Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37410519

RESUMEN

Here, we present the first analysis of the connectome of a small volume of the Octopus vulgaris vertical lobe (VL), a brain structure mediating the acquisition of long-term memory in this behaviorally advanced mollusk. Serial section electron microscopy revealed new types of interneurons, cellular components of extensive modulatory systems, and multiple synaptic motifs. The sensory input to the VL is conveyed via~1.8 × 106 axons that sparsely innervate two parallel and interconnected feedforward networks formed by the two types of amacrine interneurons (AM), simple AMs (SAMs) and complex AMs (CAMs). SAMs make up 89.3% of the~25 × 106VL cells, each receiving a synaptic input from only a single input neuron on its non-bifurcating primary neurite, suggesting that each input neuron is represented in only~12 ± 3.4SAMs. This synaptic site is likely a 'memory site' as it is endowed with LTP. The CAMs, a newly described AM type, comprise 1.6% of the VL cells. Their bifurcating neurites integrate multiple inputs from the input axons and SAMs. While the SAM network appears to feedforward sparse 'memorizable' sensory representations to the VL output layer, the CAMs appear to monitor global activity and feedforward a balancing inhibition for 'sharpening' the stimulus-specific VL output. While sharing morphological and wiring features with circuits supporting associative learning in other animals, the VL has evolved a unique circuit that enables associative learning based on feedforward information flow.


Asunto(s)
Conectoma , Octopodiformes , Animales , Octopodiformes/fisiología , Memoria/fisiología , Neuronas/fisiología , Encéfalo/fisiología
2.
Cell ; 165(1): 192-206, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27015312

RESUMEN

In an attempt to chart parallel sensory streams passing through the visual thalamus, we acquired a 100-trillion-voxel electron microscopy (EM) dataset and identified cohorts of retinal ganglion cell axons (RGCs) that innervated each of a diverse group of postsynaptic thalamocortical neurons (TCs). Tracing branches of these axons revealed the set of TCs innervated by each RGC cohort. Instead of finding separate sensory pathways, we found a single large network that could not be easily subdivided because individual RGCs innervated different kinds of TCs and different kinds of RGCs co-innervated individual TCs. We did find conspicuous network subdivisions organized on the basis of dendritic rather than neuronal properties. This work argues that, in the thalamus, neural circuits are not based on a canonical set of connections between intrinsically different neuronal types but, rather, may arise by experience-based mixing of different kinds of inputs onto individual postsynaptic cells.


Asunto(s)
Cuerpos Geniculados/ultraestructura , Red Nerviosa/ultraestructura , Vías Nerviosas/fisiología , Células Ganglionares de la Retina/metabolismo , Animales , Axones/metabolismo , Lógica Difusa , Cuerpos Geniculados/fisiología , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/fisiología , Vías Nerviosas/ultraestructura , Sinapsis , Corteza Visual/citología
3.
Cell ; 162(3): 648-61, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26232230

RESUMEN

We describe automated technologies to probe the structure of neural tissue at nanometer resolution and use them to generate a saturated reconstruction of a sub-volume of mouse neocortex in which all cellular objects (axons, dendrites, and glia) and many sub-cellular components (synapses, synaptic vesicles, spines, spine apparati, postsynaptic densities, and mitochondria) are rendered and itemized in a database. We explore these data to study physical properties of brain tissue. For example, by tracing the trajectories of all excitatory axons and noting their juxtapositions, both synaptic and non-synaptic, with every dendritic spine we refute the idea that physical proximity is sufficient to predict synaptic connectivity (the so-called Peters' rule). This online minable database provides general access to the intrinsic complexity of the neocortex and enables further data-driven inquiries.


Asunto(s)
Microscopía Electrónica de Rastreo/métodos , Microtomía/métodos , Neocórtex/ultraestructura , Neuronas/ultraestructura , Animales , Automatización , Axones/ultraestructura , Dendritas/ultraestructura , Ratones , Neocórtex/citología , Sinapsis/ultraestructura , Vesículas Sinápticas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA