Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 344: 118532, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454447

RESUMEN

The management of Soil Organic Carbon (SOC) is a critical component of both nature-based solutions for climate change mitigation and global food security. Agriculture has contributed substantially to a reduction in global SOC through cultivation, thus there has been renewed focus on management practices which minimize SOC losses and increase SOC gain as pathways towards maintaining healthy soils and reducing net greenhouse gas emissions. Mechanistic models are frequently used to aid in identifying these pathways due to their scalability and cost-effectiveness. Yet, they are often computationally costly and rely on input data that are often only available at coarse spatial resolutions. Herein, we build statistical meta-models of a multifactorial crop model in order to both (a) obtain a simplified model response and (b) explore the biophysical determinants of SOC responses to management and the geospatial heterogeneity of SOC dynamics across Europe. Using 5600 unique simulations of crop growth from the gridded Environmental Policy Integrated Climate-based Gridded Agricultural Model (EPIC-IIASA GAM) covering 86,000 simulation units across Europe, we build multiple polynomial regression ensemble meta-models for unique combinations of climate and soil across Europe in order to predict SOC responses to varying management intensities. We find that our biophysically-explicit meta models are highly accurate (R2 = 0.97) representations of the full mechanistic model and can be used in lieu of the full EPIC-IIASA GAM model for the estimation of SOC responses to cropland management. Model stratification by means of climate and soil clustering improved the performance of the meta-models compared to the full EU-scale model. In regional and local validations of the meta-model predictions, we find that the meta-models largely capture broad SOC dynamics such as the linear nature of SOC responses to residue application, yet they often underestimate the magnitude of SOC responses to management. Furthermore, we find notable differences between the results from the biophysically-specific models throughout Europe, which point to spatially-distinct SOC responses to management choices such as nitrogen fertilizer application rates and residue retention that illustrate the potential for these models to be used for future management applications. While more accurate input data, calibration, and validation will be needed to accurately predict SOC change, we demonstrate the use of our meta-models for biophysical cluster and field study scale analyses of broad SOC dynamics with basically zero fine-tuning of the models needed. This work provides a framework for simplifying large-scale agricultural models and identifies the opportunities for using these meta-models for assessing SOC responses to management at a variety of scales.


Asunto(s)
Carbono , Suelo , Suelo/química , Carbono/análisis , Agricultura/métodos , Europa (Continente) , Modelos Estadísticos , Secuestro de Carbono
2.
Nat Food ; 4(6): 518-527, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37337082

RESUMEN

As Africa is facing multiple challenges related to food security, frameworks integrating production and availability are urgent for policymaking. Attention should be given not only to gradual socio-economic and climatic changes but also to their temporal variability. Here we present an integrated framework that allows one to assess the impacts of socio-economic development, gradual climate change and climate anomalies. We apply this framework to rice production and consumption in Africa whereby we explicitly account for the continent's dependency on imported rice. We show that socio-economic development dictates rice availability, whereas climate change has only minor effects in the long term and is predicted not to amplify supply shocks. Still, rainfed-dominated or self-producing regions are sensitive to local climatic anomalies, while trade dominates stability in import-dependent regions. Our study suggests that facilitating agricultural development and limiting trade barriers are key in relieving future challenges to rice availability and stability.


Asunto(s)
Oryza , Desarrollo Económico , Abastecimiento de Alimentos , África , Cambio Climático
3.
Nat Food ; 3(8): 608-618, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-37118605

RESUMEN

Developing and integrating agricultural markets may be key to addressing Africa's sustainability challenges. By modelling trade costs from farm gate to potential import markets across eight African regions, we investigate the impact of individual components of continental free trade and the complementary role of domestic agricultural development through increased market access for farmers and agricultural intensification. We find that free trade would increase intra-African agricultural trade sixfold by 2030 but-since it does not address local supply constraints-outside food imports and undernourishment would reduce only marginally. Agricultural development could almost eliminate undernourishment in Africa by 2050 at only a small cost of increased global greenhouse gas emissions. While continental free trade will be enabled in Africa through the African Continental Free Trade Area, aligning this with local agricultural development policies is crucial to increase intra-African trade gains, promote food security and achieve climate objectives.

