Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Eur Heart J ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38768958

RESUMEN

BACKGROUND AND AIMS: In recent decades, nighttime temperatures have increased faster than daytime temperatures. The increasing prevalence of nocturnal heat exposure may pose a significant risk to cardiovascular health. This study investigated the association between nighttime heat exposure and stroke risk in the region of Augsburg, Germany, and examined its temporal variations over 15 years. METHODS: Hourly meteorological parameters, including mean temperature, relative humidity, and barometric pressure, were acquired from a local meteorological station. A data set was obtained consisting of 11 037 clinical stroke cases diagnosed during warmer months (May to October) between the years 2006 and 2020. The average age of cases was 71.3 years. Among these cases, 642 were identified as haemorrhagic strokes, 7430 were classified as ischaemic strokes, and 2947 were transient ischaemic attacks. A time-stratified case-crossover analysis with a distributed lag non-linear model was used to estimate the stroke risk associated with extreme nighttime heat, as measured by the hot night excess (HNE) index after controlling for the potential confounding effects of daily maximum temperature and other climatic variables. Subgroup analyses by age group, sex, stroke subtype, and stroke severity were performed to identify variations in susceptibility to nighttime heat. RESULTS: Results suggested a significant increase in stroke risk on days with extreme nighttime heat (97.5% percentile of HNE) (odds ratio 1.07, 95% confidence interval 1.01-1.15) during the full study period. When comparing the results for 2013-20 with the results for 2006-12, there was a significant increase (P < .05) in HNE-related risk for all strokes and specifically for ischaemic strokes during the more recent period. Furthermore, older individuals, females, and patients with mild stroke symptoms exhibited a significantly increased vulnerability to nighttime heat. CONCLUSIONS: This study found nocturnal heat exposure to be related to elevated stroke risk after controlling for maximum daytime temperature, with increasing susceptibility between 2006 and 2020. These results underscore the importance of considering nocturnal heat as a critical trigger of stroke events in a warming climate.

2.
Int J Epidemiol ; 53(3)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38725299

RESUMEN

BACKGROUND: Model-estimated air pollution exposure products have been widely used in epidemiological studies to assess the health risks of particulate matter with diameters of ≤2.5 µm (PM2.5). However, few studies have assessed the disparities in health effects between model-estimated and station-observed PM2.5 exposures. METHODS: We collected daily all-cause, respiratory and cardiovascular mortality data in 347 cities across 15 countries and regions worldwide based on the Multi-City Multi-Country collaborative research network. The station-observed PM2.5 data were obtained from official monitoring stations. The model-estimated global PM2.5 product was developed using a machine-learning approach. The associations between daily exposure to PM2.5 and mortality were evaluated using a two-stage analytical approach. RESULTS: We included 15.8 million all-cause, 1.5 million respiratory and 4.5 million cardiovascular deaths from 2000 to 2018. Short-term exposure to PM2.5 was associated with a relative risk increase (RRI) of mortality from both station-observed and model-estimated exposures. Every 10-µg/m3 increase in the 2-day moving average PM2.5 was associated with overall RRIs of 0.67% (95% CI: 0.49 to 0.85), 0.68% (95% CI: -0.03 to 1.39) and 0.45% (95% CI: 0.08 to 0.82) for all-cause, respiratory, and cardiovascular mortality based on station-observed PM2.5 and RRIs of 0.87% (95% CI: 0.68 to 1.06), 0.81% (95% CI: 0.08 to 1.55) and 0.71% (95% CI: 0.32 to 1.09) based on model-estimated exposure, respectively. CONCLUSIONS: Mortality risks associated with daily PM2.5 exposure were consistent for both station-observed and model-estimated exposures, suggesting the reliability and potential applicability of the global PM2.5 product in epidemiological studies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Cardiovasculares , Ciudades , Exposición a Riesgos Ambientales , Material Particulado , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis , Enfermedades Cardiovasculares/mortalidad , Ciudades/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Enfermedades Respiratorias/mortalidad , Masculino , Mortalidad/tendencias , Femenino , Persona de Mediana Edad , Anciano , Monitoreo del Ambiente/métodos , Adulto , Aprendizaje Automático
3.
Environ Int ; 187: 108668, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38640613

