Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(3): e17209, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38469989

RESUMEN

Active restoration through silvicultural treatments (enrichment planting, cutting climbers and liberation thinning) is considered an important intervention in logged forests. However, its ability to enhance regeneration is key for long-term recovery of logged forests, which remains poorly understood, particularly for the production and survival of seedlings in subsequent generations. To understand the long-term impacts of logging and restoration we tracked the diversity, survival and traits of seedlings that germinated immediately after a mast fruiting in North Borneo in unlogged and logged forests 30-35 years after logging. We monitored 5119 seedlings from germination for ~1.5 years across a mixed landscape of unlogged forests (ULs), naturally regenerating logged forests (NR) and actively restored logged forests via rehabilitative silvicultural treatments (AR), 15-27 years after restoration. We measured 14 leaf, root and biomass allocation traits on 399 seedlings from 15 species. Soon after fruiting, UL and AR forests had higher seedling densities than NR forest, but survival was the lowest in AR forests in the first 6 months. Community composition differed among forest types; AR and NR forests had lower species richness and lower evenness than UL forests by 5-6 months post-mast but did not differ between them. Differences in community composition altered community-weighted mean trait values across forest types, with higher root biomass allocation in NR relative to UL forest. Traits influenced mortality ~3 months post-mast, with more acquisitive traits and relative aboveground investment favoured in AR forests relative to UL forests. Our findings of reduced seedling survival and diversity suggest long time lags in post-logging recruitment, particularly for some taxa. Active restoration of logged forests recovers initial seedling production, but elevated mortality in AR forests lowers the efficacy of active restoration to enhance recruitment or diversity of seedling communities. This suggests current active restoration practices may fail to overcome barriers to regeneration in logged forests, which may drive long-term changes in future forest plant communities.


A restauração ativa por meio de tratamentos silviculturais (plantio de enriquecimento, corte de trepadeiras e desbaste) é considerada uma intervenção importante em florestas com exploração de madeira. No entanto, sua capacidade de melhorar a regeneração, essencial para a recuperação de longo prazo das florestas exploradas, permanece pouco compreendida, especialmente no que diz respeito à produção e sobrevivência de mudas em gerações subsequentes. Para compreender os impactos de longo prazo da exploração madeireira e da restauração, acompanhamos a diversidade, sobrevivência e características de plântulas que germinaram imediatamente após uma frutificação em massa no norte de Bornéu, em florestas com e sem exploração de madeira, 30-35 anos após o fim da extração. Monitoramos 5119 mudas desde a germinação por aproximadamente 1,5 anos em uma paisagem mista de florestas não exploradas (UL), florestas exploradas em regeneração natural (NR) e florestas exploradas restauradas ativamente por meio de tratamentos silviculturais de reabilitação (AR), 15-27 anos após a restauração. Medimos 14 traços funcionais de folhas, raízes e alocação de biomassa em 399 mudas de 15 espécies. Logo após a frutificação, as florestas UL e AR apresentaram densidades de mudas mais altas do que as florestas NR, mas a sobrevivência foi mais baixa nas florestas AR nos primeiros seis meses. A composição da comunidade diferiu entre os tipos de floresta; as florestas AR e NR teviram menor riqueza de espécies e menor equidade do que as florestas UL 5-6 meses após a frutificação, mas não diferiram entre si. As diferenças na composição da comunidade alteraram os valores de média ponderada pela comunidade das características entre os tipos de floresta com maior alocação de biomassa radicular nas florestas NR em relação às florestas UL. As características influenciaram a mortalidade aproximadamente 3 meses após a frutificação, com traços mais aquisitivos maior investimento em biomassa relativa acima do solo nas florestas AR em relação às florestas UL. Nossas descobertas de redução na sobrevivência e diversidade de plântulas sugerem que há longos retardos no recrutamento após o fim da exploração de madeira, particularmente para alguns táxons. A restauração ativa de florestas exploradas recupera a produção inicial de plântulas, mas a mortalidade elevada nas florestas AR diminui a eficácia da restauração ativa no melhorio do recrutamento e da diversidade das comunidades de mudas. Isso sugere que as práticas atuais de restauração ativa podem não superar as barreiras à regeneração em florestas exploradas, o que pode levar a mudanças de longo prazo nas comunidades florestais no futuro.


