Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cancer Med ; 13(9): e7187, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38686617

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with limited treatment options, illustrating an urgent need to identify new drugable targets in PDACs. OBJECTIVE: Using the similarities between tumor development and normal embryonic development, which is accompanied by rapid cell expansion, we aimed to identify and characterize embryonic signaling pathways that were reinitiated during tumor formation and expansion. METHODS AND RESULTS: Here, we report that the transcription factors E2F1 and E2F8 are potential key regulators in PDAC. E2F1 and E2F8 RNA expression is mainly localized in proliferating cells in the developing pancreas and in malignant ductal cells in PDAC. Silencing of E2F1 and E2F8 in PANC-1 pancreatic tumor cells inhibited cell proliferation and impaired cell spreading and migration. Moreover, loss of E2F1 also affected cell viability and apoptosis with E2F expression in PDAC tissues correlating with expression of apoptosis and mitosis pathway genes, suggesting that E2F factors promote cell cycle regulation and tumorigenesis in PDAC cells. CONCLUSION: Our findings illustrate that E2F1 and E2F8 transcription factors are expressed in pancreatic progenitor and PDAC cells, where they contribute to tumor cell expansion by regulation of cell proliferation, viability, and cell migration making these genes attractive therapeutic targets and potential prognostic markers for pancreatic cancer.


Asunto(s)
Apoptosis , Carcinoma Ductal Pancreático , Movimiento Celular , Proliferación Celular , Factor de Transcripción E2F1 , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Línea Celular Tumoral , Movimiento Celular/genética , Animales , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Supervivencia Celular/genética , Ratones
2.
Diabetologia ; 67(2): 356-370, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38032369

RESUMEN

AIMS/HYPOTHESIS: Roux-en-Y gastric bypass surgery (RYGB) frequently results in remission of type 2 diabetes as well as exaggerated secretion of glucagon-like peptide-1 (GLP-1). Here, we assessed RYGB-induced transcriptomic alterations in the small intestine and investigated how they were related to the regulation of GLP-1 production and secretion in vitro and in vivo. METHODS: Human jejunal samples taken perisurgically and 1 year post RYGB (n=13) were analysed by RNA-seq. Guided by bioinformatics analysis we targeted four genes involved in cholesterol biosynthesis, which we confirmed to be expressed in human L cells, for potential involvement in GLP-1 regulation using siRNAs in GLUTag and STC-1 cells. Gene expression analyses, GLP-1 secretion measurements, intracellular calcium imaging and RNA-seq were performed in vitro. OGTTs were performed in C57BL/6j and iScd1-/- mice and immunohistochemistry and gene expression analyses were performed ex vivo. RESULTS: Gene Ontology (GO) analysis identified cholesterol biosynthesis as being most affected by RYGB. Silencing or chemical inhibition of stearoyl-CoA desaturase 1 (SCD1), a key enzyme in the synthesis of monounsaturated fatty acids, was found to reduce Gcg expression and secretion of GLP-1 by GLUTag and STC-1 cells. Scd1 knockdown also reduced intracellular Ca2+ signalling and membrane depolarisation. Furthermore, Scd1 mRNA expression was found to be regulated by NEFAs but not glucose. RNA-seq of SCD1 inhibitor-treated GLUTag cells identified altered expression of genes implicated in ATP generation and glycolysis. Finally, gene expression and immunohistochemical analysis of the jejunum of the intestine-specific Scd1 knockout mouse model, iScd1-/-, revealed a twofold higher L cell density and a twofold increase in Gcg mRNA expression. CONCLUSIONS/INTERPRETATION: RYGB caused robust alterations in the jejunal transcriptome, with genes involved in cholesterol biosynthesis being most affected. Our data highlight SCD as an RYGB-regulated L cell constituent that regulates the production and secretion of GLP-1.


Asunto(s)
Diabetes Mellitus Tipo 2 , Derivación Gástrica , Humanos , Animales , Ratones , Péptido 1 Similar al Glucagón/metabolismo , Derivación Gástrica/métodos , Células L , Diabetes Mellitus Tipo 2/metabolismo , ARN , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Colesterol , ARN Mensajero , Glucemia/metabolismo
3.
Development ; 150(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36897571

RESUMEN

Hormone secretion from pancreatic islets is essential for glucose homeostasis, and loss or dysfunction of islet cells is a hallmark of type 2 diabetes. Maf transcription factors are crucial for establishing and maintaining adult endocrine cell function. However, during pancreas development, MafB is not only expressed in insulin- and glucagon-producing cells, but also in Neurog3+ endocrine progenitor cells, suggesting additional functions in cell differentiation and islet formation. Here, we report that MafB deficiency impairs ß cell clustering and islet formation, but also coincides with loss of neurotransmitter and axon guidance receptor gene expression. Moreover, the observed loss of nicotinic receptor gene expression in human and mouse ß cells implied that signaling through these receptors contributes to islet cell migration/formation. Inhibition of nicotinic receptor activity resulted in reduced ß cell migration towards autonomic nerves and impaired ß cell clustering. These findings highlight a novel function of MafB in controlling neuronal-directed signaling events required for islet formation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Adulto , Animales , Humanos , Glucagón/genética , Glucagón/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Páncreas/metabolismo , Factor de Transcripción MafB/genética , Factor de Transcripción MafB/metabolismo
4.
Nat Commun ; 14(1): 600, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737436

RESUMEN

Aquaglyceroporin 7 (AQP7) facilitates glycerol flux across the plasma membrane with a critical physiological role linked to metabolism, obesity, and associated diseases. Here, we present the single-particle cryo-EM structure of AQP7 determined at 2.55 Å resolution adopting two adhering tetramers, stabilized by extracellularly exposed loops, in a configuration like that of the well-characterized interaction of AQP0 tetramers. The central pore, in-between the four monomers, displays well-defined densities restricted by two leucine filters. Gas chromatography mass spectrometry (GC/MS) results show that the AQP7 sample contains glycerol 3-phosphate (Gro3P), which is compatible with the identified features in the central pore. AQP7 is shown to be highly expressed in human pancreatic α- and ß- cells suggesting that the identified AQP7 octamer assembly, in addition to its function as glycerol channel, may serve as junction proteins within the endocrine pancreas.


Asunto(s)
Acuagliceroporinas , Acuaporinas , Islotes Pancreáticos , Humanos , Acuaporinas/metabolismo , Glicerol/metabolismo , Microscopía por Crioelectrón , Islotes Pancreáticos/metabolismo
5.
J Clin Invest ; 133(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36656641

RESUMEN

Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic ß cells. To identify candidate genes contributing to T2D pathophysiology, we studied human pancreatic islets from approximately 300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified expression changes in islets may predispose to diabetes, as expression of these genes associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human ß cells, based on single-cell RNA-Seq data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D SNPs. Mouse KO strains demonstrated that the identified T2D-associated candidate genes regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing ß cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we have identified molecular alterations in human pancreatic islets that contribute to ß cell dysfunction in T2D pathophysiology.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Ratones , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Secreción de Insulina/genética , Insulina/genética , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Células Secretoras de Insulina/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Factor de Transcripción PAX5/metabolismo
6.
Nat Commun ; 13(1): 6363, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289205

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disease that results in the destruction of insulin producing pancreatic ß-cells. One of the genes associated with T1D is TYK2, which encodes a Janus kinase with critical roles in type-Ι interferon (IFN-Ι) mediated intracellular signalling. To study the role of TYK2 in ß-cell development and response to IFNα, we generated TYK2 knockout human iPSCs and directed them into the pancreatic endocrine lineage. Here we show that loss of TYK2 compromises the emergence of endocrine precursors by regulating KRAS expression, while mature stem cell-islets (SC-islets) function is not affected. In the SC-islets, the loss or inhibition of TYK2 prevents IFNα-induced antigen processing and presentation, including MHC Class Ι and Class ΙΙ expression, enhancing their survival against CD8+ T-cell cytotoxicity. These results identify an unsuspected role for TYK2 in ß-cell development and support TYK2 inhibition in adult ß-cells as a potent therapeutic target to halt T1D progression.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulinas , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Insulinas/metabolismo , Interferón-alfa/farmacología , Interferón-alfa/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , TYK2 Quinasa/genética , TYK2 Quinasa/metabolismo , Células Secretoras de Insulina
7.
Life Sci Alliance ; 5(12)2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948367

RESUMEN

Characterization of gene expression in pancreatic islets and its alteration in type 2 diabetes (T2D) are vital in understanding islet function and T2D pathogenesis. We leveraged RNA sequencing and genome-wide genotyping in islets from 188 donors to create the Islet Gene View (IGW) platform to make this information easily accessible to the scientific community. Expression data were related to islet phenotypes, diabetes status, other islet-expressed genes, islet hormone-encoding genes and for expression in insulin target tissues. The IGW web application produces output graphs for a particular gene of interest. In IGW, 284 differentially expressed genes (DEGs) were identified in T2D donor islets compared with controls. Forty percent of DEGs showed cell-type enrichment and a large proportion significantly co-expressed with islet hormone-encoding genes; glucagon (<i>GCG</i>, 56%), amylin (<i>IAPP</i>, 52%), insulin (<i>INS</i>, 44%), and somatostatin (<i>SST</i>, 24%). Inhibition of two DEGs, <i>UNC5D</i> and <i>SERPINE2</i>, impaired glucose-stimulated insulin secretion and impacted cell survival in a human ß-cell model. The exploratory use of IGW could help designing more comprehensive functional follow-up studies and serve to identify therapeutic targets in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Diabetes Mellitus Tipo 2/genética , Glucagón/genética , Glucagón/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Serpina E2/metabolismo
8.
Front Neurosci ; 16: 858049, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600617

RESUMEN

Persons with type 2 diabetes born in the regions of famine exposures have disproportionally elevated risk of vision-threatening proliferative diabetic retinopathy (PDR) in adulthood. However, the underlying mechanisms are not known. In the present study, we aimed to investigate the plausible molecular factors underlying progression to PDR. To study the association of genetic variants with PDR under the intrauterine famine exposure, we analyzed single nucleotide polymorphisms (SNPs) that were previously reported to be associated with type 2 diabetes, glucose, and pharmacogenetics. Analyses were performed in the population from northern Ukraine with a history of exposure to the Great Ukrainian Holodomor famine [the Diagnostic Optimization and Treatment of Diabetes and its Complications in the Chernihiv Region (DOLCE study), n = 3,583]. A validation of the top genetic findings was performed in the Hong Kong diabetes registry (HKDR, n = 730) with a history of famine as a consequence of the Japanese invasion during WWII. In DOLCE, the genetic risk for PDR was elevated for the variants in ADRA2A, PCSK9, and CYP2C19*2 loci, but reduced at PROX1 locus. The association of ADRA2A loci with the risk of advanced diabetic retinopathy in famine-exposed group was further replicated in HKDR. The exposure of embryonic retinal cells to starvation for glucose, mimicking the perinatal exposure to famine, resulted in sustained increased expression of Adra2a and Pcsk9, but decreased Prox1. The exposure to starvation exhibited a lasting inhibitory effects on neurite outgrowth, as determined by neurite length. In conclusion, a consistent genetic findings on the famine-linked risk of ADRA2A with PDR indicate that the nerves may likely to be responsible for communicating the effects of perinatal exposure to famine on the elevated risk of advanced stages of diabetic retinopathy in adults. These results suggest the possibility of utilizing neuroprotective drugs for the prevention and treatment of PDR.