4.
J Environ Manage ; 287: 112318, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33740746

RESUMEN

Soils as key component of terrestrial ecosystems are under increasing pressures. As an advance to current static assessments, we present a dynamic soil functions assessment (SFA) to evaluate the current and future state of soils regarding their nutrient storage, water regulation, productivity, habitat and carbon sequestration functions for the case-study region in the Lower Austrian Mostviertel. Carbon response functions simulating the development of regional soil organic carbon (SOC) stocks until 2100 are used to couple established indicator-based SFA methodology with two climate and three land use scenarios, i.e. land sparing (LSP), land sharing (LSH), and balanced land use (LBA). Results reveal a dominant impact of land use scenarios on soil functions compared to the impact from climate scenarios and highlight the close link between SOC development and the quality of investigated soil functions, i.e. soil functionality. The soil habitat and soil carbon sequestration functions on investigated agricultural land are positively affected by maintenance of grassland under LSH (20% of the case-study region), where SOC stocks show a steady and continuous increase. By 2100 however, total regional SOC stocks are higher under LSP compared to LSH or LBA, due to extensive afforestation. The presented approach may improve integrative decision-making in land use planning processes. It bridges superordinate goals of sustainable development, such as climate change mitigation, with land use actions taken at local or regional scales. The dynamic SFA broadens the debate on LSH and LSP and can reduce trade-offs between soil functions through land use planning processes.


Asunto(s)
Carbono , Suelo , Agricultura , Austria , Carbono/análisis , Secuestro de Carbono , Ecosistema
5.
Nat Food ; 2(11): 873-885, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-37117503

RESUMEN

Potential climate-related impacts on future crop yield are a major societal concern. Previous projections of the Agricultural Model Intercomparison and Improvement Project's Global Gridded Crop Model Intercomparison based on the Coupled Model Intercomparison Project Phase 5 identified substantial climate impacts on all major crops, but associated uncertainties were substantial. Here we report new twenty-first-century projections using ensembles of latest-generation crop and climate models. Results suggest markedly more pessimistic yield responses for maize, soybean and rice compared to the original ensemble. Mean end-of-century maize productivity is shifted from +5% to -6% (SSP126) and from +1% to -24% (SSP585)-explained by warmer climate projections and improved crop model sensitivities. In contrast, wheat shows stronger gains (+9% shifted to +18%, SSP585), linked to higher CO2 concentrations and expanded high-latitude gains. The 'emergence' of climate impacts consistently occurs earlier in the new projections-before 2040 for several main producing regions. While future yield estimates remain uncertain, these results suggest that major breadbasket regions will face distinct anthropogenic climatic risks sooner than previously anticipated.

6.
J Environ Manage ; 274: 111206, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32818829

RESUMEN

Regional monitoring, reporting and verification of soil organic carbon change occurring in managed cropland are indispensable to support carbon-related policies. Rapidly evolving gridded agronomic models can facilitate these efforts throughout Europe. However, their performance in modelling soil carbon dynamics at regional scale is yet unexplored. Importantly, as such models are often driven by large-scale inputs, they need to be benchmarked against field experiments. We elucidate the level of detail that needs to be incorporated in gridded models to robustly estimate regional soil carbon dynamics in managed cropland, testing the approach for regions in the Czech Republic. We first calibrated the biogeochemical Environmental Policy Integrated Climate (EPIC) model against long-term experiments. Subsequently, we examined the EPIC model within a top-down gridded modelling framework constructed for European agricultural soils from Europe-wide datasets and regional land-use statistics. We explored the top-down, as opposed to a bottom-up, modelling approach for reporting agronomically relevant and verifiable soil carbon dynamics. In comparison with a no-input baseline, the regional EPIC model suggested soil carbon changes (~0.1-0.5 Mg C ha-1 y-1) consistent with empirical-based studies for all studied agricultural practices. However, inaccurate soil information, crop management inputs, or inappropriate model calibration may undermine regional modelling of cropland management effect on carbon since each of the three components carry uncertainty (~0.5-1.5 Mg C ha-1 y-1) that is substantially larger than the actual effect of agricultural practices relative to the no-input baseline. Besides, inaccurate soil data obtained from the background datasets biased the simulated carbon trends compared to observations, thus hampering the model's verifiability at the locations of field experiments. Encouragingly, the top-down agricultural management derived from regional land-use statistics proved suitable for the estimation of soil carbon dynamics consistently with actual field practices. Despite sensitivity to biophysical parameters, we found a robust scalability of the soil organic carbon routine for various climatic regions and soil types represented in the Czech experiments. The model performed better than the tier 1 methodology of the Intergovernmental Panel on Climate Change, which indicates a great potential for improved carbon change modelling over larger political regions.


