Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Synthesis (Stuttg) ; 55(21): 3568-3574, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37915377

RESUMEN

A Pd-catalyzed decarboxylative dearomatization reaction of a heterocyclic substrate enables access to an uncommon reaction intermediate that rearomatizes in the presence of amine bases in a net C-H functionalization sequence. The dearomatized benzo[b]thiophene intermediate bears an exocyclic alkene that can be functionalized through cycloaddition and halogenation reactions to deliver complex heterocyclic products.

2.
J Org Chem ; 88(19): 14012-14021, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37738112

RESUMEN

The installation of fluorine and fluorinated functional groups into drug-like scaffolds can perturb the physicochemical, pharmacokinetic, and pharmacodynamic properties of compounds. However, some potentially useful fluorinated substructures reside predominantly outside the realm of the current synthetic methodologies. One such substructure, the α,α-difluorophosphine oxide, might be convergently prepared by the reaction of a gem-difluorinated alkene with a P-H bond, though such nucleophilic reactions instead proceed through a C-F substitution pathway that delivers monofluorovinyl products. In contrast, we report a peroxide-initiated hydrophosphinylation reaction of gem-difluoroalkenes that avoids C-F substitution and produces a wide range of α,α-difluorophosphine oxides and functions using readily available reagents and green solvents.

3.
Chem Commun (Camb) ; 59(37): 5623-5626, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37082905

RESUMEN

A photocatalytic hydroalkoxylation reaction enables the coupling of aliphatic alcohols with gem-difluoroalkenes, expanding the scope of accessible α,α-difluorinated ethers, a desirable substructure for medicinal and agricultural chemists. This reaction exploits an uncommon diselenide co-catalyst to facilitate the net hydrofunctionalization process, which contrasts alternate single-electron reactions that deliver dioxidation products. Future use of this co-catalyst might enable other currently unknown photocatalytic reactions.

4.
J Org Chem ; 87(24): 16676-16690, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36469658

RESUMEN

Regioselective functionalization of gem-difluoroalkenes enables convergent late-stage access to fluorinated functional groups, though most functionalization reactions proceed through defluorinative functionalization processes that deliver mono-fluorovinyl products. In contrast, fewer reactions undergo net hydrofunctionalization to generate difluorinated products. Herein, we report a photocatalytic hydrothiolation of gem-difluoroalkenes that enables access to a broad spectrum of α,α-difluoroalkylthioethers. Notably, the reaction successfully couples nonactivated substrates, which expands the scope of accessible molecules relative to previously reported reactions involving organo- or photocatalytic strategies. Further, this reaction successfully couples biologically relevant molecules under aqueous conditions, highlighting potential applications in both late-stage and biorthogonal functionalizations.


Asunto(s)
Catálisis
5.
J Org Chem ; 87(16): 10710-10725, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35914193

RESUMEN

A Cu-based catalyst system convergently couples gem-difluoroalkenes with phenols under aerobic conditions to deliver α,α-difluorinated-α-phenoxyketones, an unstudied hybrid fluorinated functional group. Composed of α,α-difluorinated ketone and α,α-difluorinated ether moieties, these compounds have rarely been reported as a synthetic intermediate. Computational predictions and later experimental corroboration suggest that the phenoxy-substituted fluorinated ketone's sp3-hybridized hydrate form is energetically favored relative to the respective nonether variant and that perturbation of the electronic character of the ketone can further encourage the formation of the hydrate. The more facile conversion between ketone and hydrate forms suggests that analogues should readily covalently inhibit proteases and other enzymes. Further functionalization of the ketone group enables access to other useful fluorinated functional groups.


