Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metabolites ; 14(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38248842

RESUMEN

Without early detection and treatment, chronic and excessive alcohol consumption can lead to the development of alcoholic liver disease (ALD). With this in mind, we exploit the recent concept of the liver-gut axis and analyze the serum profile of ALD patients for identification of microbiome-derived metabolites that can be used as diagnostic biomarkers for onset of ALD. 1H-NMR was used to analyze serum metabolites of 38 ALD patients that were grouped according to their Child-Turcotte-Pugh scores (CTP): class A (CTP-A; 19), class B(CTP-B; 10), and class C (CTP-C; 9). A partial least squares-discriminant analysis (PLS-DA) and a variable importance of projection (VIP) score were used to identify significant metabolites. A receiver operating characteristic (ROC) curve and correlation heatmap were used to evaluate the predictability of identified metabolites as ALD biomarkers. Among 42 identified metabolites, 6 were significantly correlated to exacerbation of ALD. As ALD progressed in CTP-C, the levels of trimethylamine N-oxide (TMAO), malate, tyrosine, and 2-hydroxyisovalerate increased, while isobutyrate and isocitrate decreased. Out of six metabolites, elevated levels of TMAO and its precursors (carnitine, betaine, choline) were associated with severity of ALD. This indicates that TMAO can be used as an effective biomarker for the diagnosis of ALD progression.

2.
Front Nutr ; 10: 1110613, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229478

RESUMEN

This study explored the changes in the physiochemical, textural, sensory, and functional characteristics of plant-based meat (PBM) after incorporating novel plant-based ingredients including spirulina (SPI), duck Weed (DW), and yellow Chlorella (YC). In the chromaticity evaluation, the YC group (YCI YC2, and YC3%) displayed significant differences (p < 0.05) in lightness (L*) indices as compared to the control. Whereas, based on concertation gradient of SPI microalgae (SP0.5, SP0.7, and SP1%) incorporated into PBM patties demonstrated that SPI 1 had the lowest values (p < 0.05) in redness (a*) and yellowness (b*) followed by SPI 0.7 and SPI 0.5% concentration, respectively. The concentration gradient of the YC group indicated that YC3 was intended to be the highest crude fat value followed by YC2 and YCI. The ash content in PBM patties increased considerably (p < 0.05) as the concentration level of microalgae advanced in all treated groups. Based on the concentration level of YC incorporated microalgae into PBM patties indicated that YC 3 had the highest (p < 0.05) gumminess and chewiness while YC 1 had the lowest reported values in terms of gumminess and chewiness. Moreover, springiness and cohesiveness showed considerable differences between SPI and YC groups. In the sensory evaluation, SPI 1 showed the lowest value only in color and appearance (p < 0.05), conversely, the other sensory parameters were non-significant among all treatment groups (p > 0.05). The micronutrient in PBM presented an irregular pattern after incorporating various ingredients. However, levels were higher (p < 0.05) in the DW group (DW 0.5 DW 0.7, and DW% 1) than those in the other groups. Moreover, the SPI and YC groups showed detectable levels of diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity with, SP 1 showing the highest level of antioxidant activity. Acknowledging the limited research on PBM production, extraction technologies, and selecting various novel suitable ingredients in meat substitutes. Hence, to fill this knowledge gap an attempt has been made to incorporate various concentrations of microalgae including SPI, YC, and DW to enhance the quality and functionality of meat alternatives. To the best of our knowledge, this is the first report that describes the physiochemical, textural, sensory, and nutritional attributes of PBM incorporated with novel microalgae. Collectively these results indicate that the incorporation of SPI, DW, and YC may improve the quality of PBM without showing deleterious outcomes on the quality and functionality of the ultimate PBM products.

3.
Foods ; 12(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36981208

RESUMEN

Color is a major feature that strongly influences the consumer's perception, selection, and acceptance of various foods. An improved understanding regarding bio-safety protocols, health welfare, and the nutritional importance of food colorants has shifted the attention of the scientific community toward natural pigments to replace their toxic synthetic counterparts. However, owing to safety and toxicity concerns, incorporating natural colorants directly from viable sources into plant-based meat (PBM) has many limitations. Nonetheless, over time, safe and cheap extraction techniques have been developed to extract the purified form of coloring agents from raw materials to be incorporated into PBM products. Subsequently, extracted anthocyanin has displayed compounds like Delphinidin-3-mono glucoside (D3G) at 3.1 min and Petunidin-3-mono glucoside (P3G) at 5.1 277, 515, and 546 nm at chromatographic lambda. Fe-pheophytin was successfully generated from chlorophyll through the ion exchange method. Likewise, the optical density (OD) of synthesized leghemoglobin (LegH) indicated that pBHA bacteria grow more rigorously containing ampicillin with a dilution factor of 10 after 1 h of inoculation. The potential LegH sequence was identified at 2500 bp through gel electrophoresis. The color coordinates and absorbance level of natural pigments showed significant differences (p < 0.05) with the control. The development of coloring agents originating from natural sources for PBM can be considered advantageous compared to animal myoglobin in terms of health and functionality. Therefore, the purpose of this study was to produce natural coloring agents for PBM by extracting and developing chlorophyll from spinach, extracting anthocyanins from black beans, and inserting recombinant plasmids into microorganisms to produce LegH.