Asunto(s)
Agricultura Forestal , Árboles , Bosques , Plantones , Germinación , Clima Tropical
2.
Nature ; 625(7996): 728-734, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200314

RESUMEN

Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1-6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth's 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world's most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.


Asunto(s)
Bosques , Árboles , Clima Tropical , Biodiversidad , Árboles/anatomía & histología , Árboles/clasificación , Árboles/crecimiento & desarrollo , África , Asia Sudoriental
3.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210065, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373922

RESUMEN

There has never been a more pressing and opportune time for science and practice to collaborate towards restoration of the world's forests. Multiple uncertainties remain for achieving successful, long-term forest landscape restoration (FLR). In this article, we use expert knowledge and literature review to identify knowledge gaps that need closing to advance restoration practice, as an introduction to a landmark theme issue on FLR and the UN Decade on Ecosystem Restoration. Aligned with an Adaptive Management Cycle for FLR, we identify 15 essential science advances required to facilitate FLR success for nature and people. They highlight that the greatest science challenges lie in the conceptualization, planning and assessment stages of restoration, which require an evidence base for why, where and how to restore, at realistic scales. FLR and underlying sciences are complex, requiring spatially explicit approaches across disciplines and sectors, considering multiple objectives, drivers and trade-offs critical for decision-making and financing. The developing tropics are a priority region, where scientists must work with stakeholders across the Adaptive Management Cycle. Clearly communicated scientific evidence for action at the outset of restoration planning will enable donors, decision makers and implementers to develop informed objectives, realistic targets and processes for accountability. This article paves the way for 19 further articles in this theme issue, with author contributions from across the world. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos , Bosques
4.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210090, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373930

RESUMEN

Current policy is driving renewed impetus to restore forests to return ecological function, protect species, sequester carbon and secure livelihoods. Here we assess the contribution of tree planting to ecosystem restoration in tropical and sub-tropical Asia; we synthesize evidence on mortality and growth of planted trees at 176 sites and assess structural and biodiversity recovery of co-located actively restored and naturally regenerating forest plots. Mean mortality of planted trees was 18% 1 year after planting, increasing to 44% after 5 years. Mortality varied strongly by site and was typically ca 20% higher in open areas than degraded forest, with height at planting positively affecting survival. Size-standardized growth rates were negatively related to species-level wood density in degraded forest and plantations enrichment settings. Based on community-level data from 11 landscapes, active restoration resulted in faster accumulation of tree basal area and structural properties were closer to old-growth reference sites, relative to natural regeneration, but tree species richness did not differ. High variability in outcomes across sites indicates that planting for restoration is potentially rewarding but risky and context-dependent. Restoration projects must prepare for and manage commonly occurring challenges and align with efforts to protect and reconnect remaining forest areas. The abstract of this article is available in Bahasa Indonesia in the electronic supplementary material. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Asunto(s)
Ecosistema , Clima Tropical , Biodiversidad , Plantas , Asia
5.
Glob Chang Biol ; 28(17): 5254-5268, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35703577

RESUMEN

Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non-forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC-BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology-from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.


Asunto(s)
Bosques , Árboles , Biomasa , Carbono/metabolismo , Ciclo del Carbono , Ecosistema , Árboles/fisiología
6.
New Phytol ; 235(6): 2183-2198, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35633119

RESUMEN

Fine-scale topographic-edaphic gradients are common in tropical forests and drive species spatial turnover and marked changes in forest structure and function. We evaluate how hydraulic traits of tropical tree species relate to vertical and horizontal spatial niche specialization along such a gradient. Along a topographic-edaphic gradient with uniform climate in Borneo, we measured six key hydraulic traits in 156 individuals of differing heights in 13 species of Dipterocarpaceae. We investigated how hydraulic traits relate to habitat, tree height and their interaction on this gradient. Embolism resistance increased in trees on sandy soils but did not vary with tree height. By contrast, water transport capacity increased on sandier soils and with increasing tree height. Habitat and height only interact for hydraulic efficiency, with slope for height changing from positive to negative from the clay-rich to the sandier soil. Habitat type influenced trait-trait relationships for all traits except wood density. Our data reveal that variation in the hydraulic traits of dipterocarps is driven by a combination of topographic-edaphic conditions, tree height and taxonomic identity. Our work indicates that hydraulic traits play a significant role in shaping forest structure across topographic-edaphic and vertical gradients and may contribute to niche specialization among dipterocarp species.


