Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Aging (Albany NY) ; 14(19): 7718-7733, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36202132

RESUMEN

Aging is a progressive time-dependent biological process affecting differentially individuals, who can sometimes present exceptional longevity. Epigenetic alterations are one of the hallmarks of aging, which comprise the epigenetic drift and clock at DNA methylation level. In the present study, we estimated the DNA methylation-based age (DNAmage) using four epigenetic clocks based on a small number of CpGs in French centenarians and semi-supercentenarians (CSSC, n=214) as well as nonagenarians' and centenarians' offspring (NCO, n=143) compared to individuals from the French general population (CG, n=149). DNA methylation analysis of the nine CpGs included in the epigenetic clocks showed high correlation with chronological age (-0.66>R>0.54) and also the presence of an epigenetic drift for four CpGs that was only visible in CSSC. DNAmage analysis showed that CSSC and to a lesser extend NCO present a younger DNAmage than their chronological age (15-28.5 years for CSSC, 4.4-11.5 years for NCO and 4.2-8.2 years for CG), which were strongly significant in CSSC compared to CG (p-values<2.2e-16). These differences suggest that epigenetic aging and potentially biological aging are slowed in exceptionally long-lived individuals and that epigenetic clocks based on a small number of CpGs are sufficient to reveal alterations of the global epigenetic clock.


Asunto(s)
Centenarios , Epigénesis Genética , Anciano de 80 o más Años , Humanos , Islas de CpG/genética , Epigenómica , Metilación de ADN , Envejecimiento/genética
2.
Sci Rep ; 12(1): 4684, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35304543

RESUMEN

Lymphoblastoid cell lines (LCLs) derive from blood infected in vitro by Epstein-Barr virus and were used in several genetic, transcriptomic and epigenomic studies. Although few changes were shown between LCL and blood genotypes (SNPs) validating their use in genetics, more were highlighted for other genomic features and/or in their transcriptome and epigenome. This could render them less appropriate for these studies, notably when blood DNA could still be available. Here we developed a simple, high-throughput and cost-effective real-time PCR approach allowing to distinguish blood from LCL DNA samples based on the presence of EBV relative load and rearranged T-cell receptors γ and ß. Our approach was able to achieve 98.5% sensitivity and 100% specificity on DNA of known origin (458 blood and 316 LCL DNA). It was further applied to 1957 DNA samples from the CEPH Aging cohort comprising DNA of uncertain origin, identifying 784 blood and 1016 LCL DNA. A subset of these DNA was further analyzed with an epigenetic clock indicating that DNA extracted from blood should be preferred to LCL for DNA methylation-based age prediction analysis. Our approach could thereby be a powerful tool to ascertain the origin of DNA in old collections prior to (epi)genomic studies.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Línea Celular , ADN/genética , Epigenómica , Herpesvirus Humano 4/genética , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
Front Genet ; 12: 665174, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539727

RESUMEN

The role of the prokineticin 2 pathway in human reproduction, olfactory bulb morphogenesis, and gonadotropin-releasing hormone secretion is well established. Recent studies have highlighted the implication of di/oligogenic inheritance in this disorder. In the present study, we aimed to identify the genetic mechanisms that could explain incomplete penetrance in hypogonadotropic hypogonadism (HH). This study involved two unrelated Tunisian patients with HH, which was triggered by identifying a homozygous p.(Pro290Ser) mutation in the PROKR2 gene in a girl (HH1) with Kallmann syndrome (KS). The functional effect of this variant has previously been well demonstrated. Unexpectedly, her unaffected father (HH1P) and brother (HH1F) also carried this genetic variation at a homozygous state. In the second family, we identified a heterozygous p.(Lys205del) mutation in PROKR2, both in a male patient with normosmic idiopathic IHH (HH12) and his asymptomatic mother. Whole-exome sequencing in the three HH1 family members allowed the identification of additional variants in the prioritized genes. We then carried out digenic combination predictions using the oligogenic resource for variant analysis (ORVAL) software. For HH1, we found the highest number of disease-causing variant pairs. Notably, a CCDC141 variant (c.2803C > T) was involved in 18 pathogenic digenic combinations. The CCDC141 variant acts in an autosomal recessive inheritance mode, based on the digenic effect prediction data. For the second patient (HH12), prediction by ORVAL allowed the identification of an interesting pathogenic digenic combination between DUSP6 and SEMA7A genes, predicted as "dual molecular diagnosis." The SEMA7A variant p.(Glu436Lys) is novel and predicted as a VUS by Varsome. Sanger validation revealed the absence of this variant in the healthy mother. We hypothesize that disease expression in HH12 could be induced by the digenic transmission of the SEMA7A and DUSP6 variants or a monogenic inheritance involving only the SEMA7A VUS if further functional assays allow its reclassification into pathogenic. Our findings confirm that homozygous loss-of-function genetic variations are insufficient to cause KS, and that oligogenism is most likely the main transmission mode involved in Congenital Hypogonadotropic Hypogonadism.

