Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36834961

RESUMEN

Plants have evolved elaborate mechanisms to sense, respond to and overcome the detrimental effects of high soil salinity. The role of calcium transients in salinity stress signaling is well established, but the physiological significance of concurrent salinity-induced changes in cytosolic pH remains largely undefined. Here, we analyzed the response of Arabidopsis roots expressing the genetically encoded ratiometric pH-sensor pHGFP fused to marker proteins for the recruitment of the sensor to the cytosolic side of the tonoplast (pHGFP-VTI11) and the plasma membrane (pHGFP-LTI6b). Salinity elicited a rapid alkalinization of cytosolic pH (pHcyt) in the meristematic and elongation zone of wild-type roots. The pH-shift near the plasma membrane preceded that at the tonoplast. In pH-maps transversal to the root axis, the epidermis and cortex had cells with a more alkaline pHcyt relative to cells in the stele in control conditions. Conversely, seedlings treated with 100 mM NaCl exhibited an increased pHcyt in cells of the vasculature relative to the external layers of the root, and this response occurred in both reporter lines. These pHcyt changes were substantially reduced in mutant roots lacking a functional SOS3/CBL4 protein, suggesting that the operation of the SOS pathway mediated the dynamics of pHcyt in response to salinity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Raíces de Plantas , Salinidad , Transducción de Señal , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Membrana Celular/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Cloruro de Sodio/farmacología , Transducción de Señal/fisiología
2.
Dev Cell ; 57(17): 2081-2094.e7, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36007523

RESUMEN

Excessive Na+ in soils inhibits plant growth. Here, we report that Na+ stress triggers primary calcium signals specifically in a cell group within the root differentiation zone, thus forming a "sodium-sensing niche" in Arabidopsis. The amplitude of this primary calcium signal and the speed of the resulting Ca2+ wave dose-dependently increase with rising Na+ concentrations, thus providing quantitative information about the stress intensity encountered. We also delineate a Ca2+-sensing mechanism that measures the stress intensity in order to mount appropriate salt detoxification responses. This is mediated by a Ca2+-sensor-switch mechanism, in which the sensors SOS3/CBL4 and CBL8 are activated by distinct Ca2+-signal amplitudes. Although the SOS3/CBL4-SOS2/CIPK24-SOS1 axis confers basal salt tolerance, the CBL8-SOS2/CIPK24-SOS1 module becomes additionally activated only in response to severe salt stress. Thus, Ca2+-mediated translation of Na+ stress intensity into SOS1 Na+/H+ antiporter activity facilitates fine tuning of the sodium extrusion capacity for optimized salt-stress tolerance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Estrés Salino , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética
3.
Front Plant Sci ; 12: 691124, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630451

RESUMEN

The Salt-Overly-Sensitive (SOS) pathway controls the net uptake of sodium by roots and the xylematic transfer to shoots in vascular plants. SOS3/CBL4 is a core component of the SOS pathway that senses calcium signaling of salinity stress to activate and recruit the protein kinase SOS2/CIPK24 to the plasma membrane to trigger sodium efflux by the Na/H exchanger SOS1/NHX7. However, despite the well-established function of SOS3 at the plasma membrane, SOS3 displays a nucleo-cytoplasmic distribution whose physiological meaning is not understood. Here, we show that the N-terminal part of SOS3 encodes structural information for dual acylation with myristic and palmitic fatty acids, each of which commands a different location and function of SOS3. N-myristoylation at glycine-2 is essential for plasma membrane association and recruiting SOS2 to activate SOS1, whereas S-acylation at cysteine-3 redirects SOS3 toward the nucleus. Moreover, a poly-lysine track in positions 7-11 that is unique to SOS3 among other Arabidopsis CBLs appears to be essential for the correct positioning of the SOS2-SOS3 complex at the plasma membrane for the activation of SOS1. The nuclear-localized SOS3 protein had limited bearing on the salt tolerance of Arabidopsis. These results are evidence of a novel S-acylation dependent nuclear trafficking mechanism that contrasts with alternative subcellular targeting of other CBLs by S-acylation.

