Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Pharmacol Toxicol Methods ; 127: 107511, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710237

RESUMEN

The Health and Environmental Sciences Institute (HESI) is a nonprofit organization dedicated to resolving global health challenges through collaborative scientific efforts across academia, regulatory authorities and the private sector. Collaborative science across non-clinical disciplines offers an important keystone to accelerate the development of safer and more effective medicines. HESI works to address complex challenges by leveraging diverse subject-matter expertise across sectors offering access to resources, data and shared knowledge. In 2008, the HESI Cardiac Safety Committee (CSC) was established to improve public health by reducing unanticipated cardiovascular (CV)-related adverse effects from pharmaceuticals or chemicals. The committee continues to significantly impact the field of CV safety by bringing together experts from across sectors to address challenges of detecting and predicting adverse cardiac outcomes. Committee members have collaborated on the organization, management and publication of prospective studies, retrospective analyses, workshops, and symposia resulting in 38 peer reviewed manuscripts. Without this collaboration these manuscripts would not have been published. Through their work, the CSC is actively addressing challenges and opportunities in detecting potential cardiac failure modes using in vivo, in vitro and in silico models, with the aim of facilitating drug development and improving study design. By examining past successes and future prospects of the CSC, this manuscript sheds light on how the consortium's multifaceted approach not only addresses current challenges in detecting potential cardiac failure modes but also paves the way for enhanced drug development and study design methodologies. Further, exploring future opportunities and challenges will focus on improving the translational predictability of nonclinical evaluations and reducing reliance on animal research in CV safety assessments.

2.
J Cardiovasc Electrophysiol ; 35(5): 895-905, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433304

RESUMEN

INTRODUCTION: Cardiac contractility modulation (CCM) is a medical device-based therapy delivering non-excitatory electrical stimulations to the heart to enhance cardiac function in heart failure (HF) patients. The lack of human in vitro tools to assess CCM hinders our understanding of CCM mechanisms of action. Here, we introduce a novel chronic (i.e., 2-day) in vitro CCM assay to evaluate the effects of CCM in a human 3D microphysiological system consisting of engineered cardiac tissues (ECTs). METHODS: Cryopreserved human induced pluripotent stem cell-derived cardiomyocytes were used to generate 3D ECTs. The ECTs were cultured, incorporating human primary ventricular cardiac fibroblasts and a fibrin-based gel. Electrical stimulation was applied using two separate pulse generators for the CCM group and control group. Contractile properties and intracellular calcium were measured, and a cardiac gene quantitative PCR screen was conducted. RESULTS: Chronic CCM increased contraction amplitude and duration, enhanced intracellular calcium transient amplitude, and altered gene expression related to HF (i.e., natriuretic peptide B, NPPB) and excitation-contraction coupling (i.e., sodium-calcium exchanger, SLC8). CONCLUSION: These data represent the first study of chronic CCM in a 3D ECT model, providing a nonclinical tool to assess the effects of cardiac electrophysiology medical device signals complementing in vivo animal studies. The methodology established a standardized 3D ECT-based in vitro testbed for chronic CCM, allowing evaluation of physiological and molecular effects on human cardiac tissues.


Asunto(s)
Células Madre Pluripotentes Inducidas , Contracción Miocárdica , Miocitos Cardíacos , Ingeniería de Tejidos , Humanos , Miocitos Cardíacos/metabolismo , Células Cultivadas , Células Madre Pluripotentes Inducidas/metabolismo , Señalización del Calcio , Factores de Tiempo , Acoplamiento Excitación-Contracción , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Terapia por Estimulación Eléctrica/instrumentación , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/terapia , Insuficiencia Cardíaca/metabolismo
4.
Front Physiol ; 13: 1023563, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439258

RESUMEN

Cardiac contractility modulation (CCM) is a medical device therapy whereby non-excitatory electrical stimulations are delivered to the myocardium during the absolute refractory period to enhance cardiac function. We previously evaluated the effects of the standard CCM pulse parameters in isolated rabbit ventricular cardiomyocytes and 2D human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) monolayers, on flexible substrate. In the present study, we sought to extend these results to human 3D microphysiological systems to develop a robust model to evaluate various clinical CCM pulse parameters in vitro. HiPSC-CMs were studied in conventional 2D monolayer format, on stiff substrate (i.e., glass), and as 3D human engineered cardiac tissues (ECTs). Cardiac contractile properties were evaluated by video (i.e., pixel) and force-based analysis. CCM pulses were assessed at varying electrical 'doses' using a commercial pulse generator. A robust CCM contractile response was observed for 3D ECTs. Under comparable conditions, conventional 2D monolayer hiPSC-CMs, on stiff substrate, displayed no contractile response. 3D ECTs displayed enhanced contractile properties including increased contraction amplitude (i.e., force), and accelerated contraction and relaxation slopes under standard acute CCM stimulation. Moreover, 3D ECTs displayed enhanced contractility in a CCM pulse parameter-dependent manner by adjustment of CCM pulse delay, duration, amplitude, and number relative to baseline. The observed acute effects subsided when the CCM stimulation was stopped and gradually returned to baseline. These data represent the first study of CCM in 3D hiPSC-CM models and provide a nonclinical tool to assess various CCM device signals in 3D human cardiac tissues prior to in vivo animal studies. Moreover, this work provides a foundation to evaluate the effects of additional cardiac medical devices in 3D ECTs.

5.
Physiol Rep ; 10(21): e15498, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36325586

RESUMEN

Two of the most prominent organ systems, the nervous and the cardiovascular systems, are intricately connected to maintain homeostasis in mammals. Recent years have shown tremendous efforts toward therapeutic modulation of cardiac contractility and electrophysiology by electrical stimulation. Neuronal innervation and cardiac ganglia regulation are often overlooked when developing in vitro models for cardiac devices, but it is likely that peripheral nervous system plays a role in the clinical effects. We developed an in vitro neurocardiac coculture (ivNCC) model system to study cardiac and neuronal interplay using human induced pluripotent stem cell (hiPSC) technology. We demonstrated significant expression and colocalization of cardiac markers including troponin, α-actinin, and neuronal marker peripherin in neurocardiac coculture. To assess functional coupling between the cardiomyocytes and neurons, we evaluated nicotine-induced ß-adrenergic norepinephrine effect and found beat rate was significantly increased in ivNCC as compared to monoculture alone. The developed platform was used as a nonclinical model for the assessment of cardiac medical devices that deliver nonexcitatory electrical pulses to the heart during the absolute refractory period of the cardiac cycle, that is, cardiac contractility modulation (CCM) therapy. Robust coculture response was observed at 14 V/cm (5 V, 64 mA), monophasic, 2 ms pulse duration for pacing and 20 V/cm (7 V, 90 mA) phase amplitude, biphasic, 5.14 ms pulse duration for CCM. We observed that the CCM effect and kinetics were more pronounced in coculture as compared to cardiac monoculture, supporting a hypothesis that some part of CCM mechanism of action can be attributed to peripheral nervous system stimulation. This study provides novel characterization of CCM effects on hiPSC-derived neurocardiac cocultures. This innervated human heart model can be further extended to investigate arrhythmic mechanisms, neurocardiac safety, and toxicity post-chronic exposure to materials, drugs, and medical devices. We present data on acute CCM electrical stimulation effects on a functional and optimized coculture using commercially available hiPSC-derived cardiomyocytes and neurons. Moreover, this study provides an in vitro human heart model to evaluate neuronal innervation and cardiac ganglia regulation of contractility by applying CCM pulse parameters that closely resemble clinical setting. This ivNCC platform provides a potential tool for investigating aspects of cardiac and neurological device safety and performance.


Asunto(s)
Insuficiencia Cardíaca , Células Madre Pluripotentes Inducidas , Animales , Humanos , Técnicas de Cocultivo , Contracción Miocárdica/fisiología , Miocitos Cardíacos , Cardiotónicos/farmacología , Mamíferos
6.
Physiol Rep ; 10(20): e15493, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36301726

RESUMEN

Pulse electric field-based (PEF) ablation is a technique whereby short high-intensity electric fields inducing irreversible electroporation (IRE) are applied to various tissues. Here, we implemented a standardized in vitro model to compare the effects of biphasic symmetrical pulses (100 pulses, 1-10 µs phase duration (d), 10-1000 Hz pulse repetition rate (f)) using two different human cellular models: human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and human esophageal smooth muscle cells (hESMCs) cultured in monolayer format. We report the PEF-induced irreversibly electroporated cell monolayer areas and the corresponding electric field thresholds (EFTs) for both cardiac and esophageal cultures. Our results suggest marked cell type specificity with EFT estimated to be 2-2.5 times lower in hiPSC-CMs than in hESMCs when subjected to identical PEF treatments (e.g., 0.90 vs 1.85 kV/cm for the treatment of 100 pulses with d = 5 µs, f = 10 Hz, and 0.65 vs 1.67 kV/cm for the treatment of 100 pulses with d = 10 µs, f = 10 Hz). PEF treatment can result in increased temperature around the stimulating electrodes and lead to unanticipated thermal tissue damage that is proportional to the peak temperature rise and to the duration of the PEF-induced elevated temperatures. In our study, temperature increases ranged from less than 1°C to as high as 30°C, however, all temperature changes were transient and quickly returned to baseline and the highest observed ∆T returned to 50% of its maximum recorded temperature in tens of seconds.