4.
Biotechnol Adv ; 62: 108070, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36462631

RESUMEN

Recently, bio-based manufacturing processes of value-added platform chemicals and polymers in biorefineries using renewable resources have extensively been developed for sustainable and carbon dioxide (CO2) neutral-based industry. Among them, bio-based diamines, aminocarboxylic acids, and diacids have been used as monomers for the synthesis of polyamides having different carbon numbers and ubiquitous and versatile industrial polymers and also as precursors for further chemical and biological processes to afford valuable chemicals. Until now, these platform bio-chemicals have successfully been produced by biorefinery processes employing enzymes and/or microbial host strains as main catalysts. In this review, we discuss recent advances in bio-based production of diamines, aminocarboxylic acids, and diacids, which has been developed and improved by systems metabolic engineering strategies of microbial consortia and optimization of microbial conversion processes including whole cell bioconversion and direct fermentative production.


Asunto(s)
Diaminas , Nylons , Nylons/metabolismo , Diaminas/metabolismo , Polímeros , Ingeniería Metabólica , Fermentación
5.
ACS Omega ; 7(33): 29106-29115, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36033683

RESUMEN

γ-Aminobutyrate (GABA) is an important chemical by itself and can be further used for the production of monomer used for the synthesis of biodegradable polyamides. Until now, GABA production usingCorynebacterium glutamicum harboring glutamate decarboxylases (GADs) has been limited due to the discrepancy between optimal pH for GAD activity (pH 4.0) and cell growth (pH 7.0). In this study, we developed recombinant C. glutamicum strains expressing mutated GAD from Escherichia coli (EcGADmut) and GADs from Lactococcus lactis CICC20209 (LlGAD) and Lactobacillus senmaizukei (LsGAD), all of which showed enhanced pH stability and adaptability at a pH of approximately 7.0. In shake flask cultivations, the GABA productions of C. glutamicum H36EcGADmut, C. glutamicum H36LsGAD, and C. glutamicum H36LlGAD were examined at pH 5.0, 6.0, and 7.0, respectively. Finally, C. glutamicum H36EcGADmut (40.3 and 39.3 g L-1), H36LlGAD (42.5 and 41.1 g L-1), and H36LsGAD (41.6 and 40.2 g L-1) produced improved GABA titers and yields in batch fermentation at pH 6.0 and pH 7.0, respectively, from 100 g L-1 glucose. The recombinant strains developed in this study could be used for the establishment of sustainable direct fermentative GABA production from renewable resources under mild culture conditions, thus increasing the availability of various GADs.

6.
Bioresour Technol ; 351: 127001, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35292386

RESUMEN

The production of platform organic acids has been heavily dependent on petroleum-based industries. However, petrochemical-based industries that cannot guarantee a virtuous cycle of carbons released during various processes are now facing obsolescence because of the depletion of finite fossil fuel reserves and associated environmental pollutions. Thus, the transition into a circular economy in terms of the carbon footprint has been evaluated with the development of efficient microbial cell factories using renewable feedstocks. Herein, the recent progress on bio-based production of organic acids with four-, five-, and six-carbon backbones, including butyric acid and 3-hydroxybutyric acid (C4), 5-aminolevulinic acid and citramalic acid (C5), and hexanoic acid (C6), is discussed. Then, the current research on the production of C4-C6 organic acids is illustrated to suggest future directions for developing crop-residue based consolidated bioprocessing of C4-C6 organic acids using host strains with tailor-made capabilities.