Asunto(s)
Cetonas , Catálisis
6.
ACS Med Chem Lett ; 13(4): 540-545, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35450346

RESUMEN

Innovation in medicinal chemistry has been at the heart of ACS Medicinal Chemistry Letters since the journal's founding 10 years ago. In his inaugural editorial, Editor-in-Chief Dennis Liotta laid out a vision for the journal to become the "premier international journal for rapid communication of cutting-edge studies," and, after 10 years, it has become exactly that. The great hope of drug discovery scientists is that their innovations will lead to new therapeutics to treat unmet medical needs. In the spirit of innovation and in celebration of the recent 10th anniversary of ACS Med. Chem. Lett., we highlight five therapeutics that were first reported or first comprehensively characterized within ACS Med. Chem. Lett.. This overview also serves to introduce the expansion of the scope of the Innovations article type to include Topical Innovations. With this extension, the journal hopes to provide a forum to showcase concise (rather than comprehensive) reviews of topics that are both timely and of great interest to the medicinal chemistry community. Moreover, these articles will emphasize the next steps to move the field toward new areas of interest in medicinal chemistry. Appropriate topics might include case studies of clinical candidates or approved drugs, new assay technologies in drug discovery, novel target classes, and innovative new approaches towards modulation of human physiology. Since its founding 10 years ago, ACS Med. Chem. Lett. has established itself as a venue for the rapid communication of studies in medicinal chemistry and drug discovery. There have been several drugs and clinical candidates that were first reported or first comprehensively characterized in ACS Med. Chem. Lett. In celebration of the 10th anniversary of ACS Med. Chem. Lett. this Topical Innovations article highlights five of these compounds: Ivosidenib, Siponimod, Glasdegib, Parsaclisib, and Dabrafenib.

7.
ACS Med Chem Lett ; 13(4): 707-713, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35450379

RESUMEN

Aryl-methyl ethers, while present in many bioactive compounds, are subject to rapid O-dealkylation, which can generate bioinactive or toxic metabolites. Such is the case for dextromethorphan, which readily undergoes P450 mediated O-dealkylation to provide the psychoactive phenolic metabolite dextrorphan, an N-methyl-d-aspartate (NMDA) receptor antagonist that causes hallucinations and encourages recreational abuse. As a general strategy to minimize this undesired degradation, both deuteration and fluorination strategies might be exploited, though such strategies have rarely been compared in matched series. In this manuscript, we designed, synthesized, and evaluated in vitro and in vivo new fluoroalkyl analogs of dextromethorphan and D3-dextromethorphan that minimize metabolic degradation and increased CNS exposure relative to dextromethorphan and related deuterated analogs currently in clinical trials.

8.
RSC Med Chem ; 12(11): 1958-1967, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34825191

RESUMEN

µ-Opioid receptor agonists provide potent and effective acute analgesia; however, their therapeutic window narrows considerably upon repeated administration, such as required for treating chronic pain. In contrast, bifunctional µ/δ opioid agonists, such as the endogenous enkephalins, have potential for treating both acute and chronic pain. However, enkephalins recruit ß-arrestins, which correlate with certain adverse effects at µ- and δ-opioid receptors. Herein, we identify the C-terminus of Tyr-ψ[(Z)CF[double bond, length as m-dash]CH]-Gly-Leu-enkephalin, a stable enkephalin derivative, as a key site to regulate bias of both δ- and µ-opioid receptors. Using in vitro assays, substitution of the Leu5 carboxylate with amides (NHEt, NMe2, NCyPr) reduced ß-arrestin recruitment efficacy through both the δ-opioid and µ-opioid, while retaining affinity and cAMP potency. For this series, computational studies suggest key ligand-receptor interactions that might influence bias. These findings should enable the discovery of a range of tool compounds with previously unexplored biased µ/δ opioid agonist pharmacological profiles.

9.
Synthesis (Stuttg) ; 53(21): 3935-3950, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34707322

RESUMEN

gem-Difluoroalkenes are readily available fluorinated building blocks, and the fluorine-induced electronic perturbations of the alkenes enables a wide array of selective functionalization reactions. However, many reactions of gem-difluoroalkenes result in a net C─F functionalization to generate monofluorovinyl products or addition of F to generate trifluoromethyl-containing products. In contrast, fluorine-retentive strategies for the functionalization of gem-difluoroalkenes remain less generally developed, and is now becoming a rapidly developing area. This review will present the development of fluorine-retentive strategies including electrophilic, nucleophilic, radical, and transition metal catalytic strategies with an emphasis on key physical organic and mechanistic aspects that enable reactivities.