4.
J Exp Bot ; 71(16): 5053-5060, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32484219

RESUMEN

The high-affinity K+ transporter HAK5 is the major contributor to root K+ uptake from dilute solutions in K+-starved Arabidopsis plants. Its functionality is tightly regulated and its activity is enhanced under K+ starvation by the transcriptional induction of the AtHAK5 gene, and by the activation of the transporter via the AtCBL1-AtCIPK23 complex. In the present study, the 26 members of the Arabidopsis CIPK protein kinase family were screened in yeast for their capacity to activate HAK5-mediated K+ uptake. Among them, AtCIPK1 was the most efficient activator of AtHAK5. In addition, AtCIPK9, previously reported to participate in K+ homeostasis, also activated the transporter. In roots, the genes encoding AtCIPK1 and AtCIPK9 were induced by K+ deprivation and atcipk1 and atcipk9 Arabidopsis KO mutants showed a reduced AtHAK5-mediated Rb+ uptake. Activation of AtHAK5 by AtCIPK1 did not occur under hyperosmotic stress conditions, where AtCIPK1 function has been shown to be required to maintain plant growth. Taken together, our data contribute to the identification of the complex regulatory networks that control the high-affinity K+ transporter AtHAK5 and root K+ uptake.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Simportadores , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Potasio/metabolismo , Canales de Potasio/metabolismo , Antiportadores de Potasio-Hidrógeno/genética , Antiportadores de Potasio-Hidrógeno/metabolismo , Proteínas Quinasas , Proteínas Serina-Treonina Quinasas/genética , Simportadores/genética , Simportadores/metabolismo
5.
Plant Cell ; 32(8): 2582-2601, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32471862

RESUMEN

Deciphering signal transduction processes is crucial for understanding how plants sense and respond to environmental changes. Various chemical compounds function as central messengers within deeply intertwined signaling networks. How such compounds act in concert remains to be elucidated. We have developed dual-reporting transcriptionally linked genetically encoded fluorescent indicators (2-in-1-GEFIs) for multiparametric in vivo analyses of the phytohormone abscisic acid (ABA), Ca2+, protons (H+), chloride (anions), the glutathione redox potential, and H2O2 Simultaneous analyses of two signaling compounds in Arabidopsis (Arabidopsis thaliana) roots revealed that ABA treatment and uptake did not trigger rapid cytosolic Ca2+ or H+ dynamics. Glutamate, ATP, Arabidopsis PLANT ELICITOR PEPTIDE, and glutathione disulfide (GSSG) treatments induced rapid spatiotemporally overlapping cytosolic Ca2+, H+, and anion dynamics, but except for GSSG, only weakly affected the cytosolic redox state. Overall, 2-in-1-GEFIs enable complementary, high-resolution in vivo analyses of signaling compound dynamics and facilitate an advanced understanding of the spatiotemporal coordination of signal transduction processes in Arabidopsis.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Citosol/metabolismo , Colorantes Fluorescentes/metabolismo , Sistemas de Mensajero Secundario , Transcripción Genética , Adenosina Trifosfato/farmacología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Cloruros/metabolismo , Citosol/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia , Ácido Glutámico/farmacología , Disulfuro de Glutatión/farmacología , Hidrógeno/metabolismo , Peróxido de Hidrógeno/toxicidad , Concentración de Iones de Hidrógeno , Ácidos Indolacéticos/farmacología , Oxidación-Reducción , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Transcripción Genética/efectos de los fármacos
7.
Elife ; 82019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30785397

RESUMEN

Pyrophosphate (PPi), a byproduct of macromolecule biosynthesis is maintained at low levels by soluble inorganic pyrophosphatases (sPPase) found in all eukaryotes. In plants, H+-pumping pyrophosphatases (H+-PPase) convert the substantial energy present in PPi into an electrochemical gradient. We show here, that both cold- and heat stress sensitivity of fugu5 mutants lacking the major H+-PPase isoform AVP1 is correlated with reduced SUMOylation. In addition, we show that increased PPi concentrations interfere with SUMOylation in yeast and we provide evidence that SUMO activating E1-enzymes are inhibited by micromolar concentrations of PPi in a non-competitive manner. Taken together, our results do not only provide a mechanistic explanation for the beneficial effects of AVP1 overexpression in plants but they also highlight PPi as an important integrator of metabolism and stress tolerance.