4.
Neuropediatrics ; 52(4): 302-309, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34192786

RESUMEN

Hypomyelination and congenital cataract (HCC) is characterized by congenital cataract, progressive neurologic impairment, and diffuse myelin deficiency. This autosomal recessive disorder is caused by homozygous variant in the FAM126A gene. Five consanguineous Tunisian patients, belonging to three unrelated families, underwent routine blood tests, electroneuromyography, and magnetic resonance imaging of the brain. The direct sequencing of FAM126A exons was performed for the patients and their relatives. We summarized the 30 previously published HCC cases. All of our patients were carriers of a previously reported c.414 + 1G > T (IVS5 + 1G > T) variant, but the clinical spectrum was variable. Despite the absence of a phenotype-genotype correlation in HCC disease, screening of this splice site variant should be performed in family members at risk.


Asunto(s)
Catarata , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Catarata/congénito , Catarata/diagnóstico por imagen , Catarata/genética , Consanguinidad , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico por imagen , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Humanos , Linaje
5.
Herz ; 46(Suppl 1): 94-102, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31970460

RESUMEN

Unexplained sudden death in the young is cardiovascular in most cases. Structural and conduction defects in cardiac-related genes can conspire to underlie sudden cardiac death. Here we report a clinical investigation and an extensive genetic assessment of a Tunisian family with sudden cardiac death in young members. In order to identify the family-genetic basis of sudden cardiac death, we performed Whole Exome Sequencing (WES), read depth copy-number-variation (CNV) screening and segregation analysis. We identify 6 ultra-rare pathogenic heterozygous variants in OBSCN, RYR2, DSC2, AKAP9, CACNA1C and RBM20 genes, and one homozygous splicing variant in TECRL gene consistent with an oligogenic model of inheritance. CNV analysis did not reveal any causative CNV consistent with the family phenotype. Overall, our results are highly suggestive for a cumulative effect of heterozygous missense variants as disease causation and to account for a greater disease severity among offspring. Our study further confirms the complexity of the inheritance of sudden cardiac death and highlights the utility of family-based WES and segregation analysis in the identification of family specific mutations within different cardiac genes pathways.


Asunto(s)
Muerte Súbita Cardíaca , Corazón , Muerte Súbita Cardíaca/etiología , Humanos , Mutación , Fenotipo
6.
Proc Natl Acad Sci U S A ; 117(49): 31278-31289, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229591

