drug effects , Streptococcus mutans/drug effects , Animals , Phosphates/pharmacology , Humans , Orthodontic Brackets
Ecotoxicol Environ Saf ; 279: 116467, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38761497

BACKGROUND: Although the changes of mitogen-activated protein kinase (MAPK) pathway in the central nervous system (CNS) induced by excessive fluoride has been confirmed by our previous findings, the underlying mechanism(s) of the action remains unclear. Here, we investigate the possibility that microRNAs (miRNAs) are involved in the aspect. METHODS: As a model of chronic fluorosis, SD rats received different concentrations of fluoride in their drinking water for 3 or 6 months and SH-SY5Y cells were exposed to fluoride. Literature reviews and bioinformatics analyses were used to predict and real-time PCR to measure the expression of 12 miRNAs; an algorithm-based approach was applied to identify multiply potential target-genes and pathways; the dual-luciferase reporter system to detect the association of miR-132-3p with MAPK1; and fluorescence in situ hybridization to detect miR-132-3p localization. The miR-132-3p inhibitor or mimics or MAPK1 silencing RNA were transfected into cultured cells. Expression of protein components of the MAPK pathway was assessed by immunofluorescence or Western blotting. RESULTS: In the rat hippocampus exposed with high fluoride, ten miRNAs were down-regulated and two up-regulated. Among these, miR-132-3p expression was down-regulated to the greatest extent and MAPK1 level (selected from the 220 genes predicted) was corelated with the alteration of miR-132-3p. Furthermore, miR-132-3p level was declined, whereas the protein levels MAPK pathway components were increased in the rat brains and SH-SY5Y cells exposed to high fluoride. MiR-132-3p up-regulated MAPK1 by binding directly to its 3'-untranslated region. Obviously, miR-132-3p mimics or MAPK1 silencing RNA attenuated the elevated expressions of the proteins components of the MAPK pathway induced by fluorosis in SH-SY5Y cells, whereas an inhibitor of miR-132-3p just played the opposite effect. CONCLUSION: MiR-132-3p appears to modulate the changes of MAPK signaling pathway in the CNS associated with chronic fluorosis.

Fluorides , MicroRNAs , Mitogen-Activated Protein Kinase 1 , Rats, Sprague-Dawley , MicroRNAs/genetics , Animals , Rats , Fluorides/toxicity , Humans , Mitogen-Activated Protein Kinase 1/metabolism , MAP Kinase Signaling System/drug effects , Brain/drug effects , Brain/metabolism , Male , Cell Line, Tumor