11.
J Org Chem ; 86(3): 2297-2311, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33471529

RESUMEN

The substitution of hydrogen atoms with fluorine in bioactive molecules can greatly impact physicochemical, pharmacokinetic, and pharmacodynamic properties. However, current synthetic methods cannot readily access many fluorinated motifs, which impedes utilization of these groups. Thus, the development of new methods to introduce fluorinated functional groups is critical for developing the next generation of biological probes and therapeutic agents. The synthesis of one such substructure, the α,α-difluoroalkylthioether, typically requires specialized conditions that necessitate early-stage installation. A late-stage and convergent approach to access α,α-difluoroalkylthioethers could involve nucleophilic addition of thiols across gem-difluorostyrenes. Unfortunately, under basic conditions, nucleophilic addition to gem-difluorostyrenes generates an anionic intermediate that can undergo facile elimination of fluoride to generate α-fluorovinylthioethers. To overcome this decomposition, we herein exploit an acid-based catalyst system to facilitate simultaneous nucleophilic addition and protonation of the unstable intermediate. Ultimately, the optimized mild conditions afford the desired α,α-difluoroalkylthioethers in high selectivity and moderate to excellent yields. These α,α-difluoroalkylthioethers are less nucleophilic and more oxidatively stable relative to nonfluorinated thioethers, suggesting the potential application of this unexplored functional group in biological probes and therapeutic agents.


Asunto(s)
Fluoruros , Flúor , Catálisis , Sulfuros
12.
J Med Chem ; 64(1): 797-811, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33369426

RESUMEN

In the kynurenine pathway for tryptophan degradation, an unstable metabolic intermediate, α-amino-ß-carboxymuconate-ε-semialdehyde (ACMS), can nonenzymatically cyclize to form quinolinic acid, the precursor for de novo biosynthesis of nicotinamide adenine dinucleotide (NAD+). In a competing reaction, ACMS is decarboxylated by ACMS decarboxylase (ACMSD) for further metabolism and energy production. Therefore, the inhibition of ACMSD increases NAD+ levels. In this study, an Food and Drug Administration (FDA)-approved drug, diflunisal, was found to competitively inhibit ACMSD. The complex structure of ACMSD with diflunisal revealed a previously unknown ligand-binding mode and was consistent with the results of inhibition assays, as well as a structure-activity relationship (SAR) study. Moreover, two synthesized diflunisal derivatives showed half-maximal inhibitory concentration (IC50) values 1 order of magnitude better than diflunisal at 1.32 ± 0.07 µM (22) and 3.10 ± 0.11 µM (20), respectively. The results suggest that diflunisal derivatives have the potential to modulate NAD+ levels. The ligand-binding mode revealed here provides a new direction for developing inhibitors of ACMSD.


Asunto(s)
Carboxiliasas/metabolismo , Diflunisal/metabolismo , Inhibidores Enzimáticos/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Sitios de Unión , Vías Biosintéticas/efectos de los fármacos , Carboxiliasas/antagonistas & inhibidores , Dominio Catalítico , Cristalografía por Rayos X , Diflunisal/análogos & derivados , Diflunisal/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora , Quinurenina/metabolismo , Simulación del Acoplamiento Molecular , NAD/metabolismo , Pseudomonas fluorescens/enzimología , Relación Estructura-Actividad , Triptófano/metabolismo
13.
J Org Chem ; 85(16): 10451-10465, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32697905