Asunto(s)
Carbono , Ingeniería Metabólica , Ácidos , Ácido Butírico , Compuestos Orgánicos
7.
Bioresour Technol ; 349: 126797, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35122981

RESUMEN

At present, mass production of basic and valuable commodities is dependent on linear petroleum-based industries, which ultimately makes the depletion of finite natural reserves and accumulation of non-biodegradable and hazardous wastes. Therefore, an ecofriendly and sustainable solution should be established for a circular economy where infinite resources, such as agro-industrial wastes, are fully utilized as substrates in the production of target value-added chemicals. Hereby, recent advances in metabolic engineering strategies and techniques used in the development of microbial cell factories for enhanced production of three-carbon platform chemicals such as lactic acid, propionic acid, and 3-hydroxypropionic acid are discussed. Further developments and future perspectives in the production of these organic acids from agro-industrial wastes from the dairy, sugar, and biodiesel industries are also highlighted to demonstrate the importance of waste-based biorefineries for organic acid production.


Asunto(s)
Carbono , Residuos Industriales , Biocombustibles , Ingeniería Metabólica , Compuestos Orgánicos
8.
Bioresour Technol ; 340: 125693, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34365298

RESUMEN

Cupriavidus necator, a versatile microorganism found in both soil and water, can have both heterotrophic and lithoautotrophic metabolisms depending on environmental conditions. C. necator has been extensively examined for producing Polyhydroxyalkanoates (PHAs), the promising polyester alternatives to petroleum-based synthetic polymers because it has a superior ability for accumulating a considerable amount of PHAs from renewable resources. The development of metabolically engineered C. necator strains has led to their application for synthesizing biopolymers, biofuels and biochemicals such as ethanol, isobutanol and higher alcohols. Bio-based processes of recombinant C. necator have made much progress in production of these high-value products from biomass wastes, plastic wastes and even waste gases. In this review, we discuss the potential of C. necator as promising platform host strains that provide a great opportunity for developing a waste-based circular bioeconomy.


Asunto(s)
Cupriavidus necator , Polihidroxialcanoatos , Biomasa , Calentamiento Global , Plásticos
9.
Biotechnol J ; 15(6): e1900489, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32162832

RESUMEN

Advances in scientific technology in the early twentieth century have facilitated the development of synthetic plastics that are lightweight, rigid, and can be easily molded into a desirable shape without changing their material properties. Thus, plastics become ubiquitous and indispensable materials that are used in various manufacturing sectors, including clothing, automotive, medical, and electronic industries. However, strong physical durability and chemical stability of synthetic plastics, most of which are produced from fossil fuels, hinder their complete degradation when they are improperly discarded after use. In addition, accumulated plastic wastes without degradation have caused severe environmental problems, such as microplastics pollution and plastic islands. Thus, the usage and production of plastics is not free from environmental pollution or resource depletion. In order to lessen the impact of climate change and reduce plastic pollution, it is necessary to understand and address the current plastic life cycles. In this review, "sustainable biopolymers" are suggested as a promising solution to the current plastic crisis. The desired properties of sustainable biopolymers and bio-based and bio/chemical hybrid technologies for the development of sustainable biopolymers are mainly discussed.


Asunto(s)
Biopolímeros/química , Plásticos/química , Biodegradación Ambiental , Conservación de los Recursos Naturales , Contaminación Ambiental , Combustibles Fósiles , Reciclaje
10.
Int J Biol Macromol ; 149: 593-599, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32001289

RESUMEN

Sucrose utilization has been established in Escherichia coli strains by expression of Mannheimia succiniciproducens ß-fructofuranosidase (SacC), which hydrolyzes sucrose into glucose and fructose. Recombinant E. coli strains that can utilize sucrose were examined for their abilities to produce poly(3-hydroxybutyrate) [P(3HB)] and poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] from sucrose. When recombinant E. coli strains expressing Ralstonia eutropha PhaCAB and SacC were cultured in MR medium containing 20 g/L of sucrose, all recombinant E. coli strains could produce P(3HB) from sucrose. Also, recombinant E. coli strains expressing Pseudomonas sp. MBEL 6-19 PhaC1437, Clostridium propionicum Pct540, R. eutropha PhaAB enzymes along with SacC could produce P(3HB-co-LA) from sucrose. Among the examined E. coli strains, recombinant E. coli XL1-Blue produced the highest contents of P(3HB) (53.60 ± 2.55 wt%) and P(3HB-co-LA) (29.44 ± 0.39 wt%). In the batch fermentations, recombinant E. coli XL1-Blue strains completely consumed 20 g/L of sucrose as the sole carbon source and supported the production of 3.76 g/L of P(3HB) and 1.82 g/L of P(3HB-co-LA) with 38.21 wt% P(3HB) and 20.88 wt% P(3HB-co-LA) contents, respectively. Recombinant E. coli strains developed in this study can be used to establish a cost-efficient biorefinery for the production of polyhydroxyalkanoates (PHAs) from sucrose, which is an abundant and inexpensive carbon source.