Asunto(s)
Arabidopsis/fisiología , Difosfatos/metabolismo , Estrés Fisiológico , Sumoilación , Aclimatación , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Frío , Calor , Pirofosfatasa Inorgánica/metabolismo , Isoenzimas/metabolismo
8.
Plant Cell ; 27(12): 3383-96, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26589552

RESUMEN

The presence of a large central vacuole is one of the hallmarks of a prototypical plant cell, and the multiple functions of this compartment require massive fluxes of molecules across its limiting membrane, the tonoplast. Transport is assumed to be energized by the membrane potential and the proton gradient established by the combined activity of two proton pumps, the vacuolar H(+)-pyrophosphatase (V-PPase) and the vacuolar H(+)-ATPase (V-ATPase). Exactly how labor is divided between these two enzymes has remained elusive. Here, we provide evidence using gain- and loss-of-function approaches that lack of the V-ATPase cannot be compensated for by increased V-PPase activity. Moreover, we show that increased V-ATPase activity during cold acclimation requires the presence of the V-PPase. Most importantly, we demonstrate that a mutant lacking both of these proton pumps is conditionally viable and retains significant vacuolar acidification, pointing to a so far undetected contribution of the trans-Golgi network/early endosome-localized V-ATPase to vacuolar pH.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Genoma de Planta/genética , Pirofosfatasa Inorgánica/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/enzimología , Aclimatación , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Frío , Endosomas/enzimología , Flores/citología , Flores/enzimología , Flores/genética , Flores/fisiología , Concentración de Iones de Hidrógeno , Pirofosfatasa Inorgánica/antagonistas & inhibidores , Pirofosfatasa Inorgánica/genética , Meristema/citología , Meristema/enzimología , Meristema/genética , Meristema/fisiología , Mutagénesis Insercional , Fenotipo , Raíces de Plantas/citología , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Plantones/citología , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Análisis de Secuencia de ADN , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/genética , Red trans-Golgi/enzimología
9.
Plant Physiol ; 169(4): 2863-73, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26474642

RESUMEN

Plant growth and development requires efficient acquisition of essential elements. Potassium (K(+)) is an important macronutrient present in the soil solution at a wide range of concentrations. Regulation of the K(+) uptake systems in the roots is essential to secure K(+) supply. It has been shown in Arabidopsis (Arabidopsis thaliana) that when the external K(+) concentration is very low (<10 µm), K(+) nutrition depends exclusively on the high-affinity K(+) transporter5 (HAK5). Low-K(+)-induced transcriptional activation of the gene encoding HAK5 has been previously reported. Here, we show the posttranscriptional regulation of HAK5 transport activity by phosphorylation. Expression in a heterologous system showed that the Ca(2+) sensors calcineurin B-like (CBL1), CBL8, CBL9, and CBL10, together with CBL-interacting protein kinase23 (CIPK23), activated HAK5 in vivo. This activation produced an increase in the affinity and the Vmax of K(+) transport. In vitro experiments show that the N terminus of HAK5 is phosphorylated by CIPK23. This supports the idea that phosphorylation of HAK5 induces a conformational change that increases its affinity for K(+). Experiments of K(+) (Rb(+)) uptake and growth measurements in low-K(+) medium with Arabidopsis single mutants hak5, akt1, and cipk23, double mutants hak5 akt1, hak5 cipk23, and akt1 cipk23, and the triple mutant hak5 akt1 cipk23 confirmed the regulatory role of CIPK23 in planta.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Antiportadores de Potasio-Hidrógeno/metabolismo , Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Unión Competitiva , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Transporte Iónico , Cinética , Mutación , Fosforilación , Raíces de Plantas/genética , Antiportadores de Potasio-Hidrógeno/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Rubidio/metabolismo , Técnicas del Sistema de Dos Híbridos
10.
Proc Natl Acad Sci U S A ; 111(17): E1806-14, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24733919