RESUMEN

Presbycusis, or age-related hearing loss (ARHL), is a major public health issue. About half the phenotypic variance has been attributed to genetic factors. Here, we assessed the contribution to presbycusis of ultrarare pathogenic variants, considered indicative of Mendelian forms. We focused on severe presbycusis without environmental or comorbidity risk factors and studied multiplex family age-related hearing loss (mARHL) and simplex/sporadic age-related hearing loss (sARHL) cases and controls with normal hearing by whole-exome sequencing. Ultrarare variants (allele frequency [AF] < 0.0001) of 35 genes responsible for autosomal dominant early-onset forms of deafness, predicted to be pathogenic, were detected in 25.7% of mARHL and 22.7% of sARHL cases vs. 7.5% of controls (P = 0.001); half were previously unknown (AF < 0.000002). MYO6, MYO7A, PTPRQ, and TECTA variants were present in 8.9% of ARHL cases but less than 1% of controls. Evidence for a causal role of variants in presbycusis was provided by pathogenicity prediction programs, documented haploinsufficiency, three-dimensional structure/function analyses, cell biology experiments, and reported early effects. We also established Tmc1N321I/+ mice, carrying the TMC1:p.(Asn327Ile) variant detected in an mARHL case, as a mouse model for a monogenic form of presbycusis. Deafness gene variants can thus result in a continuum of auditory phenotypes. Our findings demonstrate that the genetics of presbycusis is shaped by not only well-studied polygenic risk factors of small effect size revealed by common variants but also, ultrarare variants likely resulting in monogenic forms, thereby paving the way for treatment with emerging inner ear gene therapy.


Asunto(s)
Sordera/genética , Genes Dominantes , Mutación/genética , Presbiacusia/genética , Factores de Edad , Edad de Inicio , Animales , Estudios de Casos y Controles , Estudios de Cohortes , Heterocigoto , Humanos , Proteínas de la Membrana/genética , Ratones , MicroARNs/genética , Mitocondrias/genética , Secuenciación del Exoma
7.
Sci Rep ; 10(1): 15652, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973211

RESUMEN

Several blood-based age prediction models have been developed using less than a dozen to more than a hundred DNA methylation biomarkers. Only one model (Z-P1) based on pyrosequencing has been developed using DNA methylation of a single locus located in the ELOVL2 promoter, which is considered as one of the best age-prediction biomarker. Although multi-locus models generally present better performances compared to the single-locus model, they require more DNA and present more inter-laboratory variations impacting the predictions. Here we developed 17,018 single-locus age prediction models based on DNA methylation of the ELOVL2 promoter from pooled data of four different studies (training set of 1,028 individuals aged from 0 and 91 years) using six different statistical approaches and testing every combination of the 7 CpGs, aiming to improve the prediction performances and reduce the effects of inter-laboratory variations. Compared to Z-P1 model, three statistical models with the optimal combinations of CpGs presented improved performances (MAD of 4.41-4.77 in the testing set of 385 individuals) and no age-dependent bias. In an independent testing set of 100 individuals (19-65 years), we showed that the prediction accuracy could be further improved by using different CpG combinations and increasing the number of technical replicates (MAD of 4.17).


Asunto(s)
Envejecimiento/sangre , Envejecimiento/genética , Metilación de ADN , Elongasas de Ácidos Grasos/genética , Sitios Genéticos/genética , Laboratorios , Regiones Promotoras Genéticas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Islas de CpG/genética , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Adulto Joven
8.
Ophthalmic Genet ; 40(4): 329-337, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31322463

RESUMEN

Purpose: We report the clinical features and the mutational analysis in a large Tunisian family with granular corneal dystrophy type I (GCD1). Patients and Methods: Thirty-three members of the Tunisian family underwent a complete ophthalmologic examination. DNA extraction and direct Sanger sequencing of the exons 4 and 12 of transforming growth factor ß Induced (TGFBI) gene was performed for 42 members. For the molecular modeling of TGFBI protein, we used pGenTHREADER method to identify templates, 3D-EXPRESSO program to align sequences, MODELLER to get a homology model for the FAS1 (fasciclin-like) domains and finally NOMAD-ref web server for the energy minimization. Results: The diagnosis of GCD1 was clinically and genetically confirmed. Sequencing of exon 4 of TGFBI gene revealed the p.[R124S] mutation at heterozygous and homozygous states in patients with different clinical severities. Visual acuity was severely affected in the homozygous patients leading to a first penetrating keratoplasty. Recurrence occurred rapidly, began in the seat of the corneal stitches and remained superficial up to 40 years after the graft. For heterozygous cases, visual acuity ranged from 6/10 to 10/10. Corneal opacities were deeper and predominating in the stromal center. According to bioinformatic analysis, this mutation likely perturbs the protein physicochemical properties and reduces its solubility without structural modification. Conclusions: Our study describes for the first time phenotype-genotype correlation in a large Tunisian family with GCDI and illustrates for the first time clinical and histopathological presentation of homozygous p.[R124S] mutation. These results help to understand pathophysiology of the disease.


