Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Infect Dis ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941358

RESUMEN

BACKGROUND: TBAJ-876 is a next-generation diarylquinoline. In vivo, diarylquinoline metabolites are formed with activity against Mycobacterium tuberculosis. Species-specific differences in parent drug-to-metabolite ratios might impact the translational value of animal model-based predictions. This study investigates the contribution of TBAJ-876 and its major active metabolite, TBAJ-876-M3 (M3), to the total bactericidal activity in a mouse tuberculosis model. METHODS: In vitro activity of TBAJ-876 and M3 was investigated and compared to bedaquiline. Subsequently, a dose-response study was conducted in M. tuberculosis-infected BALB/c mice treated with TBAJ-876 (1.6/6.3/25 mg/kg) or M3 (3.1/12.5/50 mg/kg). Colony-forming units in the lungs and TBAJ-876 and M3 plasma concentrations were determined. M3's contribution to TBAJ-876's bactericidal activity was estimated based on M3-exposure following TBAJ-876 treatment and corresponding M3-activity observed in M3-treated animals. RESULTS: TBAJ-876 and M3 demonstrated profound bactericidal activity. Lungs of mice treated for 4 weeks with 50 mg/kg M3 were culture-negative. Following TBAJ-876 treatment, M3-exposures were 2.2-3.6x higher than for TBAJ-876. TBAJ-876 activity was substantially attributable to M3, given its high exposure and potent activity. CONCLUSION: These findings emphasize the need to consider metabolites and their potentially distinct exposure and activity profiles compared to parent drugs to enhance the translational value of mouse model-driven predictions.

2.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38496644

RESUMEN

A significant challenge in the development of long-acting injectable drug formulations, especially for anti-infective agents, is delivering an efficacious dose within a tolerable injection volume. Co-administration of the extracellular matrix-degrading enzyme hyaluronidase can increase maximum tolerable injection volumes but is untested for this benefit with long-acting injectable formulations. One concern is that hyaluronidase could potentially alter the tissue response surrounding an injection depot, a response known to be important for drug release kinetics of long-acting injectable formulations. The objective of this pilot study was to evaluate the impact of co-administration of hyaluronidase on the drug release kinetics, pharmacokinetic profiles, and injection site histopathology of the long-acting injectable paliperidone palmitate for up to four weeks following intramuscular injection in mouse and rat models. In both species, co-administration of hyaluronidase increased paliperidone plasma exposures the first week after injection but did not negate the overall long-acting release nature of the formulation. Hyaluronidase-associated modification of the injection site depot was observed in mice but not in rats. These findings suggest that further investigation of hyaluronidase with long-acting injectable agents is warranted.

3.
Antimicrob Agents Chemother ; 67(7): e0048123, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37338374

RESUMEN

Administration of tuberculosis preventive therapy (TPT) to individuals with latent tuberculosis infection is an important facet of global tuberculosis control. The use of long-acting injectable (LAI) drug formulations may simplify and shorten regimens for this indication. Rifapentine and rifabutin have antituberculosis activity and physiochemical properties suitable for LAI formulation, but there are limited data available for determining the target exposure profiles required for efficacy in TPT regimens. The objective of this study was to determine exposure-activity profiles of rifapentine and rifabutin to inform development of LAI formulations for TPT. We used a validated paucibacillary mouse model of TPT in combination with dynamic oral dosing of both drugs to simulate and understand exposure-activity relationships to inform posology for future LAI formulations. This work identified several LAI-like exposure profiles of rifapentine and rifabutin that, if achieved by LAI formulations, could be efficacious as TPT regimens and thus can serve as experimentally determined targets for novel LAI formulations of these drugs. We present novel methodology to understand the exposure-response relationship and inform the value proposition for investment in development of LAI formulations that have utility beyond latent tuberculosis infection.