Asunto(s)
Electroporación , Miocitos Cardíacos , Humanos , Electroporación/métodos , Temperatura
7.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35328619

RESUMEN

Cardiomyocytes (CMs) differentiated from human induced pluripotent stem cells (hiPSCs) are increasingly used in cardiac safety assessment, disease modeling and regenerative medicine. A vast majority of cardiotoxicity studies in the past have tested acute effects of compounds and drugs; however, these studies lack information on the morphological or physiological responses that may occur after prolonged exposure to a cardiotoxic compound. In this review, we focus on recent advances in chronic cardiotoxicity assays using hiPSC-CMs. We summarize recently published literature on hiPSC-CMs assays applied to chronic cardiotoxicity induced by anticancer agents, as well as non-cancer classes of drugs, including antibiotics, anti-hepatitis C virus (HCV) and antidiabetic drugs. We then review publications on the implementation of hiPSC-CMs-based assays to investigate the effects of non-pharmaceutical cardiotoxicants, such as environmental chemicals or chronic alcohol consumption. We also highlight studies demonstrating the chronic effects of smoking and implementation of hiPSC-CMs to perform genomic screens and metabolomics-based biomarker assay development. The acceptance and wide implementation of hiPSC-CMs-based assays for chronic cardiotoxicity assessment will require multi-site standardization of assay protocols, chronic cardiac maturity marker reproducibility, time points optimization, minimal cellular variation (commercial vs. lab reprogrammed), stringent and matched controls and close clinical setting resemblance. A comprehensive investigation of long-term repeated exposure-induced effects on both the structure and function of cardiomyocytes can provide mechanistic insights and recapitulate drug and environmental cardiotoxicity.


Asunto(s)
Células Madre Pluripotentes Inducidas , Cardiotoxicidad/etiología , Humanos , Miocitos Cardíacos , Reproducibilidad de los Resultados , Fumar
8.
J Vis Exp ; (190)2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36591970

RESUMEN

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are currently being explored for multiple in vitro applications and have been used in regulatory submissions. Here, we extend their use to cardiac medical device safety or performance assessments. We developed a novel method to evaluate cardiac medical device contractile properties in robustly contracting 2D hiPSC-CMs monolayers plated on a flexible extracellular matrix (ECM)-based hydrogel substrate. This tool enables the quantification of the effects of cardiac electrophysiology device signals on human cardiac function (e.g., contractile properties) with standard laboratory equipment. The 2D hiPSC-CM monolayers were cultured for 2-4 days on a flexible hydrogel substrate in a 48-well format. The hiPSC-CMs were exposed to standard cardiac contractility modulation (CCM) medical device electrical signals and compared to control (i.e., pacing only) hiPSC-CMs. The baseline contractile properties of the 2D hiPSC-CMs were quantified by video-based detection analysis based on pixel displacement. The CCM-stimulated 2D hiPSC-CMs plated on the flexible hydrogel substrate displayed significantly enhanced contractile properties relative to baseline (i.e., before CCM stimulation), including an increased peak contraction amplitude and accelerated contraction and relaxation kinetics. Furthermore, the utilization of the flexible hydrogel substrate enables the multiplexing of the video-based cardiac-excitation contraction coupling readouts (i.e., electrophysiology, calcium handling, and contraction) in healthy and diseased hiPSC-CMs. The accurate detection and quantification of the effects of cardiac electrophysiological signals on human cardiac contraction is vital for cardiac medical device development, optimization, and de-risking. This method enables the robust visualization and quantification of the contractile properties of the cardiac syncytium, which should be valuable for nonclinical cardiac medical device safety or effectiveness testing. This paper describes, in detail, the methodology to generate 2D hiPSC-CM hydrogel substrate monolayers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Células Cultivadas , Contracción Miocárdica , Cardiotónicos/farmacología , Hidrogeles/farmacología , Diferenciación Celular
9.
Front Physiol ; 13: 1064168, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699682

RESUMEN

Introduction: Pulsed electric field (PEF) cardiac ablation has been recently proposed as a technique to treat drug resistant atrial fibrillation by inducing cell death through irreversible electroporation (IRE). Improper PEF dosing can result in thermal damage or reversible electroporation. The lack of comprehensive and systematic studies to select PEF parameters for safe and effective IRE cardiac treatments hinders device development and regulatory decision-making. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been proposed as an alternative to animal models in the evaluation of cardiac electrophysiology safety. Methods: We developed a novel high-throughput in vitro assay to quantify the electric field threshold (EFT) for electroporation (acute effect) and cell death (long-term effect) in hiPSC-CMs. Monolayers of hiPSC-CMs were cultured in high-throughput format and exposed to clinically relevant biphasic PEF treatments. Electroporation and cell death areas were identified using fluorescent probes and confocal microscopy; electroporation and cell death EFTs were quantified by comparison of fluorescent images with electric field numerical simulations. Results: Study results confirmed that PEF induces electroporation and cell death in hiPSC-CMs, dependent on the number of pulses and the amplitude, duration, and repetition frequency. In addition, PEF-induced temperature increase, absorbed dose, and total treatment time for each PEF parameter combination are reported. Discussion: Upon verification of the translatability of the in vitro results presented here to in vivo models, this novel hiPSC-CM-based assay could be used as an alternative to animal or human studies and can assist in early nonclinical device development, as well as inform regulatory decision-making for cardiac ablation medical devices.

10.
Physiol Rep ; 9(21): e15085, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34729935

RESUMEN

Cardiac contractility modulation (CCM) is an intracardiac therapy whereby nonexcitatory electrical simulations are delivered during the absolute refractory period of the cardiac cycle. We previously evaluated the effects of CCM in isolated adult rabbit ventricular cardiomyocytes and found a transient increase in calcium and contractility. In the present study, we sought to extend these results to human cardiomyocytes using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to develop a robust model to evaluate CCM in vitro. HiPSC-CMs (iCell Cardiomyocytes2 , Fujifilm Cellular Dynamic, Inc.) were studied in monolayer format plated on flexible substrate. Contractility, calcium handling, and electrophysiology were evaluated by fluorescence- and video-based analysis (CellOPTIQ, Clyde Biosciences). CCM pulses were applied using an A-M Systems 4100 pulse generator. Robust hiPSC-CMs response was observed at 14 V/cm (64 mA) for pacing and 28 V/cm (128 mA, phase amplitude) for CCM. Under these conditions, hiPSC-CMs displayed enhanced contractile properties including increased contraction amplitude and faster contraction kinetics. Likewise, calcium transient amplitude increased, and calcium kinetics were faster. Furthermore, electrophysiological properties were altered resulting in shortened action potential duration (APD). The observed effects subsided when the CCM stimulation was stopped. CCM-induced increase in hiPSC-CMs contractility was significantly more pronounced when extracellular calcium concentration was lowered from 2 mM to 0.5 mM. This study provides a comprehensive characterization of CCM effects on hiPSC-CMs. These data represent the first study of CCM in hiPSC-CMs and provide an in vitro model to assess physiologically relevant mechanisms and evaluate safety and effectiveness of future cardiac electrophysiology medical devices.


Asunto(s)
Potenciales de Acción , Células Madre Pluripotentes Inducidas/citología , Contracción Miocárdica , Miocitos Cardíacos/fisiología , Señalización del Calcio , Diferenciación Celular , Células Cultivadas , Humanos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo
11.
PLoS One ; 15(11): e0241362, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33157550