Asunto(s)
Consanguinidad , Distrofias Hereditarias de la Córnea/genética , Distrofias Hereditarias de la Córnea/patología , Proteínas de la Matriz Extracelular/química , Proteínas de la Matriz Extracelular/genética , Homocigoto , Mutación , Factor de Crecimiento Transformador beta/química , Factor de Crecimiento Transformador beta/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Niño , Análisis Mutacional de ADN , Femenino , Estudios de Seguimiento , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Modelos Moleculares , Linaje , Fenotipo , Pronóstico , Conformación Proteica , Adulto Joven
9.
Neurol Genet ; 4(6): e289, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30584594

RESUMEN

OBJECTIVE: To identify the genetic cause of hypomyelinating leukodystrophy in 2 consanguineous families. METHODS: Homozygosity mapping combined with whole-exome sequencing of consanguineous families was performed. Mutation consequences were determined by studying the structural change of the protein and by the RNA analysis of patients' fibroblasts. RESULTS: We identified a biallelic mutation in a gene coding for a Pol III-specific subunit, POLR3K (c.121C>T/p.Arg41Trp), that cosegregates with the disease in 2 unrelated patients. Patients expressed neurologic and extraneurologic signs found in POLR3A- and POLR3B-related leukodystrophies with a peculiar severe digestive dysfunction. The mutation impaired the POLR3K-POLR3B interactions resulting in zebrafish in abnormal gut development. Functional studies in the 2 patients' fibroblasts revealed a severe decrease (60%-80%) in the expression of 5S and 7S ribosomal RNAs in comparison with control. CONCLUSIONS: These analyses underlined the key role of ribosomal RNA regulation in the development and maintenance of the white matter and the cerebellum as already reported for diseases related to genes involved in transfer RNA or translation initiation factors.

10.
J Dermatol Sci ; 89(2): 172-180, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29169765

RESUMEN

BACKGROUND: Skin cancers (SC) are complex diseases that develop from complex combinations of genetic and environmental risk factors. One of the most severe and rare genetic diseases predisposing to SC is the Xeroderma pigmentosum (XP) syndrome. OBJECTIVES: First, to identify the genetic etiology of XP and to better classify affected patients. Second, to provide early molecular diagnosis for pre-symptomatic patient and finally to offer genetic counseling for related individuals. METHODS: Whole Exome Sequencing (WES) and Run Of Homozygosity (ROH) were performed for two patients belonging to two different multiplex consanguineous families. The identified mutations were confirmed by Sanger sequencing and researched in ten Tunisian families including a total of 25 affected individuals previously suspected as having XP group V (XP-V) form. All patients had mild dermatological manifestations, absence of neurological abnormalities and late onset of skin tumors. RESULTS: Screening for functional variations showed the presence of the ERCC2 p.Arg683Gln in XP14KA-2 patient and a novel mutation, DDB2 p. (Lys381Argfs*2), in XP51-MAH-1 patient. Sanger sequencing and familial segregation showed that the ERCC2 mutation is present at a homozygous state in 10 affected patients belonging to 3 families. The second mutation in DDB2, is present at a homozygous state in 5 affected cases belonging to the same family. These two mutations are absent in the remaining 10 affected patients. The ERCC2 c.2048G > A mutation is present in a medium ROH region (class B) suggesting that it mostly arises from ancient relatedness within individuals. However, the c.1138delG DDB2 mutation is present in a large ROH region (class C) suggesting that it arises from recent relatedness. CONCLUSION: To our knowledge, this is the first study that identifies XP-D and XP-E complementation groups in Tunisia. These two groups are very rare and under-diagnosed in the world and were not reported in North Africa.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Xerodermia Pigmentosa/genética , Adolescente , Adulto , Homocigoto , Humanos , Mutación , Linaje , Fenotipo , Túnez , Secuenciación del Exoma , Xerodermia Pigmentosa/diagnóstico , Adulto Joven
11.
Eur J Med Genet ; 61(1): 1-7, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29024829