Asunto(s)
Carbono/análisis , Suelo , Agricultura , Productos Agrícolas , República Checa , Europa (Continente)
7.
PLoS One ; 14(9): e0221862, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31525247

RESUMEN

Global gridded crop models (GGCMs) combine agronomic or plant growth models with gridded spatial input data to estimate spatially explicit crop yields and agricultural externalities at the global scale. Differences in GGCM outputs arise from the use of different biophysical models, setups, and input data. GGCM ensembles are frequently employed to bracket uncertainties in impact studies without investigating the causes of divergence in outputs. This study explores differences in maize yield estimates from five GGCMs based on the public domain field-scale model Environmental Policy Integrated Climate (EPIC) that participate in the AgMIP Global Gridded Crop Model Intercomparison initiative. Albeit using the same crop model, the GGCMs differ in model version, input data, management assumptions, parameterization, and selection of subroutines affecting crop yield estimates via cultivar distributions, soil attributes, and hydrology among others. The analyses reveal inter-annual yield variability and absolute yield levels in the EPIC-based GGCMs to be highly sensitive to soil parameterization and crop management. All GGCMs show an intermediate performance in reproducing reported yields with a higher skill if a static soil profile is assumed or sufficient plant nutrients are supplied. An in-depth comparison of setup domains for two EPIC-based GGCMs shows that GGCM performance and plant stress responses depend substantially on soil parameters and soil process parameterization, i.e. hydrology and nutrient turnover, indicating that these often neglected domains deserve more scrutiny. For agricultural impact assessments, employing a GGCM ensemble with its widely varying assumptions in setups appears the best solution for coping with uncertainties from lack of comprehensive global data on crop management, cultivar distributions and coefficients for agro-environmental processes. However, the underlying assumptions require systematic specifications to cover representative agricultural systems and environmental conditions. Furthermore, the interlinkage of parameter sensitivity from various domains such as soil parameters, nutrient turnover coefficients, and cultivar specifications highlights that global sensitivity analyses and calibration need to be performed in an integrated manner to avoid bias resulting from disregarded core model domains. Finally, relating evaluations of the EPIC-based GGCMs to a wider ensemble based on individual core models shows that structural differences outweigh in general differences in configurations of GGCMs based on the same model, and that the ensemble mean gains higher skill from the inclusion of structurally different GGCMs. Although the members of the wider ensemble herein do not consider crop-soil-management interactions, their sensitivity to nutrient supply indicates that findings for the EPIC-based sub-ensemble will likely become relevant for other GGCMs with the progressing inclusion of such processes.


Asunto(s)
Producción de Cultivos/métodos , Modelos Estadísticos , Clima , Producción de Cultivos/estadística & datos numéricos , Productos Agrícolas/crecimiento & desarrollo , Suelo/química , Incertidumbre
8.
Sci Data ; 6(1): 50, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31068583

RESUMEN

The Global Gridded Crop Model Intercomparison (GGCMI) phase 1 dataset of the Agricultural Model Intercomparison and Improvement Project (AgMIP) provides an unprecedentedly large dataset of crop model simulations covering the global ice-free land surface. The dataset consists of annual data fields at a spatial resolution of 0.5 arc-degree longitude and latitude. Fourteen crop modeling groups provided output for up to 11 historical input datasets spanning 1901 to 2012, and for up to three different management harmonization levels. Each group submitted data for up to 15 different crops and for up to 14 output variables. All simulations were conducted for purely rainfed and near-perfectly irrigated conditions on all land areas irrespective of whether the crop or irrigation system is currently used there. With the publication of the GGCMI phase 1 dataset we aim to promote further analyses and understanding of crop model performance, potential relationships between productivity and environmental impacts, and insights on how to further improve global gridded crop model frameworks. We describe dataset characteristics and individual model setup narratives.