RESUMEN

Buprenorphine is a µ-opioid receptor (MOR) partial agonist used to manage pain and addiction. QTC prolongation that crosses the 10 msec threshold of regulatory concern was observed at a supratherapeutic dose in two thorough QT studies for the transdermal buprenorphine product BUTRANS®. Because QTC prolongation can be associated with Torsades de Pointes (TdP), a rare but potentially fatal ventricular arrhythmia, these results have led to further investigation of the electrophysiological effects of buprenorphine. Drug-induced QTC prolongation and TdP are most commonly caused by acute inhibition of hERG current (IhERG) that contribute to the repolarizing phase of the ventricular action potentials (APs). Concomitant inhibition of inward late Na+ (INaL) and/or L-type Ca2+ (ICaL) current can offer some protection against proarrhythmia. Therefore, we characterized the effects of buprenorphine and its major metabolite norbuprenorphine on cardiac hERG, Ca2+, and Na+ ion channels, as well as cardiac APs. For comparison, methadone, a MOR agonist associated with QTC prolongation and high TdP risk, and naltrexone and naloxone, two opioid receptor antagonists, were also studied. Whole cell recordings were performed at 37°C on cells stably expressing hERG, CaV1.2, and NaV1.5 proteins. Microelectrode array (MEA) recordings were made on human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). The results showed that buprenorphine, norbuprenorphine, naltrexone, and naloxone had no effect on IhERG, ICaL, INaL, and peak Na+ current (INaP) at clinically relevant concentrations. In contrast, methadone inhibited IhERG, ICaL, and INaL. Experiments on iPSC-CMs showed a lack of effect for buprenorphine, norbuprenorphine, naltrexone, and naloxone, and delayed repolarization for methadone at clinically relevant concentrations. The mechanism of QTC prolongation is opioid moiety-specific. This remains undefined for buprenorphine, while for methadone it involves direct hERG channel block. There is no evidence that buprenorphine use is associated with TdP. Whether this lack of TdP risk can be generalized to other drugs with QTC prolongation not mediated by acute hERG channel block warrants further study.


Asunto(s)
Buprenorfina/análogos & derivados , Electrocardiografía , Canales de Potasio Éter-A-Go-Go/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Buprenorfina/farmacología , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Metadona/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Naloxona/farmacología , Naltrexona/farmacología , Receptores Opioides/metabolismo , Factores de Tiempo
12.
Regul Toxicol Pharmacol ; 117: 104756, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32822771

RESUMEN

Human stem cell-derived cardiomyocytes (hSC-CMs) hold great promise as in vitro models to study the electrophysiological effects of novel drug candidates on human ventricular repolarization. Two recent large validation studies have demonstrated the ability of hSC-CMs to detect drug-induced delayed repolarization and "cellrhythmias" (interrupted repolarization or irregular spontaneous beating of myocytes) linked to Torsade-de-Pointes proarrhythmic risk. These (and other) studies have also revealed variability of electrophysiological responses attributable to differences in experimental approaches and experimenter, protocols, technology platforms used, and pharmacologic sensitivity of different human-derived models. Thus, when evaluating drug-induced repolarization effects, there is a need to consider 1) the advantages and disadvantages of different approaches, 2) the need for robust functional characterization of hSC-CM preparations to define "fit for purpose" applications, and 3) adopting standardized best practices to guide future studies with evolving hSC-CM preparations. Examples provided and suggested best practices are instructional in defining consistent, reproducible, and interpretable "fit for purpose" hSC-CM-based applications. Implementation of best practices should enhance the clinical translation of hSC-CM-based cell and tissue preparations in drug safety evaluations and support their growing role in regulatory filings.


Asunto(s)
Células Madre Adultas/efectos de los fármacos , Arritmias Cardíacas/inducido químicamente , Cardiotoxinas/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Guías de Práctica Clínica como Asunto/normas , Estudios de Validación como Asunto , Células Madre Adultas/patología , Células Madre Adultas/fisiología , Arritmias Cardíacas/patología , Arritmias Cardíacas/fisiopatología , Humanos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Miocitos Cardíacos/patología
13.
Stem Cells Transl Med ; 9(10): 1203-1217, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32700830

RESUMEN

Techniques that enable longitudinal tracking of cell fate after myocardial delivery are imperative for optimizing the efficacy of cell-based cardiac therapies. However, these approaches have been underutilized in preclinical models and clinical trials, and there is considerable demand for site-specific strategies achieving long-term expression of reporter genes compatible with safe noninvasive imaging. In this study, the rhesus sodium/iodide symporter (NIS) gene was incorporated into rhesus macaque induced pluripotent stem cells (RhiPSCs) via CRISPR/Cas9. Cardiomyocytes derived from NIS-RhiPSCs (NIS-RhiPSC-CMs) exhibited overall similar morphological and electrophysiological characteristics compared to parental control RhiPSC-CMs at baseline and with exposure to physiological levels of sodium iodide. Mice were injected intramyocardially with 2 million NIS-RhiPSC-CMs immediately following myocardial infarction, and serial positron emission tomography/computed tomography was performed with 18 F-tetrafluoroborate to monitor transplanted cells in vivo. NIS-RhiPSC-CMs could be detected until study conclusion at 8 to 10 weeks postinjection. This NIS-based molecular imaging platform, with optimal safety and sensitivity characteristics, is primed for translation into large-animal preclinical models and clinical trials.