Asunto(s)
Escherichia coli/genética , Ingeniería Metabólica , Polihidroxialcanoatos/biosíntesis , Sacarosa/metabolismo , Cupriavidus necator/enzimología , Cupriavidus necator/genética , Escherichia coli/metabolismo , Hidroxibutiratos/metabolismo , Pasteurellaceae/enzimología , Pasteurellaceae/genética , Poliésteres/metabolismo , Polihidroxialcanoatos/química , Polihidroxialcanoatos/genética , Sacarosa/química , beta-Fructofuranosidasa/química , beta-Fructofuranosidasa/genética
11.
Metab Eng ; 58: 47-81, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31145993

RESUMEN

As concerns increase regarding sustainable industries and environmental pollutions caused by the accumulation of non-degradable plastic wastes, bio-based polymers, particularly biodegradable plastics, have attracted considerable attention as potential candidates for solving these problems by substituting petroleum-based plastics. Among these candidates, polyhydroxyalkanoates (PHAs), natural polyesters that are synthesized and accumulated in a range of microorganisms, are considered as promising biopolymers since they have biocompatibility, biodegradability, and material properties similar to those of commodity plastics. Accordingly, substantial efforts have been made to gain a better understanding of mechanisms related to the biosynthesis and properties of PHAs and to develop natural and recombinant microorganisms that can efficiently produce PHAs comprising desired monomers with high titer and productivity for industrial applications. Recent advances in biotechnology, including those related to evolutionary engineering, synthetic biology, and systems biology, can provide efficient and effective tools and strategies that reduce time, labor, and costs to develop microbial platform strains that produce desired chemicals and materials. Adopting these technologies in a systematic manner has enabled microbial fermentative production of non-natural polyesters such as poly(lactate) [PLA], poly(lactate-co-glycolate) [PLGA], and even polyesters consisting of aromatic monomers from renewable biomass-derived carbohydrates, which can be widely used in current chemical industries. In this review, we present an overview of strain development for the production of various important natural PHAs, which will give the reader an insight into the recent advances and provide indicators for the future direction of engineering microorganisms as plastic cell factories. On the basis of our current understanding of PHA biosynthesis systems, we discuss recent advances in the approaches adopted for strain development in the production of non-natural polyesters, notably 2-hydroxycarboxylic acid-containing polymers, with particular reference to systems metabolic engineering strategies.


Asunto(s)
Bacterias , Plásticos Biodegradables/metabolismo , Ingeniería Metabólica/historia , Microorganismos Modificados Genéticamente , Polihidroxialcanoatos , Bacterias/genética , Bacterias/metabolismo , Historia del Siglo XX , Historia del Siglo XXI , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo , Polihidroxialcanoatos/biosíntesis , Polihidroxialcanoatos/genética
12.
Polymers (Basel) ; 11(7)2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-31337154

RESUMEN

Cadaverine is a C5 diamine monomer used for the production of bio-based polyamide 510. Cadaverine is produced by the decarboxylation of l-lysine using a lysine decarboxylase (LDC). In this study, we developed recombinant Escherichia coli strains for the expression of LDC from Hafnia alvei. The resulting recombinant XBHaLDC strain was used as a whole cell biocatalyst for the high-level bioconversion of l-lysine into cadaverine without the supplementation of isopropyl ß-d-1-thiogalactopyranoside (IPTG) for the induction of protein expression and pyridoxal phosphate (PLP), a key cofactor for an LDC reaction. The comparison of results from enzyme characterization of E. coli and H. alvei LDC revealed that H. alvei LDC exhibited greater bioconversion ability than E. coli LDC due to higher levels of protein expression in all cellular fractions and a higher specific activity at 37 °C (1825 U/mg protein > 1003 U/mg protein). The recombinant XBHaLDC and XBEcLDC strains were constructed for the high-level production of cadaverine. Recombinant XBHaLDC produced a 1.3-fold higher titer of cadaverine (6.1 g/L) than the XBEcLDC strain (4.8 g/L) from 10 g/L of l-lysine. Furthermore, XBHaLDC, concentrated to an optical density (OD600) of 50, efficiently produced 136 g/L of cadaverine from 200 g/L of l-lysine (97% molar yield) via an IPTG- and PLP-free whole cell bioconversion reaction. Cadaverine synthesized via a whole cell biocatalyst reaction using XBHaLDC was purified to polymer grade, and purified cadaverine was successfully used for the synthesis of polyamide 510. In conclusion, an IPTG- and PLP-free whole cell bioconversion process of l-lysine into cadaverine, using recombinant XBHaLDC, was successfully utilized for the production of bio-based polyamide 510, which has physical and thermal properties similar to polyamide 510 synthesized from chemical-grade cadaverine.