9.
Acta Physiol (Oxf) ; 234(2): e13761, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34978761

RESUMEN

AIMS: Reduced expression of exocytotic genes is associated with functional defects in insulin exocytosis contributing to impaired insulin secretion and type 2 diabetes (T2D) development. MAFA and MAFB transcription factors regulate ß-cell physiology, and their gene expression is reduced in T2D ß cells. We investigate if loss of MAFA and MAFB in human ß cells contributes to T2D progression by regulating genes required for insulin exocytosis. METHODS: Three approaches were performed: (1) RNAseq analysis with the focus on exocytosis-related genes in MafA-/- mouse islets, (2) correlational analysis between MAFA, MAFB and exocytosis-related genes in human islets and (3) MAFA and MAFB silencing in human islets and EndoC-ßH1 cells followed by functional in vitro studies. RESULTS: The expression of 30 exocytosis-related genes was significantly downregulated in MafA-/- mouse islets. In human islets, the expression of 29 exocytosis-related genes correlated positively with MAFA and MAFB. Eight exocytosis-related genes were downregulated in MafA-/- mouse islets and positively correlated with MAFA and MAFB in human islets. From this analysis, the expression of RAB3A, STXBP1, UNC13A, VAMP2, NAPA, NSF, STX1A and SYT7 was quantified after acute MAFA or MAFB silencing in EndoC-ßH1 cells and human islets. MAFA and MAFB silencing resulted in impaired insulin secretion and reduced STX1A, SYT7 and STXBP1 (EndoC-ßH1) and STX1A (human islets) mRNA expression. STX1A and STXBP1 protein expression was also impaired in islets from T2D donors which lack MAFA expression. CONCLUSION: Our data indicate that STXBP1 and STX1A are important MAFA/B-regulated exocytosis genes which may contribute to insulin exocytosis defects observed in MAFA-deficient human T2D ß cells.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Exocitosis , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Factores de Transcripción Maf de Gran Tamaño/genética , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Factor de Transcripción MafB/genética , Factor de Transcripción MafB/metabolismo , Ratones
10.
J Clin Endocrinol Metab ; 107(5): 1303-1316, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35021220

RESUMEN

CONTEXT: Anemia during early pregnancy (EP) is common in developing countries and is associated with adverse health consequences for both mothers and children. Offspring of women with EP anemia often have low birth weight, which increases risk for cardiometabolic diseases, including type 2 diabetes (T2D), later in life. OBJECTIVE: We aimed to elucidate mechanisms underlying developmental programming of adult cardiometabolic disease, including epigenetic and transcriptional alterations potentially detectable in umbilical cord blood (UCB) at time of birth. METHODS: We leveraged global transcriptome- and accompanying epigenome-wide changes in 48 UCB from newborns of EP anemic Tanzanian mothers and 50 controls to identify differentially expressed genes (DEGs) in UCB exposed to maternal EP anemia. DEGs were assessed for association with neonatal anthropometry and cord insulin levels. These genes were further studied in expression data from human fetal pancreas and adult islets to understand their role in beta-cell development and/or function. RESULTS: The expression of 137 genes was altered in UCB of newborns exposed to maternal EP anemia. These putative signatures of fetal programming, which included the birth weight locus LCORL, were potentially mediated by epigenetic changes in 27 genes and associated with neonatal anthropometry. Among the DEGs were P2RX7, PIK3C2B, and NUMBL, which potentially influence beta-cell development. Insulin levels were lower in EP anemia-exposed UCB, supporting the notion of developmental programming of pancreatic beta-cell dysfunction and subsequently increased risk of T2D in offspring of mothers with EP anemia. CONCLUSIONS: Our data provide proof-of-concept on distinct transcriptional and epigenetic changes detectable in UCB from newborns exposed to maternal EP anemia.


Asunto(s)
Anemia , Diabetes Mellitus Tipo 2 , Adulto , Anemia/genética , Niño , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Sangre Fetal/metabolismo , Desarrollo Fetal/genética , Humanos , Recién Nacido , Insulina/metabolismo , Embarazo , Transcriptoma
11.
Acta Ophthalmol ; 100(2): e539-e545, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34169655