Asunto(s)
Sistemas CRISPR-Cas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Simportadores/genética , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Transfección
14.
Clin Transl Sci ; 12(6): 687-697, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31328865

RESUMEN

Induced pluripotent stem cells (iPSCs) have shown promise in investigating donor-specific phenotypes and pathologies. The iPSC-derived cardiomyocytes (iPSC-CMs) could potentially be utilized in personalized cardiotoxicity studies, assessing individual proarrhythmic risk. However, it is unclear how closely iPSC-CMs derived from healthy subjects can recapitulate a range of responses to drugs. It is well known that QT-prolonging drugs induce subject-specific clinical response and that all healthy subjects do not necessarily develop arrhythmias or exhibit similar amounts of QT prolongation. We previously reported this variability in a study of four human ether-a-go-go-related gene (hERG) potassium channel-blocking drugs in which each subject underwent intensive pharmacokinetic and pharmacodynamic sampling such that subjects had 15 time-matched plasma drug concentration and electrocardiogram measurements throughout 24 hours after dosing in a phase I clinical research unit. In this study, iPSC-CMs were generated from those subjects. Their drug-concentration-dependent QT prolongation response from the clinic was compared with in vitro drug-concentration-dependent action potential duration (APD) prolongation response to the same two hERG-blocking drugs, dofetilide and moxifloxacin. Comparative results showed no significant correlation between the subject-specific APD response slopes and clinical QT response slopes to either moxifloxacin (P = 0.75) or dofetilide (P = 0.69). Similarly, no significant correlation was found between baseline QT and baseline APD measurements (P = 0.93). This result advances our current understanding of subject-specific iPSC-CMs and facilitates discussion into factors obscuring correlation and considerations for future studies of subject-specific phenotypes in iPSC-CMs.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Síndrome de QT Prolongado/inducido químicamente , Miocitos Cardíacos/efectos de los fármacos , Cultivo Primario de Células , Pruebas de Toxicidad/métodos , Adulto , Cardiotoxicidad , Diferenciación Celular , Células Cultivadas , Estudios Cruzados , Relación Dosis-Respuesta a Droga , Electrocardiografía , Femenino , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Síndrome de QT Prolongado/diagnóstico , Masculino , Moxifloxacino/administración & dosificación , Moxifloxacino/toxicidad , Miocitos Cardíacos/fisiología , Fenetilaminas/administración & dosificación , Fenetilaminas/toxicidad , Sulfonamidas/administración & dosificación , Sulfonamidas/toxicidad
15.
Toxicol Sci ; 170(1): 167-179, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30912807

RESUMEN

Cardiac side-effects are one of the major reasons for failure of drugs during preclinical development. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have been proposed as a model for predicting drug-induced arrhythmias under the Comprehensive in vitro Proarrhythmia Assay (CiPA) paradigm. Field potential duration (FPD) in spontaneously beating iPSC-CMs is commonly corrected for beating rate using formulas originally derived from the clinical QT-RR relationship that have not been thoroughly validated for use with iPSC-CMs. In this study, channelrhodopsin-2 was expressed in iPSC-CMs allowing for recordings in both spontaneously beating and optically paced (0.8, 1, and 1.5 Hz pacing rate) iPSC-CMs using a microelectrode array system (Maestro, Axion Biosystems). After optimizing the intensity (>1 mW/mm2), duration (15 ms) and frequency of the stimulating light pulses, we recorded iPSC-CMs' responses to 28 blinded CiPA compounds with clinically characterized risk of causing ventricular arrhythmia (Torsade de Pointes or TdP). Drug-induced FPD prolongation data along with drug-induced arrhythmia-like events were used to build a logistic regression model, separating high or intermediate TdP risk drugs from low-or-no TdP risk drugs. The area under the receiver operator characteristic curve for drug TdP risk prediction was identical for spontaneously beating and 0.8 Hz-paced iPSC-CMs (AUC = 0.96; 95% CI [0.9, 1]), while it was slightly lower for 1 and 1.5 Hz pacing (AUC = 0.88; 95% CI [0.76, 1] and 0.93; 95% CI [0.84, 1], respectively). In this study, optical pacing did not offer substantial improvement in proarrhythmic risk prediction when compared with nonpaced iPSC-CMs in the sample of 28 drugs.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Células Madre Pluripotentes Inducidas , Modelos Cardiovasculares , Miocitos Cardíacos/efectos de los fármacos , Optogenética/métodos , Preparaciones Farmacéuticas/administración & dosificación , Técnicas de Cultivo de Célula , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Valor Predictivo de las Pruebas , Riesgo , Torsades de Pointes/inducido químicamente
16.
Ther Innov Regul Sci ; 53(4): 519-525, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30157676

RESUMEN

A Cardiac Safety Research Consortium / Health and Environmental Sciences Institute / FDA-sponsored Think Tank Meeting was convened in Washington, DC, on May 21, 2018, to bring together scientists, clinicians, and regulators from multiple geographic regions to evaluate progress to date in the Comprehensive In Vitro Proarrhythmia Assay (CiPA) Initiative, a new paradigm to evaluate proarrhythmic risk. Study reports from the 4 different components of the CiPA paradigm (ionic current studies, in silico modeling to generate a Torsade Metric Score, human induced pluripotent stem cell-derived ventricular cardiomyocytes, and clinical ECG assessments including J-Tpeakc) were presented and discussed. This paper provides a high-level summary of the CiPA data presented at the meeting.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Evaluación Preclínica de Medicamentos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Bioensayo , Simulación por Computador , Electrocardiografía , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Canales Iónicos/fisiología , Miocitos Cardíacos
17.
Cell Rep ; 24(13): 3582-3592, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30257217

RESUMEN

To assess the utility of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as an in vitro proarrhythmia model, we evaluated the concentration dependence and sources of variability of electrophysiologic responses to 28 drugs linked to low, intermediate, and high torsades de pointes (TdP) risk categories using two commercial cell lines and standardized protocols in a blinded multisite study using multielectrode array or voltage-sensing optical approaches. Logistical and ordinal linear regression models were constructed using drug responses as predictors and TdP risk categories as outcomes. Three of seven predictors (drug-induced arrhythmia-like events and prolongation of repolarization at either maximum tested or maximal clinical exposures) categorized drugs with reasonable accuracy (area under the curve values of receiver operator curves ∼0.8). hiPSC-CM line, test site, and platform had minimal influence on drug categorization. These results demonstrate the utility of hiPSC-CMs to detect drug-induced proarrhythmic effects as part of the evolving Comprehensive In Vitro Proarrhythmia Assay paradigm.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Electrofisiología/métodos , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/efectos de los fármacos , Torsades de Pointes/inducido químicamente , Cardiotoxicidad , Línea Celular , Reprogramación Celular , Evaluación Preclínica de Medicamentos/normas , Electrofisiología/normas , Humanos , Potenciales de la Membrana/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología
18.
Artículo en Inglés | MEDLINE | ID: mdl-29155283

RESUMEN

INTRODUCTION: Cardiotoxicity assessment using human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) forms a key component of the Comprehensive in Vitro Proarrhythmia Assay (CiPA). A potentially impactful factor on iPSC-CM testing is the presence of serum in the experimental media. Generally, serum-free media is used to most accurately reproduce "free" drug concentration. However, caution is needed; drug solubility and cardiomyocyte electrophysiology could be affected by media formulation, potentially impacting interpretation of drug-induced effects. METHODS: Effects of 25 drugs on properties of spontaneous field potentials in iPSC-CMs were assayed using a high-throughput microelectrode array (MEA) in two media formulations: serum-containing and serum-free. Comparative analysis was conducted on rate-corrected field potential duration (FPDc) and prevalence of arrhythmic events. Further MEA experiments were conducted, varying percentages of serum as well as carbon substrate components. Comparative LC-MS/MS analysis was done on two compounds to evaluate drug concentrations. RESULTS: In serum-free media, 9 drugs prolonged FPDc. In serum-containing, 11 drugs prolonged FPDc. Eighteen drugs induced arrhythmias, 8 of these induced arrhythmias at lower concentrations in serum-containing media. At the highest non-arrhythmic concentrations, 13 of 25 drugs exhibited significant differences in FPDc prolongation/shortening between the media. Increasing fractions of serum in media yielded higher FPDc measurements. LC-MS/MS analysis of moxifloxacin and quinidine showed higher concentrations in serum-containing media. DISCUSSION: The present study highlights media formulation as an important consideration for cardiac safety testing with iPSC-CMs. Results described here suggest that media formulation influences both compound availability and baseline electrophysiological properties. Special attention should be paid to media for future iPSC-CM assays.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Cardiotoxicidad/etiología , Medios de Cultivo/efectos adversos , Medios de Cultivo/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Suero/metabolismo , Arritmias Cardíacas/metabolismo , Cardiotoxicidad/metabolismo , Células Cultivadas , Fenómenos Electrofisiológicos/efectos de los fármacos , Humanos , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/metabolismo , Miocitos Cardíacos/metabolismo , Medición de Riesgo
19.
Circulation ; 135(14): 1300-1310, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28213480