RESUMEN

AIM OF THE STUDY: Recent advances in understanding the underlying molecular mechanism for distal renal tubular acidosis (dRTA), led to an increased attention towards the primary and the familial forms of the disease. Mutations in ATP6V1B1 and ATP6V0A4 are usually responsible for the recessive form of the disease. Mutations in gene AE1 encoding the Cl-/HCO3- exchanger, usually present as dominant dRTA, but a recessive pattern has been recently described. Our objective is to identify the mutational spectrum responsible of dRTA in a consanguineous Libyan family. MATERIALS AND METHODS: Both ATP6V0A4 and ATP6V1B1 genes were preferentially screened in our patient. Additional whole exome sequencing (WES) in the same patient, offered a wider view on potential chromosomal rearrangements as well as the mutational spectrum of other genes involved in this disease. RESULTS: The patient is a heterozygote for two different mutations, one in each of the genes ATP6V0A4 and ATP6V1B1, while no deleterious variation was detected in the remaining genes responsible for the recessive form of dRTA. Homozygosity mapping and WES confirmed our findings and supported the hypothesis of a digenic inheritance model existing as an explanation for dRTA. CONCLUSIONS: To our knowledge, this is the first report describing a Libyan patient with dRTA who suffered from early-onset sensorineural hearing loss, with a digenic mode of inheritance, supported by the identification of two novel mutations. This study increases the understanding of how dRTA is genetically transmitted, while offers a good outline towards the molecular diagnostics and genetic counseling for dRTA in Lybians.


Asunto(s)
Acidosis Tubular Renal/genética , Herencia Multifactorial , ATPasas de Translocación de Protón Vacuolares/genética , Acidosis Tubular Renal/patología , Preescolar , Heterocigoto , Humanos , Masculino , Mutación , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/metabolismo
12.
Am J Hum Genet ; 98(6): 1266-1270, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27259055

RESUMEN

By genetic linkage analysis in a large consanguineous Iranian family with eleven individuals affected by severe to profound congenital deafness, we were able to define a 2.8 Mb critical interval (at chromosome 1p21.2-1p21.1) for an autosomal-recessive nonsyndromic deafness locus (DFNB). Whole-exome sequencing allowed us to identify a CDC14A biallelic nonsense mutation, c.1126C>T (p.Arg376(∗)), which was present in the eight clinically affected individuals still alive. Subsequent screening of 115 unrelated individuals affected by severe or profound congenital deafness of unknown genetic cause led us to identify another CDC14A biallelic nonsense mutation, c.1015C>T (p.Arg339(∗)), in an individual originating from Mauritania. CDC14A encodes a protein tyrosine phosphatase. Immunofluorescence analysis of the protein distribution in the mouse inner ear showed a strong labeling of the hair cells' kinocilia. By using a morpholino strategy to knockdown cdc14a in zebrafish larvae, we found that the length of the kinocilia was reduced in inner-ear hair cells. Therefore, deafness caused by loss-of-function mutations in CDC14A probably arises from a morphogenetic defect of the auditory sensory cells' hair bundles, whose differentiation critically depends on the proper growth of their kinocilium.


Asunto(s)
Cilios/patología , Células Ciliadas Auditivas/patología , Pérdida Auditiva Sensorineural/etiología , Mutación/genética , Monoéster Fosfórico Hidrolasas/genética , Índice de Severidad de la Enfermedad , Adulto , Anciano , Animales , Cilios/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Células Ciliadas Auditivas/enzimología , Pérdida Auditiva Sensorineural/patología , Humanos , Larva/genética , Larva/crecimiento & desarrollo , Masculino , Ratones , Persona de Mediana Edad , Linaje , Proteínas Tirosina Fosfatasas , Adulto Joven , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
13.
Am J Hum Biol ; 28(2): 171-80, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26179682

RESUMEN

OBJECTIVES: Consanguinity is common in Tunisia. However, little information exists on its impact on recessive disorders. In this study, we evaluate the impact of consanguineous marriages on the occurrence of some specific autosomal recessive disorders and consider how other factors, such as population substructure and mutation frequency, may be of equal importance in disease prevalence. METHODS: Consanguinity profiles were retrospectively studied among 425 Tunisian patients suffering from autosomal recessive xeroderma pigmentosum, dystrophic epidermolysis bullosa, nonsyndromic retinitis pigmentosa, Gaucher disease, Fanconi anemia, glycogenosis type I, and ichthyosis, and compared to those of a healthy control sample. RESULTS: Consanguinity was observed in 341 cases (64.94%). Consanguinity rates per disease were 75.63, 63.64, 60.64, 61.29, 57.89, 73.33, and 51.28%, respectively. First-cousin marriages were the most common form of consanguinity (48.94%) with the percentages of 55.46, 45.46, 47.87, 48.39, 45.61, 56.66, and 35.90%, respectively. A very high level of geographic endogamy was also observed (93.92%), with the values by disease ranging between 75.86 and 96.64%. We observed an overall excess risk associated to consanguinity of nearly sevenfold which was proportional to the number of affected siblings and the frequency of disease allele in the family. Consanguinity was significantly associated with the first five cited diseases (odds ratio = 24.41, 15.17, 7.5, 5.53, and 5.07, respectively). However, no meaningful effects were reported among the remaining diseases. CONCLUSIONS: This study reveals a variation in the excess risk linked to consanguinity according to the type of disorder, suggesting the potential of cryptic population substructure to contribute to disease incidence in populations with complex social structure like Tunisia. It also emphasizes the role of other health and demographic aspects such as mutation frequency and reproductive replacement in diseases etiology.


Asunto(s)
Frecuencia de los Genes , Genes Recesivos , Predisposición Genética a la Enfermedad/genética , Adolescente , Adulto , Anciano , Alelos , Niño , Preescolar , Consanguinidad , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Prevalencia , Túnez/epidemiología , Adulto Joven
14.
PLoS One ; 10(3): e0120584, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25798947

RESUMEN

Usher syndrome (USH) is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3) are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys), in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24), and a nonsense mutation, c.52A>T (p.Lys18*). Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss.


Asunto(s)
Sordera/genética , Exoma , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Conexina 26 , Conexinas/genética , Familia , Femenino , Genotipo , Humanos , Masculino , Miosinas/genética , Linaje , Fenotipo , Retina/metabolismo , Retina/patología , Túnez
15.
Horm Res Paediatr ; 82(5): 338-43, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25247238

RESUMEN

BACKGROUND/AIMS: The coexistence of triple A syndrome (AAAS) and congenital hypogonadotropic hypogonadism (CHH) has so far not been reported in the literature. This study aimed to characterize at the clinical and genetic level one patient presenting an association of AAAS and CHH in order to identify causal mutations. METHODS: Clinical and endocrinal investigations were performed and followed by mutational screening of candidate genes. RESULTS: At the age of 18, the patient presented sexual infantilism, a micropenis and gynecomastia. No mutation was revealed in GnRHR, TACR3/TAC3, PROK2/PROKR2 and PROP1 genes, except a homozygous intronic variation (c.244 + 128C>T; dbSNP: rs350129) in the KISS1R gene, which is likely nondeleterious. A homozygous splice-donor site mutation (IVS14 + 1G>A) was found in the AAAS gene. This mutation, responsible for AAAS, is a founder mutation in North Africa. CONCLUSION: This is the first report on a Tunisian patient with the coexistence of AAAS and CHH. The diagnosis of CHH should be taken in consideration in patients with Allgrove syndrome and who carry the IVS14 + 1G>A mutation as this might challenge appropriate genetic counseling.