RESUMEN

PURPOSE: Intrauterine undernutrition is associated with increased risk of type 2 diabetes. Children born premature or small for gestational age were reported to have abnormal retinal vascularization. However, whether intrauterine famine act as a trigger for diabetes complications, including retinopathy, is unknown. The aim of the current study was to evaluate long-term effects of perinatal famine on the risk of proliferative diabetic retinopathy (PDR). METHODS: We studied the risk for PDR among type 2 diabetes patients exposed to perinatal famine in two independent cohorts: the Ukrainian National Diabetes Registry (UNDR) and the Hong Kong Diabetes Registry (HKDR). We analysed individuals born during the Great Famine (the Holodomor, 1932-1933) and the WWII (1941-1945) famine in 101 095 (3601 had PDR) UNDR participants. Among 3021 (251 had PDR) HKDR participants, we studied type 2 diabetes patients exposed to perinatal famine during the WWII Japanese invasion in 1942-1945. RESULTS: During the Holodomor and WWII, perinatal famine was associated with a 1.76-fold (p = 0.019) and 3.02-fold (p = 0.001) increased risk of severe PDR in the UNDR. The risk for PDR was 1.66-fold elevated among individuals born in 1942 in the HKDR (p < 0.05). The associations between perinatal famine and PDR remained statistically significant after corrections for HbA1c in available 18 507 UNDR (padditive interaction < 0.001) and in 3021 HKDR type 2 diabetes patients (p < 0.05). CONCLUSION: In conclusion, type 2 diabetes patients, exposed to perinatal famine, have increased risk of PDR compared to those without perinatal famine exposure. Further studies are needed to understand the underlying mechanisms and to extend this finding to other diabetes complications.


Asunto(s)
Retinopatía Diabética/epidemiología , Hambruna/estadística & datos numéricos , Efectos Tardíos de la Exposición Prenatal/epidemiología , Anciano , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Hong Kong/epidemiología , Humanos , Persona de Mediana Edad , Embarazo , Sistema de Registros , Medición de Riesgo , Ucrania/epidemiología
12.
Front Cell Dev Biol ; 9: 726852, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869314

RESUMEN

Perinatal exposure to starvation is a risk factor for development of severe retinopathy in adult patients with diabetes. However, the underlying mechanisms are not completely understood. In the present study, we shed light on molecular consequences of exposure to short-time glucose starvation on the transcriptome profile of mouse embryonic retinal cells. We found a profound downregulation of genes regulating development of retinal neurons, which was accompanied by reduced expression of genes encoding for glycolytic enzymes and glutamatergic signaling. At the same time, glial and vascular markers were upregulated, mimicking the diabetes-associated increase of angiogenesis-a hallmark of pathogenic features in diabetic retinopathy. Energy deprivation as a consequence of starvation to glucose seems to be compensated by upregulation of genes involved in fatty acid elongation. Results from the present study demonstrate that short-term glucose deprivation during early fetal life differentially alters expression of metabolism- and function-related genes and could have detrimental and lasting effects on gene expression in the retinal neurons, glial cells, and vascular elements and thus potentially disrupting gene regulatory networks essential for the formation of the retinal neurovascular unit. Abnormal developmental programming during retinogenesis may serve as a trigger of reactive gliosis, accelerated neurodegeneration, and increased vascularization, which may promote development of severe retinopathy in patients with diabetes later in life.

13.
Metabolism ; 118: 154734, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33631146

RESUMEN

The amplification of glucose-stimulated insulin secretion (GSIS) through incretin signaling is critical for maintaining physiological glucose levels. Incretins, like glucagon-like peptide 1 (GLP1), are a target of type 2 diabetes drugs aiming to enhance insulin secretion. Here we show that the protein phosphatase 1 inhibitor protein 1A (PPP1R1A), is expressed in ß-cells and that its expression is reduced in dysfunctional ß-cells lacking MafA and upon acute MafA knock down. MafA is a central regulator of GSIS and ß-cell function. We observed a strong correlation of MAFA and PPP1R1A mRNA levels in human islets, moreover, PPP1R1A mRNA levels were reduced in type 2 diabetic islets and positively correlated with GLP1-mediated GSIS amplification. PPP1R1A silencing in INS1 (832/13) ß-cells impaired GSIS amplification, PKA-target protein phosphorylation, mitochondrial coupling efficiency and also the expression of critical ß-cell marker genes like MafA, Pdx1, NeuroD1 and Pax6. Our results demonstrate that the ß-cell transcription factor MafA is required for PPP1R1A expression and that reduced ß-cell PPP1R1A levels impaired ß-cell function and contributed to ß-cell dedifferentiation during type 2 diabetes. Loss of PPP1R1A in type 2 diabetic ß-cells may explains the unresponsiveness of type 2 diabetic patients to GLP1R-based treatments.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Proteína Fosfatasa 1/genética , Animales , Desdiferenciación Celular , Línea Celular , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Humanos , Células Secretoras de Insulina/patología , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Fosforilación , ARN Mensajero/genética
14.
EMBO J ; 39(1): e100882, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31750562