RESUMEN

COVID-19 lockdowns reduced nitrogen dioxide (NO2) and fine particulate matter (PM2.5) emissions in many countries. We aim to quantify the changes in these pollutants and to assess the attributable changes in mortality in Jiangsu, China; California, U.S.; Central-southern Italy; and Germany during COVID-19 lockdowns in early 2020. Accounting for meteorological impacts and air pollution time trends, we use a machine learning-based meteorological normalization technique and the difference-in-differences approach to quantify the changes in NO2 and PM2.5 concentrations due to lockdowns. Using region-specific estimates of the association between air pollution and mortality derived from a causal modeling approach using data from 2015 to 2019, we assess the changes in mortality attributable to the air pollution changes caused by the lockdowns in early 2020. During the lockdowns, NO2 reductions avoided 1.41 (95% empirical confidence interval [eCI]: 0.94, 1.88), 0.44 (95% eCI: 0.17, 0.71), and 4.66 (95% eCI: 2.03, 7.44) deaths per 100,000 people in Jiangsu, China; California, U.S.; and Central-southern Italy, respectively. Mortality benefits attributable to PM2.5 reductions were also significant, albeit of a smaller magnitude. For Germany, the mortality benefits attributable to NO2 changes were not significant (0.11; 95% eCI: -0.03, 0.25), and an increase in PM2.5 concentrations was associated with an increase in mortality of 0.35 (95% eCI: 0.22, 0.48) deaths per 100,000 people during the lockdown. COVID-19 lockdowns overall improved air quality and brought attributable health benefits, especially associated with NO2 improvements, with notable heterogeneity across regions. This study underscores the importance of accounting for local characteristics when policymakers adapt successful emission control strategies from other regions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Dióxido de Nitrógeno , Material Particulado , COVID-19/mortalidad , Contaminación del Aire/estadística & datos numéricos , Humanos , Material Particulado/análisis , Italia/epidemiología , Alemania/epidemiología , Dióxido de Nitrógeno/análisis , Contaminantes Atmosféricos/análisis , China/epidemiología , Mortalidad/tendencias , California/epidemiología , SARS-CoV-2
4.
Circ Res ; 134(9): 1098-1112, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38662866

RESUMEN

As global temperatures rise, extreme heat events are projected to become more frequent and intense. Extreme heat causes a wide range of health effects, including an overall increase in morbidity and mortality. It is important to note that while there is sufficient epidemiological evidence for heat-related increases in all-cause mortality, evidence on the association between heat and cause-specific deaths such as cardiovascular disease (CVD) mortality (and its more specific causes) is limited, with inconsistent findings. Existing systematic reviews and meta-analyses of epidemiological studies on heat and CVD mortality have summarized the available evidence. However, the target audience of such reviews is mainly limited to the specific field of environmental epidemiology. This overarching perspective aims to provide health professionals with a comprehensive overview of recent epidemiological evidence of how extreme heat is associated with CVD mortality. The rationale behind this broad perspective is that a better understanding of the effect of extreme heat on CVD mortality will help CVD health professionals optimize their plans to adapt to the changes brought about by climate change and heat events. To policymakers, this perspective would help formulate targeted mitigation, strengthen early warning systems, and develop better adaptation strategies. Despite the heterogeneity in evidence worldwide, due in part to different climatic conditions and population dynamics, there is a clear link between heat and CVD mortality. The risk has often been found to be higher in vulnerable subgroups, including older people, people with preexisting conditions, and the socioeconomically deprived. This perspective also highlights the lack of evidence from low- and middle-income countries and focuses on cause-specific CVD deaths. In addition, the perspective highlights the temporal changes in heat-related CVD deaths as well as the interactive effect of heat with other environmental factors and the potential biological pathways. Importantly, these various aspects of epidemiological studies have never been fully investigated and, therefore, the true extent of the impact of heat on CVD deaths remains largely unknown. Furthermore, this perspective also highlights the research gaps in epidemiological studies and the potential solutions to generate more robust evidence on the future consequences of heat on CVD deaths.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/epidemiología , Cambio Climático , Calor Extremo/efectos adversos , Calor/efectos adversos , Factores de Riesgo
5.
JAMA Netw Open ; 7(3): e2354607, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38427355

RESUMEN

Importance: The association between short-term exposure to air pollution and mortality has been widely documented worldwide; however, few studies have applied causal modeling approaches to account for unmeasured confounders that vary across time and space. Objective: To estimate the association between short-term changes in fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations and changes in daily all-cause mortality rates using a causal modeling approach. Design, Setting, and Participants: This cross-sectional study used air pollution and mortality data from Jiangsu, China; California; central-southern Italy; and Germany with interactive fixed-effects models to control for both measured and unmeasured spatiotemporal confounders. A total of 8 963 352 deaths in these 4 regions from January 1, 2015, to December 31, 2019, were included in the study. Data were analyzed from June 1, 2021, to October 30, 2023. Exposure: Day-to-day changes in county- or municipality-level mean PM2.5 and NO2 concentrations. Main Outcomes and Measures: Day-to-day changes in county- or municipality-level all-cause mortality rates. Results: Among the 8 963 352 deaths in the 4 study regions, a 10-µg/m3 increase in daily PM2.5 concentration was associated with an increase in daily all-cause deaths per 100 000 people of 0.01 (95% CI, 0.001-0.01) in Jiangsu, 0.03 (95% CI, 0.004-0.05) in California, 0.10 (95% CI, 0.07-0.14) in central-southern Italy, and 0.04 (95% CI, 0.02- 0.05) in Germany. The corresponding increases in mortality rates for a 10-µg/m3 increase in NO2 concentration were 0.04 (95% CI, 0.03-0.05) in Jiangsu, 0.03 (95% CI, 0.01-0.04) in California, 0.10 (95% CI, 0.05-0.15) in central-southern Italy, and 0.05 (95% CI, 0.04-0.06) in Germany. Significant effect modifications by age were observed in all regions, by sex in Germany (eg, 0.05 [95% CI, 0.03-0.06] for females in the single-pollutant model of PM2.5), and by urbanicity in Jiangsu (0.07 [95% CI, 0.04-0.10] for rural counties in the 2-pollutant model of NO2). Conclusions and Relevance: The findings of this cross-sectional study contribute to the growing body of evidence that increases in short-term exposures to PM2.5 and NO2 may be associated with increases in all-cause mortality rates. The interactive fixed-effects model, which controls for unmeasured spatial and temporal confounders, including unmeasured time-varying confounders in different spatial units, can be used to estimate associations between changes in short-term exposure to air pollution and changes in health outcomes.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Femenino , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis , Dióxido de Nitrógeno/efectos adversos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Estudios Transversales , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis
6.
One Earth ; 7(2): 325-335, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38420618