Asunto(s)
Tuberculosis Latente , Rifabutina , Animales , Ratones , Rifabutina/uso terapéutico , Antituberculosos/uso terapéutico , Tuberculosis Latente/tratamiento farmacológico , Tuberculosis Latente/prevención & control , Rifampin/uso terapéutico
4.
bioRxiv ; 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37090528

RESUMEN

Administration of tuberculosis preventive therapy (TPT) to individuals with latent tuberculosis infection is an important facet of global tuberculosis control. The use of long-acting injectable (LAI) drug formulations may simplify and shorten regimens for this indication. Rifapentine and rifabutin have anti-tuberculosis activity and physiochemical properties suitable for LAI formulation, but there are limited data available for determining the target exposure profiles required for efficacy in TPT regimens. The objective of this study was to determine exposure-activity profiles of rifapentine and rifabutin to inform development of LAI formulations for TPT. We utilized a validated paucibacillary mouse model of TPT in combination with dynamic oral dosing of both drugs to simulate and understand exposure-activity relationships to inform posology for future LAI formulations. This work identified several LAI-like exposure profiles of rifapentine and rifabutin that, if achieved by LAI formulations, could be efficacious as TPT regimens and thus can serve as experimentally-determined targets for novel LAI formulations of these drugs. We present novel methodology to understand the exposure-response relationship and inform the value proposition for investment in development of LAI formulations that has utility beyond latent tuberculosis infection.

5.
J Glob Antimicrob Resist ; 31: 345-352, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36347496

RESUMEN

OBJECTIVES: Mycobacterium abscessus is an opportunistic respiratory pathogen in patients with underlying lung disease. It is infamously known for its low treatment success rates because of its resistance to multiple classes of antibiotics. Further insight into M. abscessus resistance mechanisms is needed to improve treatment options. In this in vitro study, the role of efflux pumps in reaction to antibiotic stress is explored, as well as the ability of the putative efflux inhibitors, thioridazine and verapamil, to potentiate the activity of guideline-recommended antibiotics. METHODS: To evaluate the effects of antibiotic stress on mycobacterial efflux pumps, M. abscessus subspecies abscessus was exposed to amikacin, cefoxitin, clarithromycin, clofazimine, and tigecycline for 24 hours. Transcriptomic responses were measured by RNA sequencing to gain insight into upregulation of efflux pump encoding genes. Subsequently, in time-kill kinetics assays, the above-mentioned antibiotics were combined with thioridazine and verapamil to evaluate their potentiating capacity. RESULTS: All five antibiotics led to a fold change of ≥2 Log2 in expression of one or more genes encoding transporter systems. This effect was most pronounced for the ribosome-targeting antibiotics amikacin, clarithromycin, and tigecycline. Time-kill kinetics assays demonstrated synergy between amikacin, tigecycline, clofazimine, cefoxitin, and both thioridazine and verapamil. CONCLUSION: Antibiotic stressors induce expression of efflux pump encoding genes in M. abscessus, especially antibiotics that target the ribosome. Putative efflux inhibitors thioridazine and verapamil show synergy with various guideline-recommended antibiotics, making them interesting candidates for the improvement of M. abscessus treatment.


Asunto(s)
Mycobacterium abscessus , Humanos , Mycobacterium abscessus/genética , Amicacina/farmacología , Claritromicina/farmacología , Tigeciclina/farmacología , Clofazimina/farmacología , Cefoxitina/farmacología , Pruebas de Sensibilidad Microbiana , Tioridazina/farmacología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Verapamilo/farmacología
6.
Clin Infect Dis ; 75(Suppl 4): S510-S516, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36410384

RESUMEN

A key component of global tuberculosis (TB) control is the treatment of latent TB infection. The use of long-acting technologies to administer TB preventive treatment has the potential to significantly improve the delivery and impact of this important public health intervention. For example, an ideal long-acting treatment could consist of a single dose that could be administered in the clinic (ie, a "1-shot cure" for latent TB). Interest in long-acting formulations for TB preventive therapy has gained considerable traction in recent years. This article presents an overview of the specific considerations and current preclinical advancements relevant for the development of long-acting technologies of TB drugs for treatment of latent infection, including attributes of target product profiles, suitability of drugs for long-acting formulations, ongoing research efforts, and translation to clinical studies.


Asunto(s)
Tuberculosis Latente , Tuberculosis , Humanos , Tuberculosis Latente/tratamiento farmacológico , Tuberculosis Latente/prevención & control , Tuberculosis/tratamiento farmacológico , Tuberculosis/prevención & control , Profilaxis Antibiótica , Instituciones de Atención Ambulatoria , Salud Pública
7.
Am J Respir Crit Care Med ; 205(5): 570-579, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34939891

RESUMEN

Rationale: Completion of preventive therapy is a major bottleneck in global tuberculosis control. Long-acting injectable drug formulations would shorten therapy administration and may thereby improve completion rates. Recently, a long-acting formulation of bedaquiline demonstrated antituberculosis activity for up to 12 weeks after injection in a validated mouse model of preventive therapy. Objectives: The objectives of this study were to 1) determine the total duration of activity after an injection of long-acting bedaquiline and 2) evaluate the activity of regimens comprised of long-acting bedaquiline plus short (2-4 wk) oral companion courses of bedaquiline, with or without rifapentine, using the validated mouse model of tuberculosis preventive therapy. Methods: After the establishment of a stable Mycobacterium tuberculosis lung infection in bacillus Calmette-Guérin (BCG)-immunized BALB/c mice, treatment was initiated with 1 of 12 randomly assigned regimens. In addition to positive and negative controls, six regimens included one or two injections of long-acting bedaquiline (alone or with oral bedaquiline with or without rifapentine), and four comparator regimens consisted of oral agents only. Lung bacterial burden was measured monthly for up to 28 weeks. Measurements and Main Results: One injection of long-acting bedaquiline at 160 mg/kg exerted antituberculosis activity for 12 weeks. Compared with the positive control (daily isoniazid-rifapentine for 4 wk), six regimens had equivalent bactericidal activity (including two all-oral comparator regimens), and two regimens had superior sterilizing activity: one injection with 2 weeks of oral bedaquiline and high-dose rifapentine; and two injections with 4 weeks of oral bedaquiline. Conclusions: Long-acting injectable bedaquiline has significant potential for shortening tuberculosis preventive therapy.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Antituberculosos/uso terapéutico , Diarilquinolinas/uso terapéutico , Modelos Animales de Enfermedad , Esquema de Medicación , Quimioterapia Combinada , Humanos , Ratones , Tuberculosis/tratamiento farmacológico , Tuberculosis/prevención & control
8.
Antimicrob Agents Chemother ; 65(12): e0170521, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34606336

RESUMEN

Rifapentine has facilitated treatment shortening for latent tuberculosis infection (LTBI) in combination with isoniazid once weekly for 3 months (3HP) or daily for 1 month (1HP). Our objective was to determine the optimal rifapentine dose for a 6-week monotherapy regimen (6wP) and predict clinical efficacy. Rifapentine and isoniazid pharmacokinetics were simulated in mice and humans. Mouse lung CFU data were used to characterize exposure-response relationships of 1HP, 3HP, and 6wP and translated to predict clinical efficacy. A 600-mg daily dose for 6wP delivered greater cumulative rifapentine exposure than 1HP or 3HP. The maximum regimen effect (Emax) was 0.24 day-1. The regimen potencies, measured as the concentration at 50% of Emax (EC50), were estimated to be 2.12 mg/liter for 3HP, 3.72 mg/liter for 1HP, and 4.71 mg/liter for 6wP, suggesting that isoniazid contributes little to 1HP efficacy. Clinical translation predicted that 6wP reduces bacterial loads at a higher rate than 3HP and to a greater extent than 3HP and 1HP. 6wP (600 mg daily) is predicted to result in equal or better efficacy than 1HP and 3HP for LTBI treatment without the potential added toxicity of isoniazid. Results from ongoing and future clinical studies will be required to support these findings.


Asunto(s)
Isoniazida , Tuberculosis Latente , Animales , Antituberculosos/uso terapéutico , Quimioterapia Combinada , Isoniazida/uso terapéutico , Tuberculosis Latente/tratamiento farmacológico , Ratones , Rifampin/análogos & derivados
9.
Antimicrob Agents Chemother ; 65(12): e0154521, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34516254