9.
Sci Total Environ ; 662: 141-150, 2019 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-30690349

RESUMEN

Crop residue burning influences human health and global climate change. In China-the world's largest crop residue producer-farmers burn almost one quarter of their crop residues in the field after harvest, despite the government providing financial incentives such as subsidies to retain crop residues. This study combined economic analyses with simulations of soil carbon accumulation and carbon emission reduction associated with different residue management practices to determine the minimum level of incentives needed for Chinese farmers to shift from burning to retaining crop residues for generating carbon benefits. Simulation results showed that [1] the density of topsoil organic carbon in China's croplands would have increased from about 21.8 t ha-1 in 2000 to 23.9 t ha-1 in 2010, and soil organic carbon sequestration would have reached 24.4 Tg C yr-1 if farmers had shifted from burning to retaining crop residues on croplands during this period; and [2] retaining crop residues would have avoided about 149.9 Tg of CO2 emission per year. Economic analyses showed that [1] existing subsidies in all regions of China, except Northeast China, only accounted for 18-82% of the incentives required for farmers to shift from burning to crop residue retention; [2] Northeast China required the lowest incentive (287 CNY ha-1), while eastern China required the highest (837 CNY ha-1); and [3] the prevailing market prices (1.4-60.2 CNY tCO2e-1) in China's seven pilot carbon markets seem to be below the required incentives (39.6-189.1 CNY tCO2e-1). Our study suggests that the Chinese government should increase subsidies or seek innovative incentive schemes to encourage farmers to change their crop residue management practices for global climate change mitigation and health benefits.


Asunto(s)
Agricultura/métodos , Secuestro de Carbono , Productos Agrícolas , Monitoreo del Ambiente , Incendios , Suelo/química , Agricultura/economía , China , Modelos Económicos , Modelos Teóricos
10.
Glob Chang Biol ; 25(1): 155-173, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30549200

RESUMEN

Wheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32-multi-model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric CO2 concentration by 2050 on global wheat grain and protein yield are likely to be negated by impacts from rising temperature and changes in rainfall, but with considerable disparities between regions. Grain and protein yields are expected to be lower and more variable in most low-rainfall regions, with nitrogen availability limiting growth stimulus from elevated CO2 . Introducing genotypes adapted to warmer temperatures (and also considering changes in CO2 and rainfall) could boost global wheat yield by 7% and protein yield by 2%, but grain protein concentration would be reduced by -1.1 percentage points, representing a relative change of -8.6%. Climate change adaptations that benefit grain yield are not always positive for grain quality, putting additional pressure on global wheat production.


Asunto(s)
Adaptación Fisiológica , Cambio Climático , Proteínas de Granos/análisis , Triticum/química , Triticum/fisiología , Dióxido de Carbono/metabolismo , Sequías , Calidad de los Alimentos , Modelos Teóricos , Nitrógeno/metabolismo , Temperatura
11.
Glob Chang Biol ; 25(4): 1428-1444, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30536680

RESUMEN

Efforts to limit global warming to below 2°C in relation to the pre-industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2°C on mean crop yields, and many previous studies did not focus sufficiently on extreme events and yield interannual variability. Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris Agreement range of global warming (1.5 and 2.0°C warming above the pre-industrial period) on global wheat production and local yield variability. A multi-crop and multi-climate model ensemble over a global network of sites developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major rainfed and irrigated wheat cropping systems. Results show that projected global wheat production will change by -2.3% to 7.0% under the 1.5°C scenario and -2.4% to 10.5% under the 2.0°C scenario, compared to a baseline of 1980-2010, when considering changes in local temperature, rainfall, and global atmospheric CO2 concentration, but no changes in management or wheat cultivars. The projected impact on wheat production varies spatially; a larger increase is projected for temperate high rainfall regions than for moderate hot low rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced than in cooler regions. Despite mostly positive impacts on global average grain yields, the frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield inter-annual variability will increase under both warming scenarios for some of the hot growing locations, including locations from the second largest global wheat producer-India, which supplies more than 14% of global wheat. The projected global impact of warming <2°C on wheat production is therefore not evenly distributed and will affect regional food security across the globe as well as food prices and trade.