RESUMEN

BACKGROUND: Drug-induced QT interval prolongation, a risk factor for life-threatening ventricular arrhythmias, is a potential side effect of many marketed and withdrawn medications. The contribution of common genetic variants previously associated with baseline QT interval to drug-induced QT prolongation and arrhythmias is not known. METHODS: We tested the hypothesis that a weighted combination of common genetic variants contributing to QT interval at baseline, identified through genome-wide association studies, can predict individual response to multiple QT-prolonging drugs. Genetic analysis of 22 subjects was performed in a secondary analysis of a randomized, double-blind, placebo-controlled, crossover trial of 3 QT-prolonging drugs with 15 time-matched QT and plasma drug concentration measurements. Subjects received single doses of dofetilide, quinidine, ranolazine, and placebo. The outcome was the correlation between a genetic QT score comprising 61 common genetic variants and the slope of an individual subject's drug-induced increase in heart rate-corrected QT (QTc) versus drug concentration. RESULTS: The genetic QT score was correlated with drug-induced QTc prolongation. Among white subjects, genetic QT score explained 30% of the variability in response to dofetilide (r=0.55; 95% confidence interval, 0.09-0.81; P=0.02), 23% in response to quinidine (r=0.48; 95% confidence interval, -0.03 to 0.79; P=0.06), and 27% in response to ranolazine (r=0.52; 95% confidence interval, 0.05-0.80; P=0.03). Furthermore, the genetic QT score was a significant predictor of drug-induced torsade de pointes in an independent sample of 216 cases compared with 771 controls (r2=12%, P=1×10-7). CONCLUSIONS: We demonstrate that a genetic QT score comprising 61 common genetic variants explains a significant proportion of the variability in drug-induced QT prolongation and is a significant predictor of drug-induced torsade de pointes. These findings highlight an opportunity for recent genetic discoveries to improve individualized risk-benefit assessment for pharmacological therapies. Replication of these findings in larger samples is needed to more precisely estimate variance explained and to establish the individual variants that drive these effects. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01873950.


Asunto(s)
Arritmias Cardíacas/etiología , Síndrome de QT Prolongado/inducido químicamente , Adulto , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Proyectos Piloto , Polimorfismo de Nucleótido Simple , Medición de Riesgo , Torsades de Pointes/etiología
20.
Toxicol Sci ; 155(1): 234-247, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27701120

RESUMEN

Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) hold promise for assessment of drug-induced arrhythmias and are being considered for use under the comprehensive in vitro proarrhythmia assay (CiPA). We studied the effects of 26 drugs and 3 drug combinations on 2 commercially available iPSC-CM types using high-throughput voltage-sensitive dye and microelectrode-array assays being studied for the CiPA initiative and compared the results with clinical QT prolongation and torsade de pointes (TdP) risk. Concentration-dependent analysis comparing iPSC-CMs to clinical trial results demonstrated good correlation between drug-induced rate-corrected action potential duration and field potential duration (APDc and FPDc) prolongation and clinical trial QTc prolongation. Of 20 drugs studied that exhibit clinical QTc prolongation, 17 caused APDc prolongation (16 in Cor.4U and 13 in iCell cardiomyocytes) and 16 caused FPDc prolongation (16 in Cor.4U and 10 in iCell cardiomyocytes). Of 14 drugs that cause TdP, arrhythmias occurred with 10 drugs. Lack of arrhythmic beating in iPSC-CMs for the four remaining drugs could be due to differences in relative levels of expression of individual ion channels. iPSC-CMs responded consistently to human ether-a-go-go potassium channel blocking drugs (APD prolongation and arrhythmias) and calcium channel blocking drugs (APD shortening and prevention of arrhythmias), with a more variable response to late sodium current blocking drugs. Current results confirm the potential of iPSC-CMs for proarrhythmia prediction under CiPA, where iPSC-CM results would serve as a check to ion channel and in silico modeling prediction of proarrhythmic risk. A multi-site validation study is warranted.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Investigación Biomédica Traslacional , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...