RESUMEN

Mycobacterium abscessus lung disease is difficult to treat due to intrinsic drug resistance and the persistence of drug-tolerant bacteria. Currently, the standard of care is a multidrug regimen with at least 3 active drugs, preferably including a ß-lactam (imipenem or cefoxitin). These regimens are lengthy and toxic and have limited efficacy. The search for more efficacious regimens led us to evaluate bedaquiline, a diarylquinoline licensed for treatment of multidrug-resistant tuberculosis. We performed in vitro time-kill experiments to evaluate the activity of bedaquiline alone and in combination with the first-line drug imipenem against M. abscessus under various conditions. Against actively growing bacteria, bedaquiline was largely bacteriostatic and antagonized the bactericidal activity of imipenem. Contrarily, against nutrient-starved persisters, bedaquiline was bactericidal, while imipenem was not, and bedaquiline drove the activity of the combination. In an intracellular infection model, bedaquiline and imipenem had additive bactericidal effects. Correlations between ATP levels and the bactericidal activity of imipenem and its antagonism by bedaquiline were observed. Interestingly, the presence of Tween 80 in the media affected the activity of both drugs, enhancing the activity of imipenem and reducing that of bedaquiline. Overall, these results show that bedaquiline and imipenem interact differently depending on culture conditions. Previously reported antagonistic effects of bedaquiline on imipenem were limited to conditions with actively multiplying bacteria and/or the presence of Tween 80, whereas the combination was additive or indifferent against nutrient-starved and intracellular M. abscessus, where promising bactericidal activity of the combination suggests it may have a role in future treatment regimens.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Antibacterianos/farmacología , Diarilquinolinas/farmacología , Humanos , Imipenem/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Nutrientes
10.
Pharmaceutics ; 14(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35056910

RESUMEN

Clofazimine (CFZ) is a poorly soluble, weakly basic, small molecule antibiotic clinically used to treat leprosy and is now in clinical trials as a treatment for multidrug resistant tuberculosis and COVID-19. CFZ exhibits complex, context-dependent pharmacokinetics that are characterized by an increasing half-life in long term treatment regimens. The systemic pharmacokinetics of CFZ have been previously represented by a nonlinear, 2-compartment model incorporating an expanding volume of distribution. This expansion reflects the soluble-to-insoluble phase transition that the drug undergoes as it precipitates out and accumulates within macrophages disseminated throughout the organism. Using mice as a model organism, we studied the mechanistic underpinnings of this increasing half-life and how the systemic pharmacokinetics of CFZ are altered with continued dosing. To this end, M. tuberculosis infection status and multiple dosing schemes were studied alongside a parameter sensitivity analysis (PSA) to further understanding of systemic drug distribution. Parameter values governing the sigmoidal expansion function that captures the phase transition were methodically varied, and in turn, the systemic concentrations of the drug were calculated and compared to the experimentally measured concentrations of drug in serum and spleen. The resulting amounts of drug sequestered were dependent on the total mass of CFZ administered and the duration of drug loading. This phenomenon can be captured by altering three different parameters of an expansion function corresponding to key biological determinants responsible for the precipitation and the accumulation of the insoluble drug mass in macrophages. Through this analysis of the context dependent pharmacokinetics of CFZ, a predictive framework for projecting the systemic distribution and self-assembly of precipitated drug complexes as intracellular mechanopharmaceutical devices of this and other drugs exhibiting similarly complex pharmacokinetics can be constructed.

11.
Pharmaceutics ; 14(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35056913

RESUMEN

Clofazimine (CFZ) is a weakly basic, small-molecule antibiotic used for the treatment of mycobacterial infections including leprosy and multidrug-resistant tuberculosis. Upon prolonged oral administration, CFZ precipitates and accumulates within macrophages throughout the host. To model the pharmacokinetics of CFZ, the volume of distribution (Vd) was considered as a varying parameter that increases with continuous drug loading. Fitting the time-dependent change in drug mass and concentration data obtained from CFZ-treated mice, we performed a quantitative analysis of the systemic disposition of the drug over a 20-week treatment period. The pharmacokinetics data were fitted using various classical compartmental models sampling serum and spleen concentration data into separate matrices. The models were constructed in NONMEM together with linear and nonlinear sigmoidal expansion functions to the spleen compartment to capture the phase transition in Vd. The different modeling approaches were compared by Akaike information criteria, observed and predicted concentration correlations, and graphically. Using the composite analysis of the modeling predictions, adaptive fractional CFZ sequestration, Vd and half-life were evaluated. When compared to standard compartmental models, an adaptive Vd model yielded a more accurate data fit of the drug concentrations in both the serum and spleen. Including a nonlinear sigmoidal equation into compartmental models captures the phase transition of drugs such as CFZ, greatly improving the prediction of population pharmacokinetics and yielding further insight into the mechanisms of drug disposition.