Asunto(s)
Insuficiencia Suprarrenal , Acalasia del Esófago , Eunuquismo , Proteínas del Tejido Nervioso/genética , Proteínas de Complejo Poro Nuclear/genética , Mutación Puntual , Sitios de Empalme de ARN , Adolescente , Insuficiencia Suprarrenal/diagnóstico , Insuficiencia Suprarrenal/genética , Insuficiencia Suprarrenal/patología , Acalasia del Esófago/diagnóstico , Acalasia del Esófago/genética , Acalasia del Esófago/patología , Eunuquismo/diagnóstico , Eunuquismo/genética , Eunuquismo/patología , Femenino , Humanos , Masculino , Túnez
16.
Hum Hered ; 77(1-4): 167-74, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25060280

RESUMEN

Located at the cross-road between Europe and Africa, Tunisia is a North African country of 11 million inhabitants. Throughout its history, it has been invaded by different ethnic groups. These historical events, and consanguinity, have impacted on the spectrum and frequency of genetic diseases in Tunisia. Investigations of Tunisian families have significantly contributed to elucidation of the genetic bases of rare disorders, providing an invaluable resource of cases due to particular familial structures (large family size, consanguinity and share of common ancestors). In the present study, we report on and review different aspects of consanguinity in the Tunisian population as a case study, representing several features common to neighboring or historically related countries in North Africa and the Middle East. Despite the educational, demographic and behavioral changes that have taken place during the last four decades, familial and geographical endogamy still exist at high frequencies, especially in rural areas. The health implications of consanguinity in Tunisian families include an increased risk of the expression of autosomal recessive diseases and particular phenotypic expressions. With new sequencing technologies, the investigation of consanguineous populations provides a unique opportunity to better evaluate the impact of consanguinity on the genome dynamic and on health, in addition to a better understanding of the genetic bases of diseases.


Asunto(s)
Consanguinidad , Enfermedades Genéticas Congénitas/epidemiología , Genética de Población , Genoma Humano/genética , Matrimonio/estadística & datos numéricos , Efecto Fundador , Enfermedades Genéticas Congénitas/genética , Humanos , Túnez/epidemiología
17.
Ann Hum Genet ; 78(4): 255-63, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24942078

RESUMEN

Primary congenital glaucoma (PCG) is responsible for a significant proportion of childhood blindness in Tunisia. Early prevention based on genetic diagnosis is therefore required. This study sought to determine the frequency of CYP1B1 (cytochrome P450, family 1, subfamily B, polypeptide 1) mutations in 18 PCG patients, recruited from Central and Southern of Tunisia. Genomic DNA was extracted and the coding regions of CYP1B1 were analysed by direct sequencing. A phylogenetic network of CYP1B1 haplotypes was drawn using the median-joining algorithm. Sequence analysis revealed a "tetra-allelic mutation" (two novel mutations, p.F231I and p.P437A in the homozygous state) in one patient. The healthy members of his family carried those variations on the same allele. Two previously described mutations p.G61E and c.535delG were also identified in the homozygous state in seven and two probands, respectively. Seven single-nucleotide polymorphisms were identified and used to generate haplotypes. Our results showed that the CYP1B1 mutations were present in 55% of Tunisian PCG patients' alleles. Haplotype analysis allowed us to define the proto-haplotype and to confirm historical migratory flows. Establishment of PCG genetic aetiology in Tunisia will improve genetic diagnosis and counselling.


Asunto(s)
Citocromo P-450 CYP1B1/genética , Glaucoma/congénito , Glaucoma/genética , Mutación , Consanguinidad , Citocromo P-450 CYP1B1/química , Análisis Mutacional de ADN , Femenino , Genotipo , Glaucoma/diagnóstico , Haplotipos , Humanos , Lactante , Recién Nacido , Masculino , Modelos Moleculares , Linaje , Filogenia , Polimorfismo de Nucleótido Simple , Conformación Proteica , Túnez
18.
PLoS One ; 9(6): e99797, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24926664

RESUMEN

Identification of the causative mutations in patients affected by autosomal recessive non syndromic deafness (DFNB forms), is demanding due to genetic heterogeneity. After the exclusion of GJB2 mutations and other mutations previously reported in Tunisian deaf patients, we performed whole exome sequencing in patients affected with severe to profound deafness, from four unrelated consanguineous Tunisian families. Four biallelic non previously reported mutations were identified in three different genes: a nonsense mutation, c.208C>T (p.R70X), in LRTOMT, a missense mutation, c.5417T>C (p.L1806P), in MYO15A and two splice site mutations, c.7395+3G>A, and c.2260+2T>A, in MYO15A and TMC1 respectively. We thereby provide evidence that whole exome sequencing is a powerful, cost-effective screening tool to identify mutations causing recessive deafness in consanguineous families.