RESUMEN

gem-Difluoroalkenes represent valuable synthetic handles for organofluorine chemistry; however, most reactions of this substructure proceed through reactive intermediates prone to eliminate a fluorine atom and generate monofluorinated products. Taking advantage of the distinct reactivity of gem-difluoroalkenes, we present a cobalt-catalyzed regioselective unsymmetrical dioxygenation of gem-difluoroalkenes using phenols and molecular oxygen, which retains both fluorine atoms and provides ß-phenoxy-ß,ß-difluorobenzyl alcohols. Mechanistic studies suggest that the reaction operates through a radical chain process initiated by Co(II)/O2/phenol and quenched by the Co-based catalyst. This mechanism enables the retention of both fluorine atoms, which contrasts most transition-metal-catalyzed reactions of gem-difluoroalkenes that typically involve defluorination.


Asunto(s)
Cobalto , Flúor , Catálisis , Fluoruros
14.
Isr J Chem ; 60(3-4): 313-339, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32523163

RESUMEN

gem-Difluorinated alkenes are readily accessible building blocks that can undergo functionalization to provide a broad spectrum of fluorinated and non-fluorinated products. Herein, we review recent (since 2017) transition metal-catalyzed transformations of these specialized alkenes and summarize general reactivity patterns of these reactions. Many transition metal-catalyzed reactions undergo net C-F bond functionalization reactions to deliver monofluorinated products. These reactions typically proceed through ß-fluoro alkylmetal intermediates that readily eliminate a ß-fluoride to deliver monofluoroalkene products. A second series of reactions exploit coinage metal fluorides to add F- to the gem-difluorinated alkene, and further functionalization delivers trifluoromethyl-containing products. In stark contrast, few transition metal-catalyzed reactions proceed in net "fluorine-retentive processes" to deliver difluoromethylene-based products.

15.
J Org Chem ; 85(8): 5416-5427, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32191836

RESUMEN

We report the conversion of aryl methyl ethers and phenols into six fluoroalkyl analogues through late-stage functionalization of a natural product-derived FDA-approved therapeutic. This series of short synthetic sequences exploits a combination of both modern and traditional methods and demonstrates that some recently reported methods do not always work as well as desired on a natural product-like scaffold. Nonetheless, reaction optimization can deliver sufficient quantities of each target analogue for medicinal chemistry purposes. In some cases, classical reactions and synthetic sequences still outcompete modern organofluorine transformations, which should encourage the continued search for improved reactions. Overall, the project provides a valuable synthetic roadmap for medicinal chemists to access a range of fluorinated therapeutic candidates with distinct physicochemical properties relative to the original O-based analogue.


Asunto(s)
Productos Biológicos , Éteres Metílicos , Fenoles
16.
Nat Chem ; 12(5): 489-496, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32152476

RESUMEN

Transition metal-catalysed C-H functionalization and decarboxylative coupling are two of the most notable synthetic strategies developed in the past 30 years. Here, we connect these two reaction pathways using bases and a simple Pd-based catalyst system to promote a para-selective C-H functionalization reaction from benzylic electrophiles. Experimental and computational mechanistic studies suggest a pathway that involves an uncommon Pd-catalysed dearomatization of the benzyl moiety followed by a base-enabled rearomatization through a formal 1,5-hydrogen migration. This reaction complements 'C-H activation' strategies that convert inert C-H bonds into C-metal bonds prior to C-C bond formation. Instead, this reaction exploits an inverted sequence and promotes C-C bond formation prior to deprotonation. These studies provide an opportunity to develop general para-selective C-H functionalization reactions from benzylic electrophiles and show how new reactive modalities may be accessed with careful control of the reaction conditions.


