Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 46(4): 1283-1289, 2017 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-28067373

RESUMEN

New oxides of the (NdSr)n+1MO3n+1 (M = Co and Mn or Fe) series are reported. Compounds of composition NdSrCo0.75Fe0.25O4.10, NdSrCo0.75Mn0.25O4.08 and Nd0.5Sr1.5Co0.75Mn0.25O3.86 are the n = 1 members of the Ruddlesden-Popper homologous series (K2NiF4 structural type) as determined by X-ray diffraction and different transmission electron microscopy techniques. Their crystal structure consists of connected (Co-Fe/Mn)O6 octahedra blocks separated by (Nd/Sr)O rock-salt like layers along the c-axis. Interstitial oxygen atoms or anion vacancies are induced depending on composition. Oxides with interstitial oxygen show good performances as intermediate temperature solid oxide fuel cell (IT-SOFC) cathode. The area-specific resistance values of electrodes made of these oxides at 973 K in air are 0.18 Ω cm2 for NdSrCo0.75Fe0.25O4.10 and NdSrCo0.75Mn0.25O4.08 (comparable to the one of the state-of-the-art materials proposed as cathodes in IT-SOFC), and 1.38 Ω cm2 for Nd0.5Sr1.5Co0.75Mn0.25O3.86.

2.
Dalton Trans ; 43(37): 14099-108, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25124048

RESUMEN

Aliovalent substitution of Nb(5+) by Ti(4+) in Sr2LuNbO6 is limited to 10% of Nb atoms. A full structural determination by NPD confirms this and reveals that the structure is better described as a superstructure of the simple cubic perovskite (as previously reported) with the monoclinic cell 2(1/2)ap× 2(1/2)ap× 2ap and ß≈ 90° (S.G. P21/n). The substituted materials present both oxygen-vacancies induced by charge compensation and Sr-deficiency. Therefore, their formula should be given as Sr2-yLuNb1-xTixO6-δ. Electrical properties can be fully understood considering these compositional defects. The parent compound Sr2LuNbO6 presents low electrical conductivity in air, which improves by more than one order of magnitude upon Ti substitution. In any case, the title oxides show low electrical conductivity in a wide oxygen partial pressure (pO2) range (10(-25) atm ≤pO2≤ 10(-1) atm). At high pO2 the conductivity increases with pO2 due to oxygen-vacancy annihilation and hole creation, according to a general p-type semiconducting mechanism; A-site substoichiometry and Ti-substitution are the origin of this behaviour. In the low pO2 region, the conductivity increases as the oxygen partial pressure decreases. Reduction of cations, Nb(5+) or Ti(4+), supports n-type conduction by electrons and oxygen vacancy creation. For the intermediate pO2 range a low ionic conduction contribution is observed. Although the estimated ionic conductivity is not high in the substituted compounds, the strategy seems to be valid since a significant enhancement of ionic conduction is observed upon aliovalent substitution.

3.
J Dairy Sci ; 96(1): 352-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23182362

RESUMEN

In this study, we demonstrated the effect of different dissolved oxygen concentrations (DOC) on cell growth and intracellular biosynthesis of 3-methylbutanal from leucine catabolism in Carnobacterium maltaromaticum LMA 28 during batch culture. The maximum specific growth rate was obtained in culture when DOC was controlled at 50% of air saturation. The specific consumption rates of glucose and specific production rates of lactate were higher at a DOC at 50 or 90% of air saturation. Carnobacterium maltaromaticum LMA 28 produced high quantities of 3-methylbutanal and 3-methylbutanol during culture with DOC maintained at 90%, suggesting that oxygen had a significant effect of the formation of these flavor compounds. This high formation of flavor compounds in an oxygen-rich environment was attributed to the simultaneous activation and stimulation of both α-ketoacid decarboxylase (KADC) and α-ketoacid dehydrogenase (KADH) pathways. Thus, intracellular biosynthesis of 3-methylbutanal can be controlled by modifying the DOC of the culture or food product during fermentation.