Asunto(s)
Bosques , Árboles , Borneo , Ecosistema , Suelo , Clima Tropical
7.
Funct Ecol ; 36(12): 3175-3187, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37064076

RESUMEN

Regenerating tropical forests are increasingly important for their role in the global carbon cycle. Carbon stocks in above-ground biomass can recover to old-growth forest levels within 60-100 years. However, more than half of all carbon in tropical forests is stored below-ground, and our understanding of carbon storage in soils during tropical forest recovery is limited.Importantly, soil carbon accumulation does not necessarily reflect patterns in above-ground biomass carbon accrual during secondary forest succession, and factors related to past land use, species composition and soil characteristics may influence soil carbon storage during forest regrowth.Using tree census data and a measure of tree community shade tolerance (species-specific light response values), we assessed the relationship between soil organic carbon stocks and tree functional groups during secondary succession along a chronosequence of 40- to 120-year-old naturally regenerating secondary forest and old-growth tropical forest stands in Panama.While previous studies found no evidence for increasing soil C storage with secondary forest age, we found a strong relationship between tree functional composition and soil carbon stocks at 0-10 cm depth, whereby carbon stocks increased with the relative influence of light-demanding tree species. Light demanding trees had higher leaf nitrogen but lower leaf density than shade-tolerant trees, suggesting that rapid decomposition of nutrient-rich plant material in forests with a higher proportion of light-demanding species results in greater accumulation of carbon in the surface layer of soils. Synthesis. We propose that soil carbon storage in secondary tropical forests is more strongly linked to tree functional composition than forest age, and that the persistence of long-lived pioneer trees could enhance soil carbon storage as forests age. Considering shifts in tree functional groups could improve estimates of carbon sequestration potential for climate change mitigation by tropical forest regrowth. Read the free Plain Language Summary for this article on the Journal blog.


Los bosques tropicales en regeneración son cada vez más importantes por su papel en el ciclo global del carbono. Las reservas de carbono en la biomasa aérea pueden recuperarse hasta los niveles de los bosques maduros en un plazo de 60 a 100 años. Sin embargo, más de la mitad de todo el carbono en los bosques tropicales se almacena bajo tierra, y nuestra comprensión del almacenamiento de carbono en los suelos durante la recuperación de los bosques tropicales es limitada.Es importante señalar que la acumulación de carbono en el suelo no refleja necesariamente los patrones de acumulación de carbono en la biomasa aérea durante la sucesión de bosques secundarios y los factores relacionados con el uso pasado del terreno, la composición de especies y las características del suelo pueden influir en el almacenamiento de carbono en el suelo durante la regeneración del bosque.Usando datos del censo de árboles y una medida de la tolerancia a la sombra de la comunidad de árboles (valores de respuesta a la luz específicos de la especie), evaluamos la relación entre las reservas de carbono orgánico del suelo y los grupos funcionales de los árboles durante la sucesión secundaria a lo largo de una cronosecuencia de 40 a 120 años bosques secundarios de regeneración natural y rodales de bosques tropicales primarios en Panamá.Mientras que estudios previos no encontraron evidencia de un aumento del almacenamiento de C en el suelo con la edad del bosque secundario, encontramos una fuerte relación entre la composición funcional de los árboles y las reservas de carbono del suelo a 0­10 cm de profundidad, por lo que las reservas de carbono aumentaron con la influencia relativa de especies de árboles que demanda de luz. Los árboles que requieren luz tenían más nitrógeno en las hojas pero menor densidad de hojas que los árboles tolerantes a la sombra, lo que sugiere que la descomposición rápida del material vegetal rico en nutrientes en los bosques con una mayor proporción de especies que requieren luz da como resultado una mayor acumulación de carbono en la capa superficial de los suelos. Síntesis. Proponemos que el almacenamiento de carbono en el suelo en los bosques tropicales secundarios está más fuertemente relacionado con la composición funcional de los árboles que con la edad del bosque, y que la persistencia de árboles pioneros de larga vida podría mejorar el almacenamiento de carbono en el suelo a medida que los bosques envejecen. La consideración de los cambios en los grupos funcionales de los árboles podría mejorar las estimaciones del potencial de secuestro de carbono para la mitigación del cambio climático mediante la regeneración de los bosques tropicales.

8.
Nature ; 596(7873): 536-542, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34433947

RESUMEN

Tropical forests store 40-50 per cent of terrestrial vegetation carbon1. However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests2. Owing to climatic and soil changes with increasing elevation3, AGC stocks are lower in tropical montane forests compared with lowland forests2. Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1-164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network4 and about 70 per cent and 32 per cent higher than averages from plot networks in montane2,5,6 and lowland7 forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa8. We find that the low stem density and high abundance of large trees of African lowland forests4 is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse9,10 and carbon-rich ecosystems.


Asunto(s)
Actitud , Secuestro de Carbono , Carbono/análisis , Bosque Lluvioso , Árboles/metabolismo , Clima Tropical , África , Biomasa , Cambio Climático , Conservación de los Recursos Naturales , Conjuntos de Datos como Asunto , Mapeo Geográfico
9.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001597

RESUMEN

The responses of tropical forests to environmental change are critical uncertainties in predicting the future impacts of climate change. The positive phase of the 2015-2016 El Niño Southern Oscillation resulted in unprecedented heat and low precipitation in the tropics with substantial impacts on the global carbon cycle. The role of African tropical forests is uncertain as their responses to short-term drought and temperature anomalies have yet to be determined using on-the-ground measurements. African tropical forests may be particularly sensitive because they exist in relatively dry conditions compared with Amazonian or Asian forests, or they may be more resistant because of an abundance of drought-adapted species. Here, we report responses of structurally intact old-growth lowland tropical forests inventoried within the African Tropical Rainforest Observatory Network (AfriTRON). We use 100 long-term inventory plots from six countries each measured at least twice prior to and once following the 2015-2016 El Niño event. These plots experienced the highest temperatures and driest conditions on record. The record temperature did not significantly reduce carbon gains from tree growth or significantly increase carbon losses from tree mortality, but the record drought did significantly decrease net carbon uptake. Overall, the long-term biomass increase of these forests was reduced due to the El Niño event, but these plots remained a live biomass carbon sink (0.51 ± 0.40 Mg C ha-1 y-1) despite extreme environmental conditions. Our analyses, while limited to African tropical forests, suggest they may be more resistant to climatic extremes than Amazonian and Asian forests.


Asunto(s)
Cambio Climático , Bosque Lluvioso , Árboles/crecimiento & desarrollo , Clima Tropical , Ciclo del Carbono , Sequías , El Niño Oscilación del Sur , Calor , Humanos , Estaciones del Año
10.
Water Res ; 196: 116981, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33770676

RESUMEN

Despite advances in conceptual understanding, single-stressor abatement approaches remain common in the management of fresh waters, even though they can produce unexpected ecological responses when multiple stressors interact. Here we identify limitations restricting the development of multiple-stressor management strategies and address these, bridging theory and practice, within a novel empirical framework. Those critical limitations include that (i) monitoring schemes fall short of accounting for theory on relationships between multiple-stressor interactions and ecological responses, (ii) current empirical modelling approaches neglect the prevalence and intensity of multiple-stressor interactions, and (iii) mechanisms of stressor interactions are often poorly understood. We offer practical recommendations for the use of empirical models and experiments to predict the effects of freshwater degradation in response to changes in multiple stressors, demonstrating this approach in a case study. Drawing on our framework, we offer practical recommendations to support the development of effective management strategies in three general multiple-stressor scenarios.


Asunto(s)
Ecosistema , Agua Dulce , Ríos
11.
Plant Cell Environ ; 43(10): 2380-2393, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32643169

RESUMEN

The response of small understory trees to long-term drought is vital in determining the future composition, carbon stocks and dynamics of tropical forests. Long-term drought is, however, also likely to expose understory trees to increased light availability driven by drought-induced mortality. Relatively little is known about the potential for understory trees to adjust their physiology to both decreasing water and increasing light availability. We analysed data on maximum photosynthetic capacity (Jmax , Vcmax ), leaf respiration (Rleaf ), leaf mass per area (LMA), leaf thickness and leaf nitrogen and phosphorus concentrations from 66 small trees across 12 common genera at the world's longest running tropical rainfall exclusion experiment and compared responses to those from 61 surviving canopy trees. Small trees increased Jmax , Vcmax , Rleaf and LMA (71, 29, 32, 15% respectively) in response to the drought treatment, but leaf thickness and leaf nutrient concentrations did not change. Small trees were significantly more responsive than large canopy trees to the drought treatment, suggesting greater phenotypic plasticity and resilience to prolonged drought, although differences among taxa were observed. Our results highlight that small tropical trees have greater capacity to respond to ecosystem level changes and have the potential to regenerate resilient forests following future droughts.


Asunto(s)
Carbono/metabolismo , Árboles/metabolismo , Deshidratación , Sequías , Bosques , Fotosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Transpiración de Plantas , Árboles/fisiología , Clima Tropical
12.
Nat Ecol Evol ; 4(8): 1060-1068, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32541802

RESUMEN

Climate and land-use change drive a suite of stressors that shape ecosystems and interact to yield complex ecological responses (that is, additive, antagonistic and synergistic effects). We know little about the spatial scales relevant for the outcomes of such interactions and little about effect sizes. These knowledge gaps need to be filled to underpin future land management decisions or climate mitigation interventions for protecting and restoring freshwater ecosystems. This study combines data across scales from 33 mesocosm experiments with those from 14 river basins and 22 cross-basin studies in Europe, producing 174 combinations of paired-stressor effects on a biological response variable. Generalized linear models showed that only one of the two stressors had a significant effect in 39% of the analysed cases, 28% of the paired-stressor combinations resulted in additive effects and 33% resulted in interactive (antagonistic, synergistic, opposing or reversal) effects. For lakes, the frequencies of additive and interactive effects were similar for all spatial scales addressed, while for rivers these frequencies increased with scale. Nutrient enrichment was the overriding stressor for lakes, with effects generally exceeding those of secondary stressors. For rivers, the effects of nutrient enrichment were dependent on the specific stressor combination and biological response variable. These results vindicate the traditional focus of lake restoration and management on nutrient stress, while highlighting that river management requires more bespoke management solutions.


Asunto(s)
Ecosistema , Agua Dulce , Biota , Europa (Continente) , Ríos
13.
Science ; 368(6493): 869-874, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32439789

RESUMEN

The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (-9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth's climate.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Bosques , Calor , Árboles/metabolismo , Clima Tropical , Aclimatación , Biomasa , Carbono/metabolismo , Planeta Tierra , Madera
14.
Nature ; 579(7797): 80-87, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32132693

RESUMEN

Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions1-3. Climate-driven vegetation models typically predict that this tropical forest 'carbon sink' will continue for decades4,5. Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence interval 0.53-0.79), in contrast to the long-term decline in Amazonian forests6. Therefore the carbon sink responses of Earth's two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric carbon dioxide and air temperature7-9. Despite the past stability of the African carbon sink, our most intensively monitored plots suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of carbon into Earth's intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass10 reinforce our conclusion that the intact tropical forest carbon sink has already peaked. This saturation and ongoing decline of the tropical forest carbon sink has consequences for policies intended to stabilize Earth's climate.


Asunto(s)
Dióxido de Carbono/metabolismo , Secuestro de Carbono , Bosques , Árboles/metabolismo , Clima Tropical , África , Atmósfera/química , Biomasa , Brasil , Sequías , Historia del Siglo XX , Historia del Siglo XXI , Modelos Teóricos , Temperatura
15.
Nat Plants ; 5(2): 133-140, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30664730

RESUMEN

Quantifying carbon dynamics in forests is critical for understanding their role in long-term climate regulation1-4. Yet little is known about tree longevity in tropical forests3,5-8, a factor that is vital for estimating carbon persistence3,4. Here we calculate mean carbon age (the period that carbon is fixed in trees7) in different strata of African tropical forests using (1) growth-ring records with a unique timestamp accurately demarcating 66 years of growth in one site and (2) measurements of diameter increments from the African Tropical Rainforest Observation Network (23 sites). We find that in spite of their much smaller size, in understory trees mean carbon age (74 years) is greater than in sub-canopy (54 years) and canopy (57 years) trees and similar to carbon age in emergent trees (66 years). The remarkable carbon longevity in the understory results from slow and aperiodic growth as an adaptation to limited resource availability9-11. Our analysis also reveals that while the understory represents a small share (11%) of the carbon stock12,13, it contributes disproportionally to the forest carbon sink (20%). We conclude that accounting for the diversity of carbon age and carbon sequestration among different forest strata is critical for effective conservation management14-16 and for accurate modelling of carbon cycling4.


Asunto(s)
Secuestro de Carbono , Carbono/análisis , Bosques , Árboles/fisiología , Ciclo del Carbono , República Democrática del Congo , Factores de Tiempo , Árboles/crecimiento & desarrollo , Clima Tropical
16.
Methods Ecol Evol ; 9(5): 1179-1189, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29938017

RESUMEN

Quantifying the relationship between tree diameter and height is a key component of efforts to estimate biomass and carbon stocks in tropical forests. Although substantial site-to-site variation in height-diameter allometries has been documented, the time consuming nature of measuring all tree heights in an inventory plot means that most studies do not include height, or else use generic pan-tropical or regional allometric equations to estimate height.Using a pan-tropical dataset of 73 plots where at least 150 trees had in-field ground-based height measurements, we examined how the number of trees sampled affects the performance of locally derived height-diameter allometries, and evaluated the performance of different methods for sampling trees for height measurement.Using cross-validation, we found that allometries constructed with just 20 locally measured values could often predict tree height with lower error than regional or climate-based allometries (mean reduction in prediction error = 0.46 m). The predictive performance of locally derived allometries improved with sample size, but with diminishing returns in performance gains when more than 40 trees were sampled. Estimates of stand-level biomass produced using local allometries to estimate tree height show no over- or under-estimation bias when compared with biomass estimates using field measured heights. We evaluated five strategies to sample trees for height measurement, and found that sampling strategies that included measuring the heights of the ten largest diameter trees in a plot outperformed (in terms of resulting in local height-diameter models with low height prediction error) entirely random or diameter size-class stratified approaches.Our results indicate that even limited sampling of heights can be used to refine height-diameter allometries. We recommend aiming for a conservative threshold of sampling 50 trees per location for height measurement, and including the ten trees with the largest diameter in this sample.

17.
Nat Commun ; 9(1): 342, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352254

RESUMEN

The original version of this Article contained an error in the third sentence of the abstract and incorrectly read "Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 year-1 (95% CI 0.14-0.72, mean period 1988-2010) above-ground live biomass", rather than the correct "Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 year-1 (95% CI 0.14-0.72, mean period 1988-2010) in above-ground live biomass carbon". This has now been corrected in both the PDF and HTML versions of the Article.

18.
Nat Commun ; 8(1): 1966, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29259276

RESUMEN

Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 per year (95% CI 0.14-0.72, mean period 1988-2010) above-ground live biomass. These results closely match those from African and Amazonian plot networks, suggesting that the world's remaining intact tropical forests are now en masse out-of-equilibrium. Although both pan-tropical and long-term, the sink in remaining intact forests appears vulnerable to climate and land use changes. Across Borneo the 1997-1998 El Niño drought temporarily halted the carbon sink by increasing tree mortality, while fragmentation persistently offset the sink and turned many edge-affected forests into a carbon source to the atmosphere.

19.
Sci Rep ; 7: 39102, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28094794

RESUMEN

Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.


Asunto(s)
Biodiversidad , Carbono/análisis , Bosques , Plantas/química , Plantas/clasificación , África , Américas , Asia , Clima Tropical
20.
Glob Chang Biol ; 22(4): 1406-20, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26499288

RESUMEN

We combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan-tropical AGB map at 1-km resolution using an independent reference dataset of field observations and locally calibrated high-resolution biomass maps, harmonized and upscaled to 14 477 1-km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for the tropics (23.4 N-23.4 S) of 375 Pg dry mass, 9-18% lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo basin, Eastern Amazon and South-East Asia, and lower values in Central America and in most dry vegetation areas of Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used in the fusion process, showed that the fused map had a RMSE 15-21% lower than that of the input maps and, most importantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha(-1) vs. 21 and 28 Mg ha(-1) for the input maps). The fusion method can be applied at any scale including the policy-relevant national level, where it can provide improved biomass estimates by integrating existing regional biomass maps as input maps and additional, country-specific reference datasets.


Asunto(s)
Biomasa , Mapas como Asunto , Conjuntos de Datos como Asunto , Modelos Teóricos , Árboles , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...