RESUMEN

Maternal drug abuse during pregnancy is a rapidly escalating societal problem. Psychostimulants, including amphetamine, cocaine, and methamphetamine, are amongst the illicit drugs most commonly consumed by pregnant women. Neuropharmacology concepts posit that psychostimulants affect monoamine signaling in the nervous system by their affinities to neurotransmitter reuptake and vesicular transporters to heighten neurotransmitter availability extracellularly. Exacerbated dopamine signaling is particularly considered as a key determinant of psychostimulant action. Much less is known about possible adverse effects of these drugs on peripheral organs, and if in utero exposure induces lifelong pathologies. Here, we addressed this question by combining human RNA-seq data with cellular and mouse models of neuroendocrine development. We show that episodic maternal exposure to psychostimulants during pregnancy coincident with the intrauterine specification of pancreatic ß cells permanently impairs their ability of insulin production, leading to glucose intolerance in adult female but not male offspring. We link psychostimulant action specifically to serotonin signaling and implicate the sex-specific epigenetic reprogramming of serotonin-related gene regulatory networks upstream from the transcription factor Pet1/Fev as determinants of reduced insulin production.


Asunto(s)
Diabetes Mellitus Tipo 2/etiología , Intolerancia a la Glucosa/etiología , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Islotes Pancreáticos/patología , Metanfetamina/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Animales , Estimulantes del Sistema Nervioso Central/toxicidad , Metilación de ADN , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Humanos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Exposición Materna/efectos adversos , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología
15.
Nat Genet ; 51(11): 1596-1606, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31676859

RESUMEN

A rare loss-of-function allele p.Arg138* in SLC30A8 encoding the zinc transporter 8 (ZnT8), which is enriched in Western Finland, protects against type 2 diabetes (T2D). We recruited relatives of the identified carriers and showed that protection was associated with better insulin secretion due to enhanced glucose responsiveness and proinsulin conversion, particularly when compared with individuals matched for the genotype of a common T2D-risk allele in SLC30A8, p.Arg325. In genome-edited human induced pluripotent stem cell (iPSC)-derived ß-like cells, we establish that the p.Arg138* allele results in reduced SLC30A8 expression due to haploinsufficiency. In human ß cells, loss of SLC30A8 leads to increased glucose responsiveness and reduced KATP channel function similar to isolated islets from carriers of the T2D-protective allele p.Trp325. These data position ZnT8 as an appealing target for treatment aimed at maintaining insulin secretion capacity in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/prevención & control , Glucosa/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Transportador 8 de Zinc/metabolismo , Adolescente , Adulto , Anciano , Diabetes Mellitus Tipo 2/patología , Femenino , Genotipo , Humanos , Células Madre Pluripotentes Inducidas/patología , Islotes Pancreáticos/patología , Masculino , Persona de Mediana Edad , Adulto Joven , Transportador 8 de Zinc/genética
16.
Sci Rep ; 9(1): 9074, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31235823

RESUMEN

Maf transcription factors are critical regulators of beta-cell function. We have previously shown that reduced MafA expression in human and mouse islets is associated with a pro-inflammatory gene signature. Here, we investigate if the loss of Maf transcription factors induced autoimmune processes in the pancreas. Transcriptomics analysis showed expression of pro-inflammatory as well as immune cell marker genes. However, clusters of CD4+ T and B220+ B cells were associated primarily with adult MafA-/-MafB+/-, but not MafA-/- islets. MafA expression was detected in the thymus, lymph nodes and bone marrow suggesting a novel role of MafA in regulating immune-cell function. Analysis of pancreatic lymph node cells showed activation of CD4+ T cells, but lack of CD8+ T cell activation which also coincided with an enrichment of naïve CD8+ T cells. Further analysis of T cell marker genes revealed a reduction of T cell receptor signaling gene expression in CD8, but not in CD4+ T cells, which was accompanied with a defect in early T cell receptor signaling in mutant CD8+ T cells. These results suggest that loss of MafA impairs both beta- and T cell function affecting the balance of peripheral immune responses against islet autoantigens, resulting in local inflammation in pancreatic islets.


Asunto(s)
Regulación de la Expresión Génica , Islotes Pancreáticos/patología , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Factor de Transcripción MafB/metabolismo , Animales , Células Presentadoras de Antígenos/metabolismo , Autoinmunidad , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Técnicas de Inactivación de Genes , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Islotes Pancreáticos/inmunología , Factores de Transcripción Maf de Gran Tamaño/deficiencia , Factores de Transcripción Maf de Gran Tamaño/genética , Factor de Transcripción MafB/deficiencia , Factor de Transcripción MafB/genética , Ratones , Mutación , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal
17.
J Biol Chem ; 294(18): 7377-7387, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30862673

RESUMEN

The aquaglyceroporins are a subfamily of aquaporins that conduct both water and glycerol. Aquaporin-3 (AQP3) has an important physiological function in renal water reabsorption, and AQP3-mediated hydrogen peroxide (H2O2) permeability can enhance cytokine signaling in several cell types. The related aquaglyceroporin AQP7 is required for dendritic cell chemokine responses and antigen uptake. Selective small-molecule inhibitors are desirable tools for investigating the biological and pathological roles of these and other AQP isoforms. Here, using a calcein fluorescence quenching assay, we screened a library of 7360 drug-like small molecules for inhibition of mouse AQP3 water permeability. Hit confirmation and expansion with commercially available substances identified the ortho-chloride-containing compound DFP00173, which inhibited mouse and human AQP3 with an IC50 of ∼0.1-0.4 µm but had low efficacy toward mouse AQP7 and AQP9. Surprisingly, inhibitor specificity testing revealed that the methylurea-linked compound Z433927330, a partial AQP3 inhibitor (IC50, ∼0.7-0.9 µm), is a potent and efficacious inhibitor of mouse AQP7 water permeability (IC50, ∼0.2 µm). Stopped-flow light scattering measurements confirmed that DFP00173 and Z433927330 inhibit AQP3 glycerol permeability in human erythrocytes. Moreover, DFP00173, Z433927330, and the previously identified AQP9 inhibitor RF03176 blocked aquaglyceroporin H2O2 permeability. Molecular docking to AQP3, AQP7, and AQP9 homology models suggested interactions between these inhibitors and aquaglyceroporins at similar binding sites. DFP00173 and Z433927330 constitute selective and potent AQP3 and AQP7 inhibitors, respectively, and contribute to a set of isoform-specific aquaglyceroporin inhibitors that will facilitate the evaluation of these AQP isoforms as drug targets.


Asunto(s)
Acuaporina 3/antagonistas & inhibidores , Acuaporinas/antagonistas & inhibidores , Tiofenos/farmacología , Animales , Células CHO , Permeabilidad de la Membrana Celular , Cricetulus , Eritrocitos/metabolismo , Glicerol/metabolismo , Humanos , Ratones , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Tiofenos/química , Agua/metabolismo
18.
Commun Biol ; 2: 106, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30911681

RESUMEN

Voltage-gated Ca2+ (CaV) channels trigger glucose-induced insulin secretion in pancreatic beta-cell and their dysfunction increases diabetes risk. These heteromeric complexes include the main subunit alpha1, and the accessory ones, including subunit gamma that remains unexplored. Here, we demonstrate that CaV gamma subunit 4 (CaVγ4) is downregulated in islets from human donors with diabetes, diabetic Goto-Kakizaki (GK) rats, as well as under conditions of gluco-/lipotoxic stress. Reduction of CaVγ4 expression results in decreased expression of L-type CaV1.2 and CaV1.3, thereby suppressing voltage-gated Ca2+ entry and glucose stimulated insulin exocytosis. The most important finding is that CaVγ4 expression is controlled by the transcription factor responsible for beta-cell specification, MafA, as verified by chromatin immunoprecipitation and experiments in beta-cell specific MafA knockout mice (MafA Δßcell ). Taken together, these findings suggest that CaVγ4 is necessary for maintaining a functional differentiated beta-cell phenotype. Treatment aiming at restoring CaVγ4 may help to restore beta-cell function in diabetes.


Asunto(s)
Canales de Calcio Tipo N/genética , Canales de Calcio Tipo N/metabolismo , Regulación de la Expresión Génica , Células Secretoras de Insulina/metabolismo , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Animales , Biomarcadores , Calcio/metabolismo , Señalización del Calcio , Expresión Génica , Glucosa/metabolismo , Humanos , Secreción de Insulina , Ratones , Ratones Noqueados , Modelos Biológicos , Ratas
19.
Genes (Basel) ; 9(12)2018 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-30567413

RESUMEN

Type 1 (T1D) and type 2 (T2D) diabetes are triggered by a combination of environmental and/or genetic factors. Maf transcription factors regulate pancreatic beta (ß)-cell function, and have also been implicated in the regulation of immunomodulatory cytokines like interferon-ß (IFNß1). In this study, we assessed MAFA and MAFB co-expression with pro-inflammatory cytokine signaling genes in RNA-seq data from human pancreatic islets. Interestingly, MAFA expression was strongly negatively correlated with cytokine-induced signaling (such as IFNAR1, DDX58) and T1D susceptibility genes (IFIH1), whereas correlation of these genes with MAFB was weaker. In order to evaluate if the loss of MafA altered the immune status of islets, MafA deficient mouse islets (MafA-/-) were assessed for inherent anti-viral response and susceptibility to enterovirus infection. MafA deficient mouse islets had elevated basal levels of Ifnß1, Rig1 (DDX58 in humans), and Mda5 (IFIH1) which resulted in reduced virus propagation in response to coxsackievirus B3 (CVB3) infection. Moreover, an acute knockdown of MafA in ß-cell lines also enhanced Rig1 and Mda5 protein levels. Our results suggest that precise regulation of MAFA levels is critical for islet cell-specific cytokine production, which is a critical parameter for the inflammatory status of pancreatic islets.

20.
Endocrinology ; 157(12): 4615-4631, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27740873

RESUMEN

Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here, we show that retinol dehydrogenase-10 (Rdh10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation. Rdh10 was expressed in the developing pancreas epithelium and surrounding mesenchyme. Rdh10 null mutant mouse embryos exhibited dorsal pancreas agenesis and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight, and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early glucagon+ and insulin+ cells. During the secondary transition, the reduction of Neurogenin3+ endocrine progenitors in the mutant dorsal pancreas accounted for fewer α- and ß-cells. Changes in the expression of α- and ß-cell-specific transcription factors indicated that Rdh10 might also participate in the terminal differentiation of endocrine cells. Together, our results highlight the importance of both mesenchymal and epithelial Rdh10 for pancreogenesis and the first wave of endocrine cell differentiation. We further propose a model in which the Rdh10-expressing exocrine tissue acts as an essential source of RA signals in the second wave of endocrine cell differentiation.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Diferenciación Celular/fisiología , Organogénesis/fisiología , Páncreas/embriología , Comunicación Paracrina/fisiología , Tretinoina/metabolismo , Oxidorreductasas de Alcohol/genética , Animales , Glucemia/metabolismo , Peso Corporal/genética , Anomalías Congénitas/genética , Anomalías Congénitas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Noqueados , Páncreas/anomalías , Páncreas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...