13.
Metab Eng ; 51: 99-109, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30144560

RESUMEN

Corynebacterium glutamicum was metabolically engineered for the production of glutaric acid, a C5 dicarboxylic acid that can be used as platform building block chemical for nylons and plasticizers. C. glutamicum gabT and gabD genes and Pseudomonas putida davT and davD genes encoding 5-aminovalerate transaminase and glutarate semialdehyde dehydrogenase, respectively, were examined in C. glutamicum for the construction of a glutaric acid biosynthesis pathway along with P. putida davB and davA genes encoding lysine 2-monooxygenase and delta-aminovaleramidase, respectively. The glutaric acid biosynthesis pathway constructed in recombinant C. glutamicum was engineered by examining strong synthetic promoters PH30 and PH36, C. glutamicum codon-optimized davTDBA genes, and modification of davB gene with an N-terminal His6-tag to improve the production of glutaric acid. It was found that use of N-terminal His6-tagged DavB was most suitable for the production of glutaric acid from glucose. Fed-batch fermentation using the final engineered C. glutamicum H30_GAHis strain, expressing davTDA genes along with davB fused with His6-tag at N-terminus could produce 24.5 g/L of glutaric acid with low accumulation of l-lysine (1.7 g/L), wherein 5-AVA accumulation was not observed during fermentation.


Asunto(s)
Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácidos Dicarboxílicos/metabolismo , Glutaratos/metabolismo , Ingeniería Metabólica/métodos , Codón , ADN Bacteriano/genética , Fermentación , Glucosa/metabolismo , Lisina/metabolismo , Plásmidos/genética , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Vasotocina/análogos & derivados , Vasotocina/metabolismo
14.
Microb Cell Fact ; 17(1): 129, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30131070

RESUMEN

BACKGROUND: Recent interest has been focused on the production of platform chemicals from renewable biomass due to increasing concerns on global warming and depletion of fossil fuel reserves. Microbial production of platform chemicals in biorefineries has been suggested to be a promising solution for these problems. Gamma-aminobutyrate (GABA), a versatile bulk chemical used in food and pharmaceutical industry, is also used as a key monomer for nylon 4. GABA can be biologically produced by decarboxylation of glutamate. RESULTS: In this study, we examined high glutamate-producing Corynebacterium glutamicum strains as hosts for enhanced production of GABA from glucose and xylose as carbon sources. An Escherichia coli gadB mutant with a broad pH range of activity and E. coli xylAB genes were expressed under the control of a synthetic H36 promoter. When empty fruit bunch (EFB) solution was used as carbon source (45 g/L glucose and 5 g/L xylose), 12.54 ± 0.07 g/L GABA was produced by recombinant C. glutamicum H36GD1852 expressing E. coli gadB mutant gene and xylAB genes. Batch fermentation of the same strain resulted in the production of 35.47 g/L of GABA when EFB solution was added to support 90 g/L glucose and 10 g/L xylose. CONCLUSIONS: This is the first report of GABA production by recombinant C. glutamicum strains from co-utilization of glucose and xylose from EFB solution. Recombinant C. glutamicum strains developed in this study should be useful for an efficient and sustainable production of GABA from lignocellulosic biomasses.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Frutas/química , Ácido gamma-Aminobutírico/metabolismo , Fermentación , Ácido gamma-Aminobutírico/biosíntesis
15.
Appl Microbiol Biotechnol ; 102(9): 3915-3937, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29557518

RESUMEN

Bio-based production of industrially important chemicals provides an eco-friendly alternative to current petrochemical-based processes. Because of the limited supply of fossil fuel reserves, various technologies utilizing microbial host strains for the sustainable production of platform chemicals from renewable biomass have been developed. Corynebacterium glutamicum is a non-pathogenic industrial microbial species traditionally used for L-glutamate and L-lysine production. It is a promising species for industrial production of bio-based chemicals because of its flexible metabolism that allows the utilization of a broad spectrum of carbon sources and the production of various amino acids. Classical breeding, systems, synthetic biology, and metabolic engineering approaches have been used to improve its applications, ranging from traditional amino-acid production to modern biorefinery systems for production of value-added platform chemicals. This review describes recent advances in the development of genetic engineering tools and techniques for the establishment and optimization of metabolic pathways for bio-based production of major C2-C6 platform chemicals using recombinant C. glutamicum.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Fermentación , Microbiología Industrial/métodos , Ingeniería Metabólica , Reactores Biológicos , Corynebacterium glutamicum/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...