RESUMEN

Stomatal movements rely on alterations in guard cell turgor. This requires massive K(+) bidirectional fluxes across the plasma and tonoplast membranes. Surprisingly, given their physiological importance, the transporters mediating the energetically uphill transport of K(+) into the vacuole remain to be identified. Here, we report that, in Arabidopsis guard cells, the tonoplast-localized K(+)/H(+) exchangers NHX1 and NHX2 are pivotal in the vacuolar accumulation of K(+) and that nhx1 nhx2 mutant lines are dysfunctional in stomatal regulation. Hypomorphic and complete-loss-of-function double mutants exhibited significantly impaired stomatal opening and closure responses. Disruption of K(+) accumulation in guard cells correlated with more acidic vacuoles and the disappearance of the highly dynamic remodelling of vacuolar structure associated with stomatal movements. Our results show that guard cell vacuolar accumulation of K(+) is a requirement for stomatal opening and a critical component in the overall K(+) homeostasis essential for stomatal closure, and suggest that vacuolar K(+) fluxes are also of decisive importance in the regulation of vacuolar dynamics and luminal pH that underlie stomatal movements.


Asunto(s)
Arabidopsis/fisiología , Membranas Intracelulares/metabolismo , Estomas de Plantas/fisiología , Potasio/metabolismo , Vacuolas/metabolismo , Ácidos/metabolismo , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/genética , Cationes/metabolismo , Forma de la Célula/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Imagenología Tridimensional , Rayos Infrarrojos , Movimiento , Mutación/genética , Estomas de Plantas/citología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/genética , Transpiración de Plantas/efectos de los fármacos , Transpiración de Plantas/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sodio/farmacología , Intercambiadores de Sodio-Hidrógeno/genética , Suelo , Termografía , Vacuolas/efectos de los fármacos , Vacuolas/genética , Agua
11.
Plant Cell ; 24(3): 1127-42, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22438021

RESUMEN

Intracellular NHX proteins are Na(+),K(+)/H(+) antiporters involved in K(+) homeostasis, endosomal pH regulation, and salt tolerance. Proteins NHX1 and NHX2 are the two major tonoplast-localized NHX isoforms. Here, we show that NHX1 and NHX2 have similar expression patterns and identical biochemical activity, and together they account for a significant amount of the Na(+),K(+)/H(+) antiport activity in tonoplast vesicles. Reverse genetics showed functional redundancy of NHX1 and NHX2 genes. Growth of the double mutant nhx1 nhx2 was severely impaired, and plants were extremely sensitive to external K(+). By contrast, nhx1 nhx2 mutants showed similar sensitivity to salinity stress and even greater rates of Na(+) sequestration than the wild type. Double mutants had reduced ability to create the vacuolar K(+) pool, which in turn provoked greater K(+) retention in the cytosol, impaired osmoregulation, and compromised turgor generation for cell expansion. Genes NHX1 and NHX2 were highly expressed in guard cells, and stomatal function was defective in mutant plants, further compromising their ability to regulate water relations. Together, these results show that tonoplast-localized NHX proteins are essential for active K(+) uptake at the tonoplast, for turgor regulation, and for stomatal function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Transporte de Catión/metabolismo , Estomas de Plantas/fisiología , Potasio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Vacuolas/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/genética , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Homeostasis , Mutagénesis Insercional , Transpiración de Plantas , Isoformas de Proteínas , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...