RESUMEN

Short-term exposure to ground-level ozone in cities is associated with increased mortality and is expected to worsen with climate and emission changes. However, no study has yet comprehensively assessed future ozone-related acute mortality across diverse geographic areas, various climate scenarios, and using CMIP6 multi-model ensembles, limiting our knowledge on future changes in global ozone-related acute mortality and our ability to design targeted health policies. Here, we combine CMIP6 simulations and epidemiological data from 406 cities in 20 countries or regions. We find that ozone-related deaths in 406 cities will increase by 45 to 6,200 deaths/year between 2010 and 2014 and between 2050 and 2054, with attributable fractions increasing in all climate scenarios (from 0.17% to 0.22% total deaths), except the single scenario consistent with the Paris Climate Agreement (declines from 0.17% to 0.15% total deaths). These findings stress the need for more stringent air quality regulations, as current standards in many countries are inadequate.

7.
Environ Epidemiol ; 7(5): e269, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37840857

RESUMEN

Background: Heat effects on respiratory mortality are known, mostly from time-series studies of city-wide data. A limited number of studies have been conducted at the national level or covering non-urban areas. Effect modification by area-level factors has not been extensively investigated. Our study assessed the heat effects on respiratory mortality at a small administrative area level in Norway, Germany, and England and Wales, in the warm period (May-September) within 1996-2018. Also, we examined possible effect modification by several area-level characteristics in the framework of the EU-Horizon2020 EXHAUSTION project. Methods: Daily respiratory mortality counts and modeled air temperature data were collected for Norway, Germany, and England and Wales at a small administrative area level. The temperature-mortality association was assessed by small area-specific Poisson regression allowing for overdispersion, using distributed lag non-linear models. Estimates were pooled at the national level and overall using a random-effect meta-analysis. Age- and sex-specific models were also applied. A multilevel random-effects model was applied to investigate the modification of the heat effects by area-level factors. Results: A rise in temperature from the 75th to 99th percentile was associated with a 27% (95% confidence interval [CI] = 19%, 34%) increase in respiratory mortality, with higher effects for females. Increased population density and PM2.5 concentrations were associated with stronger heat effects on mortality. Conclusions: Our study strengthens the evidence of adverse heat effects on respiratory mortality in Northern Europe by identifying vulnerable subgroups and subregions. This may contribute to the development of targeted policies for adaptation to climate change.

8.
BMJ ; 383: e075203, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37793695

RESUMEN

OBJECTIVE: To investigate potential interactive effects of fine particulate matter (PM2.5) and ozone (O3) on daily mortality at global level. DESIGN: Two stage time series analysis. SETTING: 372 cities across 19 countries and regions. POPULATION: Daily counts of deaths from all causes, cardiovascular disease, and respiratory disease. MAIN OUTCOME MEASURE: Daily mortality data during 1994-2020. Stratified analyses by co-pollutant exposures and synergy index (>1 denotes the combined effect of pollutants is greater than individual effects) were applied to explore the interaction between PM2.5 and O3 in association with mortality. RESULTS: During the study period across the 372 cities, 19.3 million deaths were attributable to all causes, 5.3 million to cardiovascular disease, and 1.9 million to respiratory disease. The risk of total mortality for a 10 µg/m3 increment in PM2.5 (lag 0-1 days) ranged from 0.47% (95% confidence interval 0.26% to 0.67%) to 1.25% (1.02% to 1.48%) from the lowest to highest fourths of O3 concentration; and for a 10 µg/m3 increase in O3 ranged from 0.04% (-0.09% to 0.16%) to 0.29% (0.18% to 0.39%) from the lowest to highest fourths of PM2.5 concentration, with significant differences between strata (P for interaction <0.001). A significant synergistic interaction was also identified between PM2.5 and O3 for total mortality, with a synergy index of 1.93 (95% confidence interval 1.47 to 3.34). Subgroup analyses showed that interactions between PM2.5 and O3 on all three mortality endpoints were more prominent in high latitude regions and during cold seasons. CONCLUSION: The findings of this study suggest a synergistic effect of PM2.5 and O3 on total, cardiovascular, and respiratory mortality, indicating the benefit of coordinated control strategies for both pollutants.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Cardiovasculares , Contaminantes Ambientales , Ozono , Trastornos Respiratorios , Enfermedades Respiratorias , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis , Ozono/efectos adversos , Ozono/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Ciudades , Factores de Tiempo , Exposición a Riesgos Ambientales/efectos adversos
10.
Environ Int ; 179: 108154, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37603993