12.
Earths Future ; 6(3): 373-395, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29938209

RESUMEN

Even if global warming is kept below +2°C, European agriculture will be significantly impacted. Soil degradation may amplify these impacts substantially and thus hamper crop production further. We quantify biophysical consequences and bracket uncertainty of +2°C warming on calories supply from 10 major crops and vulnerability to soil degradation in Europe using crop modeling. The Environmental Policy Integrated Climate (EPIC) model together with regional climate projections from the European branch of the Coordinated Regional Downscaling Experiment (EURO-CORDEX) was used for this purpose. A robustly positive calorie yield change was estimated for the EU Member States except for some regions in Southern and South-Eastern Europe. The mean impacts range from +30 Gcal ha-1 in the north, through +25 and +20 Gcal ha-1 in Western and Eastern Europe, respectively, to +10 Gcal ha-1 in the south if soil degradation and heat impacts are not accounted for. Elevated CO2 and increased temperature are the dominant drivers of the simulated yield changes in high-input agricultural systems. The growth stimulus due to elevated CO2 may offset potentially negative yield impacts of temperature increase by +2°C in most of Europe. Soil degradation causes a calorie vulnerability ranging from 0 to 50 Gcal ha-1 due to insufficient compensation for nutrient depletion and this might undermine climate benefits in many regions, if not prevented by adaptation measures, especially in Eastern and North-Eastern Europe. Uncertainties due to future potentials for crop intensification are about 2-50 times higher than climate change impacts.

13.
PLoS One ; 13(6): e0198748, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29949598

RESUMEN

Agricultural production must increase to feed a growing and wealthier population, as well as to satisfy increasing demands for biomaterials and biomass-based energy. At the same time, deforestation and land-use change need to be minimized in order to preserve biodiversity and maintain carbon stores in vegetation and soils. Consequently, agricultural land use needs to be intensified in order to increase food production per unit area of land. Here we use simulations of AgMIP's Global Gridded Crop Model Intercomparison (GGCMI) phase 1 to assess implications of input-driven intensification (water, nutrients) on crop yield and yield stability, which is an important aspect in food security. We find region- and crop-specific responses for the simulated period 1980-2009 with broadly increasing yield variability under additional nitrogen inputs and stabilizing yields under additional water inputs (irrigation), reflecting current patterns of water and nutrient limitation. The different models of the GGCMI ensemble show similar response patterns, but model differences warrant further research on management assumptions, such as variety selection and soil management, and inputs as well as on model implementation of different soil and plant processes, such as on heat stress, and parameters. Higher variability in crop productivity under higher fertilizer input will require adequate buffer mechanisms in trade and distribution/storage networks to avoid food price volatility.


Asunto(s)
Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/crecimiento & desarrollo , Internacionalidad , Nutrientes/farmacología , Agua/farmacología , Relación Dosis-Respuesta a Droga , Modelos Estadísticos
14.
Sci Total Environ ; 627: 361-372, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29426159

RESUMEN

This study analyzes the influence of various fertilizer management practices on crop yield and soil organic carbon (SOC) based on the long-term field observations and modelling. Data covering 11 years from 8 long-term field trials were included, representing a range of typical soil, climate, and agro-ecosystems in China. The process-based model EPIC (Environmental Policy Integrated Climate model) was used to simulate the response of crop yield and SOC to various fertilization regimes. The results showed that the yield and SOC under additional manure application treatment were the highest while the yield under control treatment was the lowest (30%-50% of NPK yield) at all sites. The SOC in northern sites appeared more dynamic than that in southern sites. The variance partitioning analysis (VPA) showed more variance of crop yield could be explained by the fertilization factor (42%), including synthetic nitrogen (N), phosphorus (P), potassium (K) fertilizers, and fertilizer NPK combined with manure. The interactive influence of soil (total N, P, K, and available N, P, K) and climate factors (mean annual temperature and precipitation) determine the largest part of the SOC variance (32%). EPIC performs well in simulating both the dynamics of crop yield (NRMSE = 32% and 31% for yield calibration and validation) and SOC (NRMSE = 13% and 19% for SOC calibration and validation) under diverse fertilization practices in China. EPIC can assist in predicting the impacts of different fertilization regimes on crop growth and soil carbon dynamics, and contribute to the optimization of fertilizer management for different areas in China.