Asunto(s)
Aminas/química , Carbono/química , Complejos de Coordinación/química , Hidrógeno/química , Metales/química , Elementos de Transición/química , Benceno/química , Catálisis , Transporte de Electrón , Ligandos , Estructura Molecular , Oxidación-Reducción , Fenoles/química , Relación Estructura-Actividad
17.
Chem Sci ; 12(4): 1363-1367, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34163899

RESUMEN

PdII/CuI co-catalyze an arylation reaction of gem-difluoroalkenes using arylsulfonyl chlorides to deliver α,α-difluorobenzyl products. The reaction proceeds through a ß,ß-difluoroalkyl-Pd intermediate that typically undergoes unimolecular ß-F elimination to deliver monofluorinated alkene products in a net C-F functionalization reaction. However to avoid ß-F elimination, we offer the ß,ß-difluoroalkyl-Pd intermediate an alternate low-energy route involving ß-H elimination to ultimately deliver difluorinated products in a net arylation/isomerization sequence. Overall, this reaction enables exploration of new reactivities of unstable fluorinated alkyl-metal species, while also providing new opportunities for transforming readily available fluorinated alkenes into more elaborate substructures.

18.
Molecules ; 24(24)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842282

RESUMEN

As tool compounds to study cardiac ischemia, the endogenous δ-opioid receptors (δOR) agonist Leu5-enkephalin and the more metabolically stable synthetic peptide (d-Ala2, d-Leu5)-enkephalin are frequently employed. However, both peptides have similar pharmacological profiles that restrict detailed investigation of the cellular mechanism of the δOR's protective role during ischemic events. Thus, a need remains for δOR peptides with improved selectivity and unique signaling properties for investigating the specific roles for δOR signaling in cardiac ischemia. To this end, we explored substitution at the Phe4 position of Leu5-enkephalin for its ability to modulate receptor function and selectivity. Peptides were assessed for their affinity to bind to δORs and µ-opioid receptors (µORs) and potency to inhibit cAMP signaling and to recruit ß-arrestin 2. Additionally, peptide stability was measured in rat plasma. Substitution of the meta-position of Phe4 of Leu5-enkephalin provided high-affinity ligands with varying levels of selectivity and bias at both the δOR and µOR and improved peptide stability, while substitution with picoline derivatives produced lower-affinity ligands with G protein biases at both receptors. Overall, these favorable substitutions at the meta-position of Phe4 may be combined with other modifications to Leu5-enkephalin to deliver improved agonists with finely tuned potency, selectivity, bias and drug-like properties.


Asunto(s)
Encefalina Leucina/farmacología , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Células CHO , Cricetulus , Encefalina Leucina/genética , Humanos , Fenilalanina , Receptores Opioides delta/agonistas , Receptores Opioides delta/genética , Receptores Opioides mu/agonistas , Receptores Opioides mu/genética , Transducción de Señal/genética
19.
J Fluor Chem ; 218: 90-98, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31061541

RESUMEN

Fluorinated peptidomimetics are valuable substrates for exploring peptide backbone conformations and for perturbing physicochemical properties of probe compounds. However, in some cases synthetic limitations restrict installation of the fluorinated peptidomimetics into the desired probe compounds. For instance, trifluoromethylalkenes have served as amide isopolar mimics, but are rarely utilized, because many standard peptide-coupling conditions promote the isomerization of the alkene to thermodynamically favored positions. To address this challenge, we report the conversion of a naturally occurring amino acid to a Tyr1-ψ/[CF3C=CH]-Gly2 dipeptide mimetic, and notably, successful peptide coupling reactions that avoid alkene isomerization. Using this strategy, we generated trifluoromethylalkene-containing Leu-enkephalin peptidomimetics in high purity and good yield. This sequence suggests that the trifluoromethylalkene peptidomimetics can be incorporated into other target molecules with appropriate optimization.

20.
Tetrahedron ; 75(15): 2261-2264, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31130755

RESUMEN

Herein, we report a practical synthesis of 2-D-L-tryptophan via sequential Ir-catalyzed C-H borylation, and Ir-catalyzed C-2-deborylative deuteration steps. In this synthetic sequence, deprotection of the Boc and methyl ester groups proved challenging, due to replacement of deuterium with hydrogen. However, mild deprotection conditions were developed to avoid this D/H scrambling. Further, 2-D-L-Tryptophan is stable in many buffers used for biological studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...