RESUMEN

BACKGROUND: Short-term associations between heat and cardiovascular disease (CVD) mortality have been examined mostly in large cities. However, different vulnerability and exposure levels may contribute to spatial heterogeneity. This study assessed heat effects on CVD mortality and potential vulnerability factors using data from three European countries, including urban and rural settings. METHODS: We collected daily counts of CVD deaths aggregated at the small-area level in Norway (small-area level: municipality), England and Wales (lower super output areas), and Germany (district) during the warm season (May-September) from 1996 to 2018. Daily mean air temperatures estimated by spatial-temporal models were assigned to each small area. Within each country, we applied area-specific Quasi-Poisson regression using distributed lag nonlinear models to examine the heat effects at lag 0-1 days. The area-specific estimates were pooled by random-effects meta-analysis to derive country-specific and overall heat effects. We examined individual- and area-level heat vulnerability factors by subgroup analyses and meta-regression, respectively. RESULTS: We included 2.84 million CVD deaths in analyses. For an increase in temperature from the 75th to the 99th percentile, the pooled relative risk (RR) for CVD mortality was 1.14 (95% CI: 1.03, 1.26), with the country-specific RRs ranging from 1.04 (1.00, 1.09) in Norway to 1.24 (1.23, 1.26) in Germany. Heat effects were stronger among women [RRs (95% CIs) for women and men: 1.18 (1.08, 1.28) vs. 1.12 (1.00, 1.24)]. Greater heat vulnerability was observed in areas with high population density, high degree of urbanization, low green coverage, and high levels of fine particulate matter. CONCLUSION: This study provides evidence for the heat effects on CVD mortality in European countries using high-resolution data from both urban and rural areas. Besides, we identified individual- and area-level heat vulnerability factors. Our findings may facilitate the development of heat-health action plans to increase resilience to climate change.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Masculino , Femenino , Humanos , Calor , Europa (Continente)/epidemiología , Alemania
11.
Environ Sci Technol ; 57(33): 12210-12221, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37552838

RESUMEN

Increasing evidence has revealed that exposure to low temperatures is linked to a higher risk of chronic diseases and death; however, the mechanisms underlying the observed associations are still poorly understood. We performed a cross-sectional analysis with 1115 participants from the population-based KORA F4 study, which was conducted in Augsburg, Germany, from 2006 to 2008. Seventy-one inflammation-related protein biomarkers were analyzed in serum using proximity extension assay technology. We employed generalized additive models to explore short- and medium-term effects of air temperature on biomarkers of subclinical inflammation at cumulative lags of 0-1 days, 2-6 days, 0-13 days, 0-27 days, and 0-55 days. We found that short- and medium-term exposures to lower air temperature were associated with higher levels in 64 biomarkers of subclinical inflammation, such as Protein S100-A12 (EN-RAGE), Interleukin-6 (IL-6), Interleukin-10 (IL-10), C-C motif chemokine 28 (CCL28), and Neurotrophin-3 (NT-3). More pronounced associations between lower air temperature and higher biomarker of subclinical inflammation were observed among older participants, people with cardiovascular disease or prediabetes/diabetes, and people exposed to higher levels of air pollution (PM2.5, NO2, and O3). Our findings provide intriguing insight into how low air temperature may cause adverse health effects by activating inflammatory pathways.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Temperatura , Material Particulado/análisis , Estudios Transversales , Contaminación del Aire/análisis , Inflamación/inducido químicamente , Inflamación/metabolismo , Biomarcadores/análisis , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/análisis
12.
Environ Int ; 178: 108109, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37517177

RESUMEN

Climate change poses a serious threat to human health worldwide, while aging populations increase. However, no study has ever investigated the effects of air temperature on epigenetic age acceleration. This study involved 1,725 and 1,877 participants from the population-based KORA F4 (2006-2008) and follow-up FF4 (2013-2014) studies, respectively, conducted in Augsburg, Germany. The difference between epigenetic age and chronological age was referred to as epigenetic age acceleration and reflected by Horvath's epigenetic age acceleration (HorvathAA), Hannum's epigenetic age acceleration (HannumAA), PhenoAge acceleration (PhenoAA), GrimAge acceleration (GrimAA), and Epigenetic Skin and Blood Age acceleration (SkinBloodAA). Daily air temperature was estimated using hybrid spatiotemporal regression-based models. To explore the medium- and long-term effects of air temperature modeled in time and space on epigenetic age acceleration, we applied generalized estimating equations (GEE) with distributed lag non-linear models, and GEE, respectively. We found that high temperature exposure based on the 8-week moving average air temperature (97.5th percentile of temperature compared to median temperature) was associated with increased HorvathAA, HannumAA, GrimAA, and SkinBloodAA: 1.83 (95% CI: 0.29-3.37), 11.71 (95% CI: 8.91-14.50), 2.26 (95% CI: 1.03-3.50), and 5.02 (95% CI: 3.42-6.63) years, respectively. Additionally, we found consistent results with high temperature exposure based on the 4-week moving average air temperature was associated with increased HannumAA, GrimAA, and SkinBloodAA: 9.18 (95% CI: 6.60-11.76), 1.78 (95% CI: 0.66-2.90), and 4.07 (95% CI: 2.56-5.57) years, respectively. For the spatial variation in annual average temperature, a 1 °C increase was associated with an increase in all five measures of epigenetic age acceleration (HorvathAA: 0.41 [95% CI: 0.24-0.57], HannumAA: 2.24 [95% CI: 1.95-2.53], PhenoAA: 0.32 [95% CI: 0.05-0.60], GrimAA: 0.24 [95%: 0.11-0.37], and SkinBloodAA: 1.17 [95% CI: 1.00-1.35] years). In conclusion, our results provide first evidence that medium- and long-term exposures to high air temperature affect increases in epigenetic age acceleration.


Asunto(s)
Contaminación del Aire , Humanos , Lactante , Contaminación del Aire/análisis , Temperatura , Material Particulado/análisis , Envejecimiento/genética , Epigénesis Genética , Metilación de ADN
13.
Sci Total Environ ; 900: 165780, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37495154

RESUMEN

BACKGROUND: Short-term exposure to air pollution has been reported to be associated with cardiopulmonary diseases, but the underlying mechanisms remain unclear. This study aimed to investigate changes in serum metabolites associated with immediate, short- and medium-term exposures to ambient air pollution. METHODS: We used data from the German population-based Cooperative Health Research in the Region of Augsburg (KORA) S4 survey (1999-2001) and two follow-up examinations (F4: 2006-08 and FF4: 2013-14). Mass-spectrometry-based targeted metabolomics was used to quantify metabolites among serum samples. Only participants with repeated metabolites measurements were included in this analysis. We collected daily averages of fine particles (PM2.5), coarse particles (PMcoarse), nitrogen dioxide (NO2), and ozone (O3) at urban background monitors located in Augsburg, Germany. Covariate-adjusted generalized additive mixed-effects models were used to examine the associations between immediate (2-day average of same day and previous day as individual's blood withdrawal), short- (2-week moving average), and medium-term exposures (8-week moving average) to air pollution and metabolites. We further performed pathway analysis for the metabolites significantly associated with air pollutants in each exposure window. RESULTS: Of 9,620 observations from 4,261 study participants, we included 5,772 (60.0%) observations from 2,583 (60.6%) participants in this analysis. Out of 108 metabolites that passed quality control, multiple significant associations between metabolites and air pollutants with several exposure windows were identified at a Bonferroni corrected p-value threshold (p < 3.9 × 10-5). We found the highest number of associations for NO2, particularly at the medium-term exposure windows. Among the identified metabolic pathways based on the metabolites significantly associated with air pollutants, the glycerophospholipid metabolism was the most robust pathway in different air pollutants exposures. CONCLUSIONS: Our study suggested that short- and medium-term exposure to air pollution might induce alterations of serum metabolites, particularly in metabolites involved in metabolic pathways related to inflammatory response and oxidative stress.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Humanos , Estudios de Cohortes , Dióxido de Nitrógeno/análisis , Contaminantes Atmosféricos/análisis , Ozono/análisis , Material Particulado/análisis , Exposición a Riesgos Ambientales/análisis
14.
Environ Int ; 178: 108032, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37352580

RESUMEN

INTRODUCTION: Numerous studies have shown associations between daily concentrations of fine particles (e.g., particulate matter with an aerodynamic diameter ≤2.5 µm; PM2.5) and morbidity. However, evidence for ultrafine particles (UFP; particles with an aerodynamic diameter of 10-100 nm) remains conflicting. Therefore, we aimed to examine the short-term associations of UFP with five cause-specific hospital admission endpoints for Leipzig, Dresden, and Augsburg, Germany. MATERIAL AND METHODS: We obtained daily counts of (cause-specific) cardiorespiratory hospital admissions between 2010 and 2017. Daily average concentrations of UFP, total particle number (PNC; 10-800 nm), and black carbon (BC) were measured at six sites; PM2.5 and nitrogen dioxide (NO2) were obtained from monitoring networks. We assessed immediate (lag 0-1), delayed (lag 2-4, lag 5-7), and cumulative (lag 0-7) effects by applying station-specific confounder-adjusted Poisson regression models. We then used a novel multi-level meta-analytical method to obtain pooled risk estimates. Finally, we performed two-pollutant models to investigate interdependencies between pollutants and examined possible effect modification by age, sex, and season. RESULTS: UFP showed a delayed (lag 2-4) increase in respiratory hospital admissions of 0.69% [95% confidence interval (CI): -0.28%; 1.67%]. For other hospital admission endpoints, we found only suggestive results. Larger particle size fractions, such as accumulation mode particles (particles with an aerodynamic diameter of 100-800 nm), generally showed stronger effects (respiratory hospital admissions & lag 2-4: 1.55% [95% CI: 0.86%; 2.25%]). PM2.5 showed the most consistent associations for (cardio-)respiratory hospital admissions, whereas NO2 did not show any associations. Two-pollutant models showed independent effects of PM2.5 and BC. Moreover, higher risks have been observed for children. CONCLUSIONS: We observed clear associations with PM2.5 but UFP or PNC did not show a clear association across different exposure windows and cause-specific hospital admissions. Further multi-center studies are needed using harmonized UFP measurements to draw definite conclusions on the health effects of UFP.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Niño , Humanos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Ciudades , Contaminación del Aire/análisis , Dióxido de Nitrógeno , Tamaño de la Partícula , Hospitales
15.
Am J Respir Crit Care Med ; 207(10): 1334-1344, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36877186

RESUMEN

Rationale: Exposure to ambient air pollution has been associated with adverse effects on morbidity and mortality. However, the evidence for ultrafine particles (UFPs; 10-100 nm) based on epidemiological studies remains scarce and inconsistent. Objectives: We examined associations between short-term exposures to UFPs and total particle number concentrations (PNCs; 10-800 nm) and cause-specific mortality in three German cities: Dresden, Leipzig, and Augsburg. Methods: We obtained daily counts of natural, cardiovascular, and respiratory mortality between 2010 and 2017. UFPs and PNCs were measured at six sites, and measurements of fine particulate matter (PM2.5; ⩽2.5 µm in aerodynamic diameter) and nitrogen dioxide were collected from routine monitoring. We applied station-specific confounder-adjusted Poisson regression models. We investigated air pollutant effects at aggregated lags (0-1, 2-4, 5-7, and 0-7 d after UFP exposure) and used a novel multilevel meta-analytical method to pool the results. Additionally, we assessed interdependencies between pollutants using two-pollutant models. Measurements and Main Results: For respiratory mortality, we found a delayed increase in relative risk of 4.46% (95% confidence interval, 1.52 to 7.48%) per 3,223-particles/cm3 increment 5-7 days after UFP exposure. Effects for PNCs showed smaller but comparable estimates consistent with the observation that the smallest UFP fractions showed the largest effects. No clear associations were found for cardiovascular or natural mortality. UFP effects were independent of PM2.5 in two-pollutant models. Conclusions: We found delayed effects for respiratory mortality within 1 week after exposure to UFPs and PNCs but no associations for natural or cardiovascular mortality. This finding adds to the evidence on the independent health effects of UFPs.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Respiratorias , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis , Ciudades , Causas de Muerte , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Enfermedades Respiratorias/inducido químicamente , Enfermedades Respiratorias/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis
16.
Environ Health Perspect ; 131(3): 37002, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36883823

RESUMEN

BACKGROUND: Epidemiological evidence on the health risks of sulfur dioxide (SO2) is more limited compared with other pollutants, and doubts remain on several aspects, such as the form of the exposure-response relationship, the potential role of copollutants, as well as the actual risk at low concentrations and possible temporal variation in risks. OBJECTIVES: Our aim was to assess the short-term association between exposure to SO2 and daily mortality in a large multilocation data set, using advanced study designs and statistical techniques. METHODS: The analysis included 43,729,018 deaths that occurred in 399 cities within 23 countries between 1980 and 2018. A two-stage design was applied to assess the association between the daily concentration of SO2 and mortality counts, including first-stage time-series regressions and second-stage multilevel random-effect meta-analyses. Secondary analyses assessed the exposure-response shape and the lag structure using spline terms and distributed lag models, respectively, and temporal variations in risk using a longitudinal meta-regression. Bi-pollutant models were applied to examine confounding effects of particulate matter with an aerodynamic diameter of ≤10µm (PM10) and 2.5µm (PM2.5), ozone, nitrogen dioxide, and carbon monoxide. Associations were reported as relative risks (RRs) and fractions of excess deaths. RESULTS: The average daily concentration of SO2 across the 399 cities was 11.7 µg/m3, with 4.7% of days above the World Health Organization (WHO) guideline limit (40 µg/m3, 24-h average), although the exceedances occurred predominantly in specific locations. Exposure levels decreased considerably during the study period, from an average concentration of 19.0 µg/m3 in 1980-1989 to 6.3 µg/m3 in 2010-2018. For all locations combined, a 10-µg/m3 increase in daily SO2 was associated with an RR of mortality of 1.0045 [95% confidence interval (CI): 1.0019, 1.0070], with the risk being stable over time but with substantial between-country heterogeneity. Short-term exposure to SO2 was associated with an excess mortality fraction of 0.50% [95% empirical CI (eCI): 0.42%, 0.57%] in the 399 cities, although decreasing from 0.74% (0.61%, 0.85%) in 1980-1989 to 0.37% (0.27%, 0.47%) in 2010-2018. There was some evidence of nonlinearity, with a steep exposure-response relationship at low concentrations and the risk attenuating at higher levels. The relevant lag window was 0-3 d. Significant positive associations remained after controlling for other pollutants. DISCUSSION: The analysis revealed independent mortality risks associated with short-term exposure to SO2, with no evidence of a threshold. Levels below the current WHO guidelines for 24-h averages were still associated with substantial excess mortality, indicating the potential benefits of stricter air quality standards. https://doi.org/10.1289/EHP11112.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Cardiovasculares , Contaminantes Ambientales , Humanos , Dióxido de Azufre/toxicidad , Contaminantes Atmosféricos/análisis , Ciudades/epidemiología , Contaminación del Aire/análisis , Material Particulado/análisis , Contaminantes Ambientales/análisis , Dióxido de Nitrógeno/análisis , Exposición a Riesgos Ambientales/análisis , Mortalidad
17.
Environ Int ; 174: 107825, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36934570

RESUMEN

BACKGROUND: Evidence on the potential interactive effects of heat and ambient air pollution on cause-specific mortality is inconclusive and limited to selected locations. OBJECTIVES: We investigated the effects of heat on cardiovascular and respiratory mortality and its modification by air pollution during summer months (six consecutive hottest months) in 482 locations across 24 countries. METHODS: Location-specific daily death counts and exposure data (e.g., particulate matter with diameters ≤ 2.5 µm [PM2.5]) were obtained from 2000 to 2018. We used location-specific confounder-adjusted Quasi-Poisson regression with a tensor product between air temperature and the air pollutant. We extracted heat effects at low, medium, and high levels of pollutants, defined as the 5th, 50th, and 95th percentile of the location-specific pollutant concentrations. Country-specific and overall estimates were derived using a random-effects multilevel meta-analytical model. RESULTS: Heat was associated with increased cardiorespiratory mortality. Moreover, the heat effects were modified by elevated levels of all air pollutants in most locations, with stronger effects for respiratory than cardiovascular mortality. For example, the percent increase in respiratory mortality per increase in the 2-day average summer temperature from the 75th to the 99th percentile was 7.7% (95% Confidence Interval [CI] 7.6-7.7), 11.3% (95%CI 11.2-11.3), and 14.3% (95% CI 14.1-14.5) at low, medium, and high levels of PM2.5, respectively. Similarly, cardiovascular mortality increased by 1.6 (95%CI 1.5-1.6), 5.1 (95%CI 5.1-5.2), and 8.7 (95%CI 8.7-8.8) at low, medium, and high levels of O3, respectively. DISCUSSION: We observed considerable modification of the heat effects on cardiovascular and respiratory mortality by elevated levels of air pollutants. Therefore, mitigation measures following the new WHO Air Quality Guidelines are crucial to enhance better health and promote sustainable development.


Asunto(s)
Contaminación del Aire , Enfermedades Cardiovasculares , Exposición a Riesgos Ambientales , Humanos , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , Enfermedades Cardiovasculares/mortalidad , Ciudades/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales , Calor , Mortalidad , Material Particulado/efectos adversos , Material Particulado/análisis , Enfermedades Respiratorias/epidemiología
18.
Lancet Planet Health ; 7(4): e271-e281, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36934727

RESUMEN

BACKGROUND: Heat and cold are established environmental risk factors for human health. However, mapping the related health burden is a difficult task due to the complexity of the associations and the differences in vulnerability and demographic distributions. In this study, we did a comprehensive mortality impact assessment due to heat and cold in European urban areas, considering geographical differences and age-specific risks. METHODS: We included urban areas across Europe between Jan 1, 2000, and Dec 12, 2019, using the Urban Audit dataset of Eurostat and adults aged 20 years and older living in these areas. Data were extracted from Eurostat, the Multi-country Multi-city Collaborative Research Network, Moderate Resolution Imaging Spectroradiometer, and Copernicus. We applied a three-stage method to estimate risks of temperature continuously across the age and space dimensions, identifying patterns of vulnerability on the basis of city-specific characteristics and demographic structures. These risks were used to derive minimum mortality temperatures and related percentiles and raw and standardised excess mortality rates for heat and cold aggregated at various geographical levels. FINDINGS: Across the 854 urban areas in Europe, we estimated an annual excess of 203 620 (empirical 95% CI 180 882-224 613) deaths attributed to cold and 20 173 (17 261-22 934) attributed to heat. These corresponded to age-standardised rates of 129 (empirical 95% CI 114-142) and 13 (11-14) deaths per 100 000 person-years. Results differed across Europe and age groups, with the highest effects in eastern European cities for both cold and heat. INTERPRETATION: Maps of mortality risks and excess deaths indicate geographical differences, such as a north-south gradient and increased vulnerability in eastern Europe, as well as local variations due to urban characteristics. The modelling framework and results are crucial for the design of national and local health and climate policies and for projecting the effects of cold and heat under future climatic and socioeconomic scenarios. FUNDING: Medical Research Council of UK, the Natural Environment Research Council UK, the EU's Horizon 2020, and the EU's Joint Research Center.