15.
Nat Commun ; 8: 13931, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28102202

RESUMEN

High temperatures are detrimental to crop yields and could lead to global warming-driven reductions in agricultural productivity. To assess future threats, the majority of studies used process-based crop models, but their ability to represent effects of high temperature has been questioned. Here we show that an ensemble of nine crop models reproduces the observed average temperature responses of US maize, soybean and wheat yields. Each day >30 °C diminishes maize and soybean yields by up to 6% under rainfed conditions. Declines observed in irrigated areas, or simulated assuming full irrigation, are weak. This supports the hypothesis that water stress induced by high temperatures causes the decline. For wheat a negative response to high temperature is neither observed nor simulated under historical conditions, since critical temperatures are rarely exceeded during the growing season. In the future, yields are modelled to decline for all three crops at temperatures >30 °C. Elevated CO2 can only weakly reduce these yield losses, in contrast to irrigation.

16.
Earths Future ; 5(6): 605-616, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30377624

RESUMEN

Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather-induced crop-yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state-of-the-art, process-based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the US. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process-based crop models not only account for weather influences on crop yields, but also represent human-management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.

17.
Nat Commun ; 7: 11872, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27323866

RESUMEN

Global gridded crop models (GGCMs) are increasingly used for agro-environmental assessments and estimates of climate change impacts on food production. Recently, the influence of climate data and weather variability on GGCM outcomes has come under detailed scrutiny, unlike the influence of soil data. Here we compare yield variability caused by the soil type selected for GGCM simulations to weather-induced yield variability. Without fertilizer application, soil-type-related yield variability generally outweighs the simulated inter-annual variability in yield due to weather. Increasing applications of fertilizer and irrigation reduce this variability until it is practically negligible. Importantly, estimated climate change effects on yield can be either negative or positive depending on the chosen soil type. Soils thus have the capacity to either buffer or amplify these impacts. Our findings call for improvements in soil data available for crop modelling and more explicit accounting for soil variability in GGCM simulations.

18.
Glob Chang Biol ; 20(4): 1278-88, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24470387

RESUMEN

The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N : P applications under low, medium, and high input scenarios, for past (1975), current, and future N : P mass ratios of respectively, 1 : 0.29, 1 : 0.15, and 1 : 0.05. At low N inputs (10 kg ha(-1)), current yield deficits amount to 10% but will increase up to 27% under the assumed future N : P ratio, while at medium N inputs (50 kg N ha(-1)), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N : P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1 : 0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Nitrógeno , Fósforo , Suelo/química , África , Fertilizantes , Modelos Teóricos , Nitrógeno/análisis , Nitrógeno/farmacología , Fósforo/análisis , Fósforo/farmacología , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo
19.
PLoS One ; 8(4): e60075, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23565186

RESUMEN

The continuing depletion of nutrients from agricultural soils in Sub-Saharan African is accompanied by a lack of substantial progress in crop yield improvement. In this paper we investigate yield gaps for corn under two scenarios: a micro-dosing scenario with marginal increases in nitrogen (N) and phosphorus (P) of 10 kg ha(-1) and a larger yet still conservative scenario with proposed N and P applications of 80 and 20 kg ha(-1) respectively. The yield gaps are calculated from a database of historical FAO crop fertilizer trials at 1358 locations for Sub-Saharan Africa and South America. Our approach allows connecting experimental field scale data with continental policy recommendations. Two critical findings emerged from the analysis. The first is the degree to which P limits increases in corn yields. For example, under a micro-dosing scenario, in Africa, the addition of small amounts of N alone resulted in mean yield increases of 8% while the addition of only P increased mean yields by 26%, with implications for designing better balanced fertilizer distribution schemes. The second finding was the relatively large amount of yield increase possible for a small, yet affordable amount of fertilizer application. Using African and South American fertilizer prices we show that the level of investment needed to achieve these results is considerably less than 1% of Agricultural GDP for both a micro-dosing scenario and for the scenario involving higher yet still conservative fertilizer application rates. In the latter scenario realistic mean yield increases ranged between 28 to 85% in South America and 71 to 190% in Africa (mean plus one standard deviation). External investment in this low technology solution has the potential to kick start development and could complement other interventions such as better crop varieties and improved economic instruments to support farmers.


Asunto(s)
Productos Agrícolas , Fertilizantes , Abastecimiento de Alimentos , Suelo/química , África del Sur del Sahara , Agricultura/economía , Abastecimiento de Alimentos/economía , Geografía , Modelos Teóricos , Nitrógeno , Fósforo , Soluciones , América del Sur , Zea mays/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...