Asunto(s)
Sordera/genética , Conexina 26 , Conexinas/genética , Exoma/genética , Femenino , Pérdida Auditiva Sensorineural/genética , Humanos , Masculino , Mutación/genética , Linaje
19.
Biomed Res Int ; 2014: 256245, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24877075

RESUMEN

Xeroderma pigmentosum Variant (XP-V) form is characterized by a late onset of skin symptoms. Our aim is the clinical and genetic investigations of XP-V Tunisian patients in order to develop a simple tool for early diagnosis. We investigated 16 suspected XP patients belonging to ten consanguineous families. Analysis of the POLH gene was performed by linkage analysis, long range PCR, and sequencing. Genetic analysis showed linkage to the POLH gene with a founder haplotype in all affected patients. Long range PCR of exon 9 to exon 11 showed a 3926 bp deletion compared to control individuals. Sequence analysis demonstrates that this deletion has occurred between two Alu-Sq2 repetitive sequences in the same orientation, respectively, in introns 9 and 10. We suggest that this mutation POLH NG_009252.1: g.36847_40771del3925 is caused by an equal crossover event that occurred between two homologous chromosomes at meiosis. These results allowed us to develop a simple test based on a simple PCR in order to screen suspected XP-V patients. In Tunisia, the prevalence of XP-V group seems to be underestimated and clinical diagnosis is usually later. Cascade screening of this founder mutation by PCR in regions with high frequency of XP provides a rapid and cost-effective tool for early diagnosis of XP-V in Tunisia and North Africa.


Asunto(s)
Secuencia de Bases , ADN Polimerasa Dirigida por ADN/genética , Efecto Fundador , Haplotipos , Eliminación de Secuencia , Xerodermia Pigmentosa/genética , Adolescente , Adulto , Niño , Preescolar , Exones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Túnez , Xerodermia Pigmentosa/diagnóstico , Xerodermia Pigmentosa/terapia
20.
Gene ; 529(1): 45-9, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23954227

RESUMEN

Tyrosinemia type II, also designated as oculocutaneous tyrosinemia or Richner-Hanhart syndrome (RHS), is a very rare autosomal recessive disorder. In the present study, we report clinical features and molecular genetic investigation of the tyrosine aminotransferase (TAT) gene in two young patients, both born to consanguineous unions between first-degree cousins. These two unrelated families originated from Northern and Southern Tunisia. The clinical diagnosis was based on the observation of several complications related to Richner-Hanhart syndrome: recurrent eye redness, tearing and burning pain, photophobia, bilateral pseudodendritic keratitis, an erythematous and painful focal palmo-plantar hyperkeratosis and a mild delay of mental development. The diagnosis was confirmed by biochemical analysis. Sequencing of the TAT gene revealed the presence of a previously reported missense mutation (c.452G>A, p.Cys151Tyr) in a Tunisian family, and a novel G duplication (c.869dupG, p.Trp291Leufs 6). Early diagnosis of RHS and protein-restricted diet are crucial to reduce the risk and the severity of long-term complications of hypertyrosinemia such as intellectual disability.


Asunto(s)
Genes tat , Mutación Missense , Tirosinemias/genética , Secuencia de Aminoácidos , Preescolar , Consanguinidad , Dieta con Restricción de Proteínas , Humanos , Lactante , Queratitis/complicaciones , Queratitis/genética , Masculino , Datos de Secuencia Molecular , Linaje , Conformación Proteica , Túnez , Tirosina Transaminasa/genética , Tirosina Transaminasa/metabolismo , Tirosinemias/complicaciones , Tirosinemias/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...