Asunto(s)
Frío , Evaluación del Impacto en la Salud , Calor , Adulto , Humanos , Ciudades , Europa (Continente)
19.
Environ Res ; 229: 115668, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-36958378

RESUMEN

BACKGROUND: There is limited evidence of temporal changes in the association between air temperature and the risk of cause-specific cardiovascular [CVD] and respiratory [RD] mortality. METHOD: We explored temporal variations in the association between short-term exposures to air temperature and non-accidental and cause-specific CVD and RD mortality in the 15 largest German cities over 24 years (1993-2016) using time-stratified time series analysis. We applied location-specific confounder-adjusted Poisson regression with distributed lag non-linear models with a lag period of 14 days to estimate the temperature-mortality associations. We then pooled the estimates by a multivariate meta-analytical model. We analysed the whole study period and the periods 1993-2004 and 2005-16, separately. We also carried out age- and sex-stratified analysis. Cold and heat effects are reported as relative risk [RR] at the 1st and the 99th temperature percentile, relative to the 25th and the 75th percentile, respectively. RESULT: We analysed a total of 3,159,292 non-accidental, 1,063,198 CVD and 183,027 RD deaths. Cold-related RR for CVD mortality was seen to rise consistently over time from 1.04 (95% confidence interval [95% CI] 1.02, 1.06) in the period 1993-2004 to 1.10 (95% CI 1.09, 1.11) in the period 2005-16. A similar increase in cold-related RR was also observed for RD mortality with risk increasing from 0.99 (95% CI 0.96, 1.03) to 1.07 (95% CI 1.03, 1.10). Cold-related ischemic, cerebrovascular, and heart failure mortality risk were seen to be increasing over time. Similarly, COPD, the commonly speculated driver of heat-related RD mortality was found to have a constant heat-related risk over time. Males were increasingly vulnerable to cold with time for all causes of death. Females showed increasing sensitivity to cold for CVD mortality. Our results indicated a significant increased cold and heat vulnerability of the youngest age-groups (<64) to non-accidental and RD mortality, respectively. Similarly, the older age group (>65) were found to have significantly increased susceptibility to cold for CVD mortality. CONCLUSION: We found evidence of rising population susceptibility to both heat- and cold-related CVD and RD mortality risk from 1993 to 2016. Climate change mitigation and targeted adaptation strategies might help to reduce the number of temperature-related deaths in the future.


Asunto(s)
Enfermedades Cardiovasculares , Frío , Masculino , Femenino , Humanos , Anciano , Temperatura , Causas de Muerte , Ciudades/epidemiología , Calor , Mortalidad
20.
Environ Sci Technol ; 56(24): 17815-17824, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36442845

RESUMEN

Higher air temperature is associated with increased age-related morbidity and mortality. To date, short-term effects of air temperature on leukocyte telomere length have not been investigated in an adult population. We aimed to examine the short-term associations between air temperature and leukocyte telomere length in an adult population-based setting, including two independent cohorts. This population-based study involved 5864 participants from the KORA F3 (2004-2005) and F4 (2006-2008) cohort studies conducted in Augsburg, Germany. Leukocyte telomere length was assessed by a quantitative PCR-based method. We estimated air temperature at each participant's residential address through a highly resolved spatiotemporal model. We conducted cohort-specific generalized additive models to explore the short-term effects of air temperature on leukocyte telomere length at lags 0-1, 2-6, 0-6, and 0-13 days separately and pooled the estimates by fixed-effects meta-analysis. Our study found that between individuals, an interquartile range (IQR) increase in daily air temperature was associated with shorter leukocyte telomere length at lags 0-1, 2-6, 0-6, and 0-13 days (%change: -2.96 [-4.46; -1.43], -2.79 [-4.49; -1.07], -4.18 [-6.08; -2.25], and -6.69 [-9.04; -4.27], respectively). This meta-analysis of two cohort studies showed that between individuals, higher daily air temperature was associated with shorter leukocyte telomere length.


Asunto(s)
Contaminación del Aire , Adulto , Humanos , Contaminación del Aire/análisis , Temperatura , Estudios de Cohortes , Leucocitos , Telómero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...