12.
Artículo en Inglés | MEDLINE | ID: mdl-31209013

RESUMEN

The new diazabicyclooctane-based ß-lactamase inhibitors avibactam and relebactam improve the in vitro activity of ß-lactam antibiotics against bacteria of the Mycobacterium abscessus complex (MABC). Here, we evaluated the in vitro activities of two newer diazabicyclooctane-based ß-lactamase inhibitors in clinical development, nacubactam and zidebactam, with ß-lactams against clinical isolates of MABC. Both inhibitors lowered the MICs of their partner ß-lactams, meropenem (8-fold) and cefepime (2-fold), respectively, and those of other ß-lactams, similar to prior results with avibactam and relebactam.


Asunto(s)
Compuestos de Azabiciclo/farmacología , Ciclooctanos/farmacología , Mycobacterium abscessus/efectos de los fármacos , Mycobacterium abscessus/enzimología , Piperidinas/farmacología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamas/metabolismo , Antibacterianos/farmacología , Cefepima/farmacología , Pruebas de Sensibilidad Microbiana , Mycobacterium abscessus/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-30962331

RESUMEN

Tigecycline is used in multidrug regimens for salvage therapy of Mycobacterium abscessus infections but is often poorly tolerated and has no oral formulation. Here, we report similar in vitro activity of two newly approved tetracycline analogs, omadacycline and eravacycline, against 28 drug-resistant clinical isolates of M. abscessus complex. Since omadacycline and eravacycline appear to be better tolerated than tigecycline and since omadacycline is also formulated for oral dosing, these tetracycline analogs may represent new treatment options for M. abscessus infections.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Mycobacterium abscessus/efectos de los fármacos , Tetraciclina/farmacología , Tetraciclinas/farmacología , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Tigeciclina/farmacología
14.
Artículo en Inglés | MEDLINE | ID: mdl-30936097

RESUMEN

Clofazimine and high-dose rifapentine have each separately been associated with treatment-shortening activity when incorporated into tuberculosis (TB) treatment regimens. We hypothesized that both modifications, i.e., the addition of clofazimine and the replacement of rifampin with high-dose rifapentine, in the first-line regimen for drug-susceptible TB would significantly shorten the duration of treatment necessary for cure. We tested this hypothesis in a well-established BALB/c mouse model of TB chemotherapy and also in a C3HeB/FeJ mouse model in which mice can develop caseous necrotic lesions, an environment where rifapentine and clofazimine may individually be less effective. In both mouse models, replacing rifampin with high-dose rifapentine and adding clofazimine in the first-line regimen resulted in greater bactericidal and sterilizing activity than either modification alone, suggesting that a rifapentine- and clofazimine-containing regimen may have the potential to significantly shorten the treatment duration for drug-susceptible TB. These data provide preclinical evidence supporting the evaluation of regimens combining high-dose rifapentine and clofazimine in clinical trials.


Asunto(s)
Antituberculosos/administración & dosificación , Clofazimina/administración & dosificación , Rifampin/análogos & derivados , Tuberculosis/tratamiento farmacológico , Animales , Antibióticos Antituberculosos/administración & dosificación , Modelos Animales de Enfermedad , Esquema de Medicación , Quimioterapia Combinada/métodos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Rifampin/administración & dosificación
15.
Artículo en Inglés | MEDLINE | ID: mdl-30745396

RESUMEN

The potent antituberculosis activity and long half-life of bedaquiline make it an attractive candidate for use in long-acting/extended-release formulations for the treatment of latent tuberculosis infection (LTBI). Our objective was to evaluate a long-acting injectable (LAI) bedaquiline formulation in a validated paucibacillary mouse model of LTBI. Following immunization with Mycobacterium bovis rBCG30, BALB/c mice were challenged by aerosol infection with M. tuberculosis H37Rv. Treatment began 13 weeks after challenge infection with one of the following regimens: an untreated negative-control regimen; positive-control regimens of daily rifampin (10 mg/kg of body weight), once-weekly rifapentine (15 mg/kg) and isoniazid (50 mg/kg), or daily bedaquiline (25 mg/kg); test regimens of one, two, or three monthly doses of LAI bedaquiline at 160 mg/dose (BLAI-160); and test regimens of daily bedaquiline at 2.67 mg/kg (B2.67), 5.33 mg/kg (B5.33), or 8 mg/kg (B8) to deliver the same total amount of bedaquiline as one, two, or three doses of BLAI-160, respectively. All drugs were administered orally, except for BLAI-160 (intramuscular injection). The primary outcome was the decline in M. tuberculosis lung CFU counts during 12 weeks of treatment. The negative- and positive-control regimens performed as expected. One, two, and three doses of BLAI-160 resulted in decreases of 2.9, 3.2, and 3.5 log10 CFU/lung, respectively, by week 12. Daily oral dosing with B2.67, B5.33, and B8 decreased lung CFU counts by 1.6, 2.8, and 4.1 log10, respectively. One dose of BLAI-160 exhibited activity for at least 12 weeks. The sustained activity of BLAI-160 indicates that it shows promise as a short-course LTBI treatment requiring few patient encounters to ensure treatment completion.


Asunto(s)
Antituberculosos/farmacología , Diarilquinolinas/farmacología , Tuberculosis Latente/tratamiento farmacológico , Administración Oral , Animales , Antituberculosos/administración & dosificación , Antituberculosos/farmacocinética , Diarilquinolinas/administración & dosificación , Diarilquinolinas/farmacocinética , Modelos Animales de Enfermedad , Femenino , Inyecciones Intramusculares , Masculino , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos
16.
Artículo en Inglés | MEDLINE | ID: mdl-30642943

RESUMEN

Pulmonary disease due to infection with Mycobacterium abscessus complex (MABC) is notoriously difficult to treat, in large part due to the intrinsic resistance of MABC strains to most antibiotics, including ß-lactams. MABC organisms express a broad-spectrum ß-lactamase that is resistant to traditional ß-lactam-based ß-lactamase inhibitors but inhibited by a newer non-ß-lactam-based ß-lactamase inhibitor, avibactam. Consequently, the susceptibility of MABC members to some ß-lactams is increased in the presence of avibactam. Therefore, we hypothesized that two new non-ß-lactam-based ß-lactamase inhibitors, relebactam and vaborbactam, would also increase the susceptibility of MABC organisms to ß-lactams. The objective of the present study was to evaluate the in vitro activity of various marketed ß-lactams alone and in combination with either relebactam or vaborbactam against multidrug-resistant MABC clinical isolates. Our data demonstrate that both ß-lactamase inhibitors significantly improved the anti-MABC activity of many carbapenems (including imipenem and meropenem) and cephalosporins (including cefepime, ceftaroline, and cefuroxime). As a meropenem-vaborbactam combination is now marketed and an imipenem-relebactam combination is currently in phase III trials, these fixed combinations may become the ß-lactams of choice for the treatment of MABC infections. Furthermore, given the evolving interest in dual ß-lactam regimens, our results identify select cephalosporins, such as cefuroxime, with superior activity in the presence of a ß-lactamase inhibitor that are deserving of further evaluation in combination with these carbapenem-ß-lactamase inhibitor products.


Asunto(s)
Antibacterianos/farmacología , Compuestos de Azabiciclo/farmacología , Ácidos Borónicos/farmacología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Mycobacterium abscessus/efectos de los fármacos , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamas/farmacología , Carbapenémicos/farmacología , Cefalosporinas/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium abscessus/genética , Mycobacterium abscessus/aislamiento & purificación
18.
Artículo en Inglés | MEDLINE | ID: mdl-29735562

RESUMEN

The antileprosy drug clofazimine was recently repurposed as part of a newly endorsed short-course regimen for multidrug-resistant tuberculosis. It also enables significant treatment shortening when added to the first-line regimen for drug-susceptible tuberculosis in a mouse model. However, clofazimine causes dose- and duration-dependent skin discoloration in patients, and the optimal clofazimine dosing strategy in the context of the first-line regimen is unknown. We utilized a well-established mouse model to systematically address the impacts of duration, dose, and companion drugs on the treatment-shortening activity of clofazimine in the first-line regimen. In all studies, the primary outcome was relapse-free cure (culture-negative lungs) 6 months after stopping treatment, and the secondary outcome was bactericidal activity, i.e., the decline in the lung bacterial burden during treatment. Our findings indicate that clofazimine activity is most potent when coadministered with first-line drugs continuously throughout treatment and that equivalent treatment-shortening results are obtained with half the dose commonly used in mice. However, our studies also suggest that clofazimine at low exposures may have negative impacts on treatment outcomes, an effect that was evident only after the first 3 months of treatment. These data provide a sound evidence base to inform clofazimine dosing strategies to optimize the antituberculosis effect while minimizing skin discoloration. The results also underscore the importance of conducting long-term studies to allow the full evaluation of drugs administered in combination over long durations.