Asunto(s)
Aldehídos/metabolismo , Carnobacterium/metabolismo , Carga Bacteriana , Carnobacterium/crecimiento & desarrollo , Cromatografía de Gases , Medios de Cultivo , Glucosa/metabolismo , Ácido Láctico/metabolismo , Leucina/metabolismo , Oxígeno/farmacología
4.
Biotechnol Bioeng ; 100(3): 497-505, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18438874

RESUMEN

Interest in L-glycerol 3-phosphate (L-G3P) production via microbial fermentation is due to the compound's potential to replace the unstable substrate dihydroxyacetone phosphate (DHAP) in one-pot enzymatic carbohydrate syntheses. A Saccharomyces cerevisiae strain with deletions in both genes encoding specific L-G3Pases (GPP1 and GPP2) and multicopy overexpression of L-glycerol 3-phosphate dehydrogenase (GPD1) was studied via small-scale (100 mL) batch fermentations under quasi-anaerobic conditions. Intracellular accumulation of L-G3P reached extremely high levels (roughly 200 mM) but thereafter declined. Extracellular L-G3P was also detected and its concentration continuously increased throughout the fermentation, such that most of the total L-G3P was found outside the cells as fermentation concluded. Moreover, in spite of the complete elimination of specific L-G3Pase activity, the strain showed considerable glycerol formation suggesting unspecific dephosphorylation as a mechanism to relieve cells of intracellular L-G3P accumulation. Up-scaling the process employed fed-batch fermentation with repeated glucose feeding, plus an aerobic growth phase followed by an anaerobic product accumulation phase. This produced a final product titer of about 325 mg total L-G3P per liter of fermentation broth.


Asunto(s)
Glicerol/metabolismo , Glicerofosfatos/biosíntesis , Microbiología Industrial , Saccharomyces cerevisiae/metabolismo , Fermentación , Ingeniería Genética , Glicerol-3-Fosfato Deshidrogenasa (NAD+)/genética , Glicerofosfatos/análisis , Glicerofosfatos/genética , Monoéster Fosfórico Hidrolasas/genética , Saccharomyces cerevisiae/genética
5.
Ultramicroscopy ; 107(6-7): 431-44, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17258859

RESUMEN

We have developed a new fast electron diffractometer working with high dynamic range and linearity for crystal structure determinations. Electron diffraction (ED) patterns can be scanned serially in front of a Faraday cage detector; the total measurement time for several hundred ED reflections can be tens of seconds having high statistical accuracy for all measured intensities (1-2%). This new tool can be installed to any type of TEM without any column modification and is linked to a specially developed electron beam precession "Spinning Star" system. Precession of the electron beam (Vincent-Midgley technique) reduces dynamical effects allowing also use of accurate intensities for crystal structure analysis. We describe the technical characteristics of this new tool together with the first experimental results. Accurate measurement of electron diffraction intensities by electron diffractometer opens new possibilities not only for revealing unknown structures, but also for electrostatic potential determination and chemical bonding investigation. As an example, we present detailed atomic bonding information of CaF(2) as revealed for the first time by precise electron diffractometry.

6.
Chemistry ; 7(7): 1444-9, 2001 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-11330898

RESUMEN

Study of the structural changes occurring during the reduction process of the Sr2RhO4+delta, (214), n=1 term of the Ruddlesden and Popper series, shows that for delta <0.02 values, this material dissociates into the Sr4RhO6 (416) monodimensional phase, alpha = infinity, beta = 0 compound of the (A3B2O6)alpha-(A3B3O9)beta family, and Rh metal. During the first stage, this process occurs by the formation of an intergrowth between the (214) and (416) materials which can be only detected by high resolution electron microscopy and is easily interpreted on the basis of the structural relationship established between them. Further reduction allows the segregation of both phases as separated entities, which coexist with Rh metal. The dissociation process is reversible and, under oxidizing conditions, a layered material with anionic composition delta =0.06 is always obtained. This behaviour seems to be a general way of accommodating the compositional changes in layered A2BO4 phases where the B cation is always in a octahedral environment. The structural mechanism of this transformation is proposed, and the structural relationship between these two low-dimensional oxides is established.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA