Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 28(10): 115481, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32253095

RESUMEN

Herein, we disclose a new series of TYK2/ JAK1 inhibitors based upon a 3.1.0 azabicyclic substituted pyrimidine scaffold. We illustrate the use of structure-based drug design for the initial design and subsequent optimization of this series of compounds. One advanced example 19 met program objectives for potency, selectivity and ADME, and demonstrated oral activity in the adjuvant-induced arthritis rat model.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Diseño de Fármacos , Janus Quinasa 1/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , TYK2 Quinasa/antagonistas & inhibidores , Animales , Artritis Experimental/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Janus Quinasa 1/metabolismo , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Ratas , Ratas Endogámicas Lew , Relación Estructura-Actividad , TYK2 Quinasa/metabolismo
2.
J Med Chem ; 61(19): 8597-8612, 2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30113844

RESUMEN

Cytokine signaling is an important characteristic of autoimmune diseases. Many pro-inflammatory cytokines signal through the Janus kinase (JAK)/Signal transducer and activator of transcription (STAT) pathway. JAK1 is important for the γ-common chain cytokines, interleukin (IL)-6, and type-I interferon (IFN) family, while TYK2 in addition to type-I IFN signaling also plays a role in IL-23 and IL-12 signaling. Intervention with monoclonal antibodies (mAbs) or JAK1 inhibitors has demonstrated efficacy in Phase III psoriasis, psoriatic arthritis, inflammatory bowel disease, and rheumatoid arthritis studies, leading to multiple drug approvals. We hypothesized that a dual JAK1/TYK2 inhibitor will provide additional efficacy, while managing risk by optimizing selectivity against JAK2 driven hematopoietic changes. Our program began with a conformationally constrained piperazinyl-pyrimidine Type 1 ATP site inhibitor, subsequent work led to the discovery of PF-06700841 (compound 23), which is in Phase II clinical development (NCT02969018, NCT02958865, NCT03395184, and NCT02974868).


Asunto(s)
Antituberculosos/farmacología , Artritis Experimental/prevención & control , Janus Quinasa 1/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , TYK2 Quinasa/antagonistas & inhibidores , Tuberculosis/complicaciones , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/microbiología , Femenino , Estructura Molecular , Ratas , Ratas Endogámicas Lew , Tuberculosis/microbiología
3.
Mol Pharm ; 14(12): 4525-4538, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29076741

RESUMEN

Lipid based formulations (LBFs) are a promising formulation strategy for many poorly water-soluble drugs and have been shown previously to enhance the oral exposure of CP-532,623, an oral cholesteryl ester transfer protein inhibitor. In the current study, an in vitro lipid digestion model was used to probe the relationship between drug solubilization and supersaturation on in vitro dispersion and digestion of LBF containing long chain (LC) lipids and drug absorption in vivo. After in vitro digestion of LBF based on LC lipids, the proportion of CP-532,623 maintained in the solubilized state in the aqueous phase of the digest was highest in formulations containing Kolliphor RH 40, and in most cases outperformed equivalent formulations based on MC lipids. Subsequent administration of the LC-LBFs to beagle dogs resulted in reasonable correlation between concentrations of CP-532,623 measured in the aqueous phase of the in vitro digest after 30 min digestion and in vivo exposure (AUC); however, the LC-LBFs required greater in vitro drug solubilization to elicit similar in vivo exposure when compared to previous studies with MC-LBF. Although post digestion solubilization was enhanced in LC-LBF compared to MC-LBF, equilibrium solubility studies of CP-532,623 in the aqueous phase isolated from blank lipid digestion experiments revealed that equilibrium solubility was also higher, and therefore supersaturation lower. A revised correlation based on supersaturation in the digest aqueous phase and drug absorption was therefore generated. A single, linear correlation was evident for both LC- and MC-LBF containing Kolliphor RH 40, but this did not extend to formulations based on other surfactants. The data suggest that solubilization and supersaturation are significant drivers of drug absorption in vivo, and that across formulations with similar formulation composition good correlation is evident between in vitro and in vivo measures. However, across dissimilar formulations, solubilization and supersaturation alone are not sufficient to explain drug exposure and other factors also likely play a role.


Asunto(s)
Proteínas de Transferencia de Ésteres de Colesterol/antagonistas & inhibidores , Sistemas de Liberación de Medicamentos/métodos , Quinolinas/farmacología , Administración Intravenosa , Administración Oral , Animales , Disponibilidad Biológica , Química Farmacéutica , Estudios Cruzados , Digestión , Perros , Excipientes/química , Excipientes/metabolismo , Lipólisis , Masculino , Modelos Animales , Pancreatina/metabolismo , Solubilidad , Aceite de Soja/química , Aceite de Soja/metabolismo , Tensoactivos/química
4.
J Med Chem ; 60(13): 5521-5542, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28498658

RESUMEN

Through fragment-based drug design focused on engaging the active site of IRAK4 and leveraging three-dimensional topology in a ligand-efficient manner, a micromolar hit identified from a screen of a Pfizer fragment library was optimized to afford IRAK4 inhibitors with nanomolar potency in cellular assays. The medicinal chemistry effort featured the judicious placement of lipophilicity, informed by co-crystal structures with IRAK4 and optimization of ADME properties to deliver clinical candidate PF-06650833 (compound 40). This compound displays a 5-unit increase in lipophilic efficiency from the fragment hit, excellent kinase selectivity, and pharmacokinetic properties suitable for oral administration.


Asunto(s)
Descubrimiento de Drogas , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Isoquinolinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Administración Oral , Relación Dosis-Respuesta a Droga , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Isoquinolinas/administración & dosificación , Isoquinolinas/química , Lactamas , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
5.
Curr Pharm Des ; 21(10): 1327-36, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25269560

RESUMEN

The targeting of drugs to skeletal muscle is an emerging area of research. Driven by the need for new therapies to treat a range of muscle-associated diseases, these strategies aim to provide improved drug exposure at the site of action in skeletal muscle with reduced concentration in other tissues where unwanted side effects could occur. By interacting with muscle-specific cell surface recognition elements, both tissue localization and selective uptake into skeletal muscle cells can be achieved. The design of molecules that are substrates for muscle uptake transporters can provide concentration in m uscle tissue. For example, drug conjugates with carnitine can provide improved muscle uptake via OCTN2 transport. Binding to muscle surface recognition elements followed by endocytosis can allow even large molecules such as antibodies to enter muscle cells. Monoclonal antibody 3E10 demonstrated selective uptake into skeletal muscle in vivo. Hybrid adeno-associated viral vectors have recently shown promise for high skeletal muscle selectivity in gene transfer applications. Delivery technology methods, including electroporation of DNA plasmids, have also been investigated for selective muscle uptake. This review discusses challenges and opportunities for skeletal muscle targeting, highlighting specific examples and areas in need of additional research.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Animales , Anticuerpos Monoclonales/metabolismo , Transporte Biológico/fisiología , Sistemas de Liberación de Medicamentos/tendencias , Descubrimiento de Drogas/tendencias , Electroporación/métodos , Electroporación/tendencias , Humanos
6.
Eur J Pharm Biopharm ; 88(3): 973-85, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25152213

RESUMEN

The present study investigated the use of lipid based drug delivery systems to enhance the oral bioavailability of the CETP inhibitors CP-532,623 and torcetrapib. A series of self-emulsifying lipid based drug delivery systems (SEDDS) were assembled and examined using an in vitro lipid digestion model to evaluate patterns of drug precipitation under simulated intestinal conditions. Drug exposure after oral administration of the same formulations was subsequently assessed in beagle dogs. CP-532,623 was maintained in a solubilised state during dispersion of most formulations in simulated intestinal fluid, however, solubilisation capacity was reduced to various degrees upon in vitro digestion. Administration of SEDDS formulations to beagle dogs resulted in moderate differences in plasma AUC when compared to the differences in solubilisation observed in vitro. Similar trends were observed for torcetrapib. In all cases, however, in vivo exposure of CP-532,623 was greatly enhanced by administration in lipid based drug delivery systems when compared to a powder formulation. Some correlation between in vitro solubilisation and in vivo drug exposure (AUC) was evident; however, this was not linear. The data suggest that for highly lipophilic drugs such as CP-532,623 in vitro digestion data may be a conservative in vitro indicator of utility and that good exposure may be evident even for formulations that result in significant drug precipitation during in vitro digestion.


Asunto(s)
Proteínas de Transferencia de Ésteres de Colesterol/antagonistas & inhibidores , Quinolinas/química , Quinolinas/farmacología , Animales , Química Farmacéutica , Estudios Cruzados , Perros , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Lípidos/química , Lípidos/farmacología , Masculino
7.
Xenobiotica ; 44(7): 591-605, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24380613

RESUMEN

1. Elaborate studies of cholesteryl ester transfer protein (CETP) polymorphisms and genetic deficiency in humans suggest direct links between CETP, high-density lipoprotein cholesterol (HDL-c) levels and coronary heart diseases. The hypothesis that CETP inhibition by small molecule inhibitors raises HDL-c has been validated clinically with structurally-diverse CETP inhibitors such as torcetrapib, anacetrapib, dalcetrapib and evacetrapib. 2. Despite promising phase 2 results with respect to HDL-c elevation, torcetrapib was discontinued in phase 3 trials due to increased mortality rates in the cardiovascular outcomes study. Emerging evidence for the adverse effects hints at off-target chemotype-specific cardiovascular toxicity, possibly related to the pressor effects of torcetrapib, since structurally diverse CETP inhibitors such as anacetrapib, evacetrapib and dalcetrapib are not associated with blood pressure increases in humans. Nonclinical follow-up studies showed that torcetrapib induces aldosterone biosynthesis and secretion in vivo and in vitro, an effect which is not observed with other CETP inhibitors in clinical development. 3. As part of ongoing efforts to identify novel CETP inhibitors devoid of pressor effects, strategies were implemented towards the design of compounds, which lack the 1,2,3,4-tetrahydroquinoline (THQ) scaffold present in torcetrapib. In this article, we disclose results of structure-activity relationship studies for a series of novel non-THQ CETP inhibitors, which resulted in the identification of a novel isonipecotic acid derivative 10 (also referred to as PF-04445597) with vastly improved oral pharmacokinetic properties mainly as a result of improved aqueous solubility. This feature is attractive in that, it bypasses significant investments needed to develop compatible solubilizing formulation(s) for oral drug delivery of highly lipophilic and poorly soluble compounds; attributes, which are usually associated with small molecule CETP inhibitors. PF-04445597 was also devoid of aldosterone secretion in human H295R adrenal carcinoma cells.


Asunto(s)
Anticolesterolemiantes/química , Anticolesterolemiantes/farmacología , Proteínas de Transferencia de Ésteres de Colesterol/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos/métodos , Quinolinas/química , Administración Oral , Aldosterona/metabolismo , Animales , Anticolesterolemiantes/farmacocinética , Inhibidores del Citocromo P-450 CYP3A/química , Inhibidores del Citocromo P-450 CYP3A/farmacología , Diseño de Fármacos , Femenino , Humanos , Inyecciones Intravenosas , Ácidos Isonipecóticos/química , Ácidos Isonipecóticos/farmacología , Macaca fascicularis , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Quinolinas/farmacología , Ratas Sprague-Dawley , Solubilidad , Relación Estructura-Actividad
8.
Curr Top Med Chem ; 13(7): 776-802, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23578023

RESUMEN

Targeting drugs to the gastrointestinal tract has been and continues to be an active area of research. Gut-targeting is an effective means of increasing the local concentration of active substance at the desired site of action while minimizing concentrations elsewhere in the body that could lead to unwanted side-effects. Several approaches to intestinal targeting exist. Physicochemical property manipulation can drive molecules to large, polar, low absorption space or alternatively to lipophilic, high clearance space in order to minimize systemic exposure. Design of compounds that are substrates for transporters within the gastrointestinal tract, either uptake or efflux, or at the hepato-biliary interface, may help to increase intestinal concentration. Prodrug strategies have been shown to be effective particularly for colon targeting, and several different technology formulation approaches are currently being researched. This review provides examples of various approaches to intestinal targeting, and discusses challenges and areas in need of future scientific advances.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Diseño de Fármacos , Tracto Gastrointestinal/metabolismo , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Humanos , Preparaciones Farmacéuticas/administración & dosificación
9.
Curr Drug Metab ; 11(9): 730-42, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21189135

RESUMEN

While the oral exposure continues to be the major focus, the chemical space of recent drug discovery is apparently trending towards more hydrophilic libraries, due to toxicity and drug-interactions issues usually reported with lipophilic drugs. This trend may bring in challenges in optimizing the membrane permeability and thus the oral absorption of new chemical entities. It is now apparent that the influx transporters such as peptide transporter 1 (PepT1), organic-anion transporting polypeptides (OATPs), monocarboxylate transporters (MCT1) facilitate, while efflux pumps (e.g. P-glycoprotein (P-gp), breast cancer resistance protein (BCRP)) limit oral absorption of drugs. This review will focus on intestinal transporters that may be targeted to achieve optimal clinical oral plasma exposure for hydrophilic and polar drugs. The structure, mechanism, structure-activity relationships and the clinical examples on the functional role of these transporters in the drug absorption was discussed. Physicochemical properties, lipophilicity and hydrogen-bonding ability, show good correlation with transport activity for efflux pumps. Although several attempts were made to describe the structural requirements based on pharmacophore modeling, lack of crystal structure of transporters impeded identification of definite properties for transporter affinity and favorable transport activity. Furthermore, very few substrate drug datasets are currently available for the influx transporters to derive any clear relationships. Unfortunately, gaps also exist in the translation of in vitro end points to the clinical relevance of the transporter(s) involved. However, it may be qualitatively generalized that targeting intestinal transporters are relevant for drugs with high solubility and/or low passive permeability i.e. a class of compounds identified as Class III and Class IV according to the Biopharmaceutic Classification System (BCS) and the Biopharmaceutic Drug Disposition Classification System (BDDCS). A careful considerations to oral dose based on the transporter clearance (V(max)/K(m)) capacity is needed in targeting a particular transporter. For example, low affinity and high capacity uptake transporters such as PEPT1 and MCT1 may be targeted for high oral dose drugs.


Asunto(s)
Mucosa Intestinal/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Preparaciones Farmacéuticas/administración & dosificación , Farmacocinética , Administración Oral , Animales , Disponibilidad Biológica , Humanos , Absorción Intestinal , Mucosa Intestinal/enzimología , Preparaciones Farmacéuticas/clasificación , Profármacos/administración & dosificación , Profármacos/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...