Asunto(s)
Antituberculosos/uso terapéutico , Clofazimina/uso terapéutico , Tuberculosis/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos BALB C , Distribución Aleatoria , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
19.
J Antimicrob Chemother ; 72(8): 2320-2325, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575382

RESUMEN

Background: Biapenem, a carbapenem antibiotic, has been shown to have synergistic bactericidal anti-TB activity when combined with rifampicin both in vitro and in the mouse model of TB chemotherapy. We hypothesized that this synergy would result in biapenem/rifampicin activity against rifampicin-resistant Mycobacterium tuberculosis . Objectives: Our objective was to evaluate the synergy of biapenem/rifampicin against both low- and high-level rifampicin-resistant strains of M. tuberculosis , in vitro and in the mouse model. Methods: Biapenem/rifampicin activity was evaluated using three strains of M. tuberculosis : strain 115R (low-level rifampicin resistance); strain 124R (high-level rifampicin resistance); and the drug-susceptible H37Rv parent strain. Biapenem/rifampicin synergy was evaluated in vitro by chequerboard titration. In vivo , we first conducted a dose-ranging experiment with biapenem against H37Rv in the mouse model. We then evaluated biapenem/rifampicin activity in mice infected with each M. tuberculosis strain. Results: In vitro , synergy was observed between biapenem and rifampicin against H37Rv and strain 115R. In vivo , biapenem exhibited clear dose-dependent activity against H37Rv, with all biapenem doses as active or more active than rifampicin alone. Biapenem and rifampicin had synergistic bactericidal activity against H37Rv in the mouse model; no synergy was observed in mice infected with either of the rifampicin-resistant strains. Biapenem alone was active against all three strains. Conclusions: Our preclinical experiments indicate that biapenem has potential for use as an anti-TB drug, including for use against rifampicin-resistant TB. Thus, biapenem has promise for repurposing as a 'new' - and desperately needed - drug for the treatment of drug-resistant TB.


Asunto(s)
Antibióticos Antituberculosos/administración & dosificación , Antibióticos Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Rifampin/administración & dosificación , Rifampin/farmacología , Tienamicinas/administración & dosificación , Tienamicinas/farmacología , Animales , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana , Sinergismo Farmacológico , Femenino , Ratones Endogámicos BALB C , Viabilidad Microbiana/efectos de los fármacos , Mycobacterium tuberculosis/fisiología , Resultado del Tratamiento , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
20.
Nat Chem Biol ; 13(1): 54-61, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27820797

RESUMEN

Bacterial survival requires an intact peptidoglycan layer, a three-dimensional exoskeleton that encapsulates the cytoplasmic membrane. Historically, the final steps of peptidoglycan synthesis are known to be carried out by D,D-transpeptidases, enzymes that are inhibited by the ß-lactams, which constitute >50% of all antibacterials in clinical use. Here, we show that the carbapenem subclass of ß-lactams are distinctly effective not only because they inhibit D,D-transpeptidases and are poor substrates for ß-lactamases, but primarily because they also inhibit non-classical transpeptidases, namely the L,D-transpeptidases, which generate the majority of linkages in the peptidoglycan of mycobacteria. We have characterized the molecular mechanisms responsible for inhibition of L,D-transpeptidases of Mycobacterium tuberculosis and a range of bacteria including ESKAPE pathogens, and used this information to design, synthesize and test simplified carbapenems with potent antibacterial activity.


Asunto(s)
Antibacterianos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Peptidil Transferasas/antagonistas & inhibidores , beta-Lactamas/farmacología , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación Molecular , Peptidil Transferasas/metabolismo , Relación Estructura-Actividad , beta-Lactamas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...