Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2307257, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459678

RESUMEN

DNA origami nanodevices achieve programmable structure and tunable mechanical and dynamic properties by leveraging the sequence-specific interactions of nucleic acids. Previous advances have also established DNA origami as a useful building block to make well-defined micron-scale structures through hierarchical self-assembly, but these efforts have largely leveraged the structural features of DNA origami. The tunable dynamic and mechanical properties also provide an opportunity to make assemblies with adaptive structures and properties. Here the integration of DNA origami hinge nanodevices and coiled-coil peptides are reported into hybrid reconfigurable assemblies. With the same dynamic device and peptide interaction, it is made multiple higher-order assemblies (i.e., polymorphic assembly) by organizing clusters of peptides into patches or arranging single peptides into patterns on the surfaces of DNA origami to control the relative orientation of devices. The coiled-coil interactions are used to construct circular and linear assemblies whose structure and mechanical properties can be modulated with DNA-based reconfiguration. Reconfiguration of linear assemblies leads to micron scale motions and ≈2.5-10-fold increase in bending stiffness. The results provide a foundation for stimulus-responsive hybrid assemblies that can adapt their structure and properties in response to nucleic acid, peptide, protein, or other triggers.

2.
Small ; 20(9): e2307585, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37849034

RESUMEN

The combination of multiple orthogonal interactions enables hierarchical complexity in self-assembled nanoscale materials. Here, efficient supramolecular polymerization of DNA origami nanostructures is demonstrated using a multivalent display of small molecule host-guest interactions. Modification of DNA strands with cucurbit[7]uril (CB[7]) and its adamantane guest, yielding a supramolecular complex with an affinity of order 1010 m-1 , directs hierarchical assembly of origami monomers into 1D nanofibers. This affinity regime enables efficient polymerization; a lower-affinity ß-cyclodextrin-adamantane complex does not promote extended structures at a similar valency. Finally, the utility of the high-affinity CB[7]-adamantane interactions is exploited to enable responsive enzymatic actuation of origami nanofibers assembled using peptide linkers. This work demonstrates the power of high-affinity CB[7]-guest recognition as an orthogonal axis to drive self-assembly in DNA nanotechnology.


Asunto(s)
Adamantano , Nanofibras , Nanoestructuras , Nanotecnología , ADN
3.
Biomater Adv ; 157: 213726, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096646

RESUMEN

The extracellular matrix is a highly dynamic environment, and the precise temporal presentation of biochemical signals is critical for regulating cell behavior during development, healing, and disease progression. To mimic this behavior, we developed a modular DNA-based hydrogel platform to enable independent and reversible control over the immobilization of multiple biomolecules during in vitro cell culture. We combined reversible DNA handles with a norbornene-modified hyaluronic acid hydrogel to orthogonally add and remove multiple biomolecule-DNA conjugates at user-defined timepoints. We demonstrated that the persistent presentation of the cell adhesion peptide RGD was required to maintain cell spreading on hyaluronic acid hydrogels. Further, we discovered the delayed presentation of osteogenic growth peptide (OGP) increased alkaline phosphatase activity compared to other temporal variations. This finding is critically important when considering the design of OGP delivery approaches for bone repair. More broadly, this platform provides a unique approach to tease apart the temporal role of multiple biomolecules during development, regeneration, and disease progression.


Asunto(s)
Materiales Biocompatibles , Osteogénesis , Humanos , Ácido Hialurónico/química , Péptidos/química , ADN , Hidrogeles , Progresión de la Enfermedad
4.
bioRxiv ; 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37502890

RESUMEN

The extracellular matrix is a highly dynamic environment, and the precise temporal presentation of biochemical signals is critical for regulating cell behavior during development, healing, and disease progression. To mimic this behavior, we developed a modular DNA-based hydrogel platform to enable independent and reversible control over the immobilization of multiple biomolecules during in vitro cell culture. We combined reversible DNA handles with a norbornene-modified hyaluronic acid hydrogel to orthogonally add and remove multiple biomolecule-DNA conjugates at user-defined timepoints. We demonstrated that the persistent presentation of the cell adhesion peptide RGD was required to maintain cell spreading on hyaluronic acid hydrogels. Further, we discovered the delayed presentation of osteogenic growth peptide (OGP) increased alkaline phosphatase activity compared to other temporal variations. This finding is critically important when considering the design of OGP delivery approaches for bone repair. More broadly, this platform provides a unique approach to tease apart the temporal role of multiple biomolecules during development, regeneration, and disease progression.

5.
Chem Commun (Camb) ; 59(57): 8806-8809, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37365952

RESUMEN

In cells, membrane fusion is mediated by SNARE proteins, whose activities are calcium-dependent. While several non-native membrane fusion mechanisms have been demonstrated, few can respond to external stimuli. Here, we develop a calcium-triggered DNA-mediated membrane fusion strategy where fusion is regulated using surface-bound PEG chains that are cleavable by the calcium-activated protease calpain-1.


Asunto(s)
Células Artificiales , Fusión de Membrana , Calcio/metabolismo , Proteínas SNARE/metabolismo
6.
bioRxiv ; 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37205334

RESUMEN

In cells, membrane fusion is mediated by SNARE proteins, whose activities are calcium-dependent. While several non-native membrane fusion mechanisms have been demonstrated, few can respond to external stimuli. Here, we develop a calcium-triggered DNA-mediated membrane fusion strategy where fusion is regulated using surface-bound PEG chains that are cleavable by the calcium-activated protease calpain-1.

7.
ACS Appl Bio Mater ; 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36108278

RESUMEN

The integration of proteins with DNA nanotechnology would enable materials with diverse applications in biology, medicine, and engineering. Here, we describe a method for the incorporation of bioactive fibronectin domain proteins with DNA nanostructures using two orthogonal coiled-coil peptides. One peptide from each coiled-coil pair is attached to a DNA origami cuboid in a multivalent fashion by attaching the peptides to DNA handles. These structures can then be assembled into one-dimensional arrays through the addition of a fibronectin domain linker genetically fused with the complementary peptides to those on the origami. We validate array formation using two different self-assembly protocols and characterize the fibers by atomic force and electron microscopy. Finally, we demonstrate that surfaces coated with the protein-DNA nanofibers can serve as biomaterial substrates for fibroblast adhesion and spreading with the nanofibers showing enhanced bioactivity compared to that of the monomeric protein.

8.
Curr Top Med Chem ; 22(8): 699-712, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34911426

RESUMEN

The use of biological molecules with programmable self-assembly properties is an attractive route to functional nanomaterials. Proteins and peptides have been used extensively for these systems due to their biological relevance and a large number of supramolecular motifs, but it is still difficult to build highly anisotropic and programmable nanostructures due to their high complexity. Oligonucleotides, by contrast, have the advantage of programmability and reliable assembly, but lack biological and chemical diversity. In this review, we discuss systems that merge protein or peptide self-assembly with the addressability of DNA. We outline the various self-assembly motifs used, the chemistry for linking polypeptides with DNA, and the resulting nanostructures that can be formed by the interplay of these two molecules. Finally, we close by suggesting some interesting future directions in hybrid polypeptide-DNA nanomaterials, and potential applications for these exciting hybrids.


Asunto(s)
ADN , Nanoestructuras , ADN/química , Nanoestructuras/química , Nanotecnología/métodos , Oligonucleótidos/química , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...