Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Digit Health ; 10: 20552076241238133, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601188

RESUMEN

Introduction: Remote monitoring technologies (RMTs) can measure cognitive and functional decline objectively at-home, and offer opportunities to measure passively and continuously, possibly improving sensitivity and reducing participant burden in clinical trials. However, there is skepticism that age and cognitive or functional impairment may render participants unable or unwilling to comply with complex RMT protocols. We therefore assessed the feasibility and usability of a complex RMT protocol in all syndromic stages of Alzheimer's disease and in healthy control participants. Methods: For 8 weeks, participants (N = 229) used two activity trackers, two interactive apps with either daily or weekly cognitive tasks, and optionally a wearable camera. A subset of participants participated in a 4-week sub-study (N = 45) using fixed at-home sensors, a wearable EEG sleep headband and a driving performance device. Feasibility was assessed by evaluating compliance and drop-out rates. Usability was assessed by problem rates (e.g., understanding instructions, discomfort, forgetting to use the RMT or technical problems) as discussed during bi-weekly semi-structured interviews. Results: Most problems were found for the active apps and EEG sleep headband. Problem rates increased and compliance rates decreased with disease severity, but the study remained feasible. Conclusions: This study shows that a highly complex RMT protocol is feasible, even in a mild-to-moderate AD population, encouraging other researchers to use RMTs in their study designs. We recommend evaluating the design of individual devices carefully before finalizing study protocols, considering RMTs which allow for real-time compliance monitoring, and engaging the partners of study participants in the research.

2.
Alzheimers Dement ; 20(5): 3211-3218, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38497216

RESUMEN

BACKGROUND: Wrist-worn actigraphy can be an objective tool to assess sleep and other behavioral and psychological symptoms in dementia (BPSD). We investigated the feasibility of using wearable actigraphy in agitated late-stage dementia patients. METHODS: Agitated, late-stage Alzheimer's dementia care home residents in Greater London area (n = 29; 14 females, mean age ± SD: 80.8 ± 8.2; 93.1% White) were recruited to wear an actigraphy watch for 4 weeks. Wearing time was extracted to evaluate compliance, and factors influencing compliance were explored. RESULTS: A high watch-acceptance (96.6%) and compliance rate (88.0%) was noted. Non-compliance was not associated with age or BPSD symptomatology. However, participants with "better" cognitive function (R = 0.42, p = 0.022) and during nightshift (F1.240, 33.475 = 8.075, p = 0.005) were less compliant. Female participants were also marginally less compliant (F1, 26 = 3.790, p = 0.062). DISCUSSIONS: Wrist-worn actigraphy appears acceptable and feasible in late-stage agitated dementia patients. Accommodating the needs of both the patients and their carers may further improve compliance.


Asunto(s)
Actigrafía , Demencia , Estudios de Factibilidad , Muñeca , Humanos , Femenino , Actigrafía/métodos , Actigrafía/instrumentación , Masculino , Anciano de 80 o más Años , Demencia/diagnóstico , Agitación Psicomotora/diagnóstico , Anciano , Dispositivos Electrónicos Vestibles , Cooperación del Paciente , Londres , Sueño/fisiología
3.
NPJ Digit Med ; 6(1): 234, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110486

RESUMEN

Augmented reality (AR) apps, in which the virtual and real world are combined, can recreate instrumental activities of daily living (IADL) and are therefore promising to measure cognition needed for IADL in early Alzheimer's disease (AD) both in the clinic and in the home settings. The primary aim of this study was to distinguish and classify healthy controls (HC) from participants with AD pathology in an early AD stage using an AR app. The secondary aims were to test the association of the app with clinical cognitive and functional tests and investigate the feasibility of at-home testing using AR. We furthermore investigated the test-retest reliability and potential learning effects of the task. The digital score from the AR app could significantly distinguish HC from preclinical AD (preAD) and prodromal AD (proAD), and preAD from proAD, both with in-clinic and at-home tests. For the classification of the proAD group, the digital score (AUCclinic_visit = 0.84 [0.75-0.93], AUCat_home = 0.77 [0.61-0.93]) was as good as the cognitive score (AUC = 0.85 [0.78-0.93]), while for classifying the preAD group, the digital score (AUCclinic_visit = 0.66 [0.53-0.78], AUCat_home = 0.76 [0.61-0.91]) was superior to the cognitive score (AUC = 0.55 [0.42-0.68]). In-clinic and at-home tests moderately correlated (rho = 0.57, p < 0.001). The digital score was associated with the clinical cognitive score (rho = 0.56, p < 0.001). No learning effects were found. Here we report the AR app distinguishes HC from otherwise healthy Aß-positive individuals, both in the outpatient setting and at home, which is currently not possible with standard cognitive tests.

4.
Front Psychol ; 14: 1243099, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37809311

RESUMEN

Computerized cognitive training (CCT) has been shown to improve cognition in older adults via targeted exercises for single or multiple cognitive domains. Combining CCT with non-invasive brain stimulation is thought to be even more effective due to synergistic effects in the targeted brain areas and networks. However, little is known about the moderating effects of sex, age, and education on cognitive outcomes. Here, we investigated these factors in a randomized, double-blind study in which we administered CCT either combined with transcranial direct (tDCS), alternating (tACS) current stimulation or sham stimulation. 59 healthy older participants (mean age 71.7 ± 6.1) received either tDCS (2 mA), tACS (5 Hz), or sham stimulation over the left dorsolateral prefrontal cortex during the first 20 min of a CCT (10 sessions, 50 min, twice weekly). Before and after the complete cognitive intervention, a neuropsychological assessment was performed, and the test scores were summarized in a composite score. Our results showed a significant three-way interaction between age, years of education, and stimulation technique (F(6,52) = 5.53, p = 0.007), indicating that the oldest participants with more years of education particularly benefitted from tDCS compared to the sham group, while in the tACS group the youngest participants with less years of education benefit more from the stimulation. These results emphasize the importance of further investigating and taking into account sex, age, and education as moderating factors in the development of individualized stimulation protocols. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT03475446.

7.
Front Neurol ; 14: 1210974, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435159

RESUMEN

Alzheimer's disease (AD) and other neurodegenerative diseases such as Parkinson's disease (PD) and Huntington's disease (HD) are associated with progressive cognitive, motor, affective and consequently functional decline considerably affecting Activities of Daily Living (ADL) and quality of life. Standard assessments, such as questionnaires and interviews, cognitive testing, and mobility assessments, lack sensitivity, especially in early stages of neurodegenerative diseases and in the disease progression, and have therefore a limited utility as outcome measurements in clinical trials. Major advances in the last decade in digital technologies have opened a window of opportunity to introduce digital endpoints into clinical trials that can reform the assessment and tracking of neurodegenerative symptoms. The Innovative Health Initiative (IMI)-funded projects RADAR-AD (Remote assessment of disease and relapse-Alzheimer's disease), IDEA-FAST (Identifying digital endpoints to assess fatigue, sleep and ADL in neurodegenerative disorders and immune-mediated inflammatory diseases) and Mobilise-D (Connecting digital mobility assessment to clinical outcomes for regulatory and clinical endorsement) aim to identify digital endpoints relevant for neurodegenerative diseases that provide reliable, objective, and sensitive evaluation of disability and health-related quality of life. In this article, we will draw from the findings and experiences of the different IMI projects in discussing (1) the value of remote technologies to assess neurodegenerative diseases; (2) feasibility, acceptability and usability of digital assessments; (3) challenges related to the use of digital tools; (4) public involvement and the implementation of patient advisory boards; (5) regulatory learnings; and (6) the significance of inter-project exchange and data- and algorithm-sharing.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37348604

RESUMEN

BACKGROUND: Neurocognitive functioning is a relevant transdiagnostic dimension in psychiatry. As pupil size dynamics track cognitive load during a working memory task, we aimed to explore if this parameter allows identification of psychophysiological subtypes in healthy participants and patients with affective and anxiety disorders. METHODS: Our sample consisted of 226 participants who completed the n-back task during simultaneous functional magnetic resonance imaging and pupillometry measurements. We used latent class growth modeling to identify clusters based on pupil size in response to cognitive load. In a second step, these clusters were compared on affective and anxiety symptom levels, performance in neurocognitive tests, and functional magnetic resonance imaging activity. RESULTS: The clustering analysis resulted in two distinct pupil response profiles: one with a stepwise increasing pupil size with increasing cognitive load (reactive group) and one with a constant pupil size across conditions (nonreactive group). A larger increase in pupil size was significantly associated with better performance in neurocognitive tests in executive functioning and sustained attention. Statistical maps of parametric modulation of pupil size during the n-back task showed the frontoparietal network in the positive contrast and the default mode network in the negative contrast. The pupil response profile of the reactive group was associated with more thalamic activity, likely reflecting better arousal upregulation and less deactivation of the limbic system. CONCLUSIONS: Pupil measurements have the potential to serve as a highly sensitive psychophysiological readout for detection of neurocognitive deficits in the core domain of executive functioning, adding to the development of valid transdiagnostic constructs in psychiatry.

10.
J Alzheimers Dis ; 93(1): 107-124, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970895

RESUMEN

BACKGROUND: Preclinical Alzheimer's disease (AD) is one possible cause of subjective cognitive decline (SCD). Normal task performance despite ongoing neurodegeneration is typically considered as neuronal compensation, which is reflected by greater neuronal activity. Compensatory brain activity has been observed in frontal as well as parietal regions in SCD, but data are scarce, especially outside the memory domain. OBJECTIVE: To investigate potential compensatory activity in SCD. Such compensatory activity is particularly expected in participants where blood-based biomarkers indicated amyloid positivity as this implies preclinical AD. METHODS: 52 participants with SCD (mean age: 71.00±5.70) underwent structural and functional neuroimaging (fMRI), targeting episodic memory and spatial abilities, and a neuropsychological assessment. The estimation of amyloid positivity was based on plasma amyloid-ß and phosphorylated tau (pTau181) measures. RESULTS: Our fMRI analyses of the spatial abilities task did not indicate compensation, with only three voxels exceeding an uncorrected threshold at p < 0.001. This finding was not replicated in a subset of 23 biomarker positive individuals. CONCLUSION: Our results do not provide conclusive evidence for compensatory brain activity in SCD. It is possible that neuronal compensation does not manifest at such an early stage as SCD. Alternatively, it is possible that our sample size was too small or that compensatory activity may be too heterogeneous to be detected by group-level statistics. Interventions based on the individual fMRI signal should therefore be explored.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides , Disfunción Cognitiva/psicología , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas , Lóbulo Parietal , Biomarcadores , Encéfalo/diagnóstico por imagen
11.
Biomedicines ; 10(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36551985

RESUMEN

Oxytocin (OT) has been extensively studied with regard to its socio-cognitive and -behavioral effects. Its potential as a therapeutic agent is being discussed for a range of neuropsychiatric conditions. However, there is limited evidence of its effects on non-social cognition in general and decision-making in particular, despite the importance of these functions in neuropsychiatry. Using a crossover/within-subject, blinded, randomized design, we investigated for the first time if intranasal OT (24 IU) affects decision-making differently depending on outcome predictability/ambiguity in healthy males. The Iowa Gambling Task (IGT) and the Cambridge Risk Task (CRT) were used to assess decision-making under low outcome predictability/high ambiguity and under high outcome probability/low ambiguity, respectively. After administration of OT, subjects performed worse and exhibited riskier performance in the IGT (low outcome predictability/high ambiguity), whereas they made borderline-significant less risky decisions in the CRT (high outcome probability/low ambiguity) as compared to the control condition. Decision-making in healthy males may therefore be influenced by OT and adjusted as a function of contextual information, with implications for clinical trials investigating OT in neuropsychiatric conditions.

12.
Front Public Health ; 10: 1033515, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36568790

RESUMEN

The prevalence of dementia is increasing and poses a health challenge for individuals and society. Despite the desire to know their risks and the importance of initiating early therapeutic options, large parts of the population do not get access to memory clinic-based assessments. Remote memory clinics facilitate low-level access to cognitive assessments by eschewing the need for face-to-face meetings. At the same time, patients with detected impairment or increased risk can receive non-pharmacological treatment remotely. Sensor technology can evaluate the efficiency of this remote treatment and identify cognitive decline. With remote and (partly) automatized technology the process of cognitive decline can be monitored but more importantly also modified by guiding early interventions and a dementia preventative lifestyle. We highlight how sensor technology aids the expansion of assessments beyond cognition and to other domains, e.g., depression. We also illustrate applications for aiding remote treatment and describe how remote tools can facilitate health education which is the cornerstone for long-lasting lifestyle changes. Tools such as transcranial electric stimulation or sleep-based interventions have currently mostly been used in a face-to-face context but have the potential of remote deployment-a step already taken with memory training apps. Many of the presented methods are readily scalable and of low costs and there is a range of target populations, from the worried well to late-stage dementia.


Asunto(s)
Disfunción Cognitiva , Demencia , Humanos , Disfunción Cognitiva/terapia , Disfunción Cognitiva/psicología , Cognición/fisiología , Memoria a Largo Plazo , Demencia/terapia , Educación en Salud
13.
BMC Psychiatry ; 22(1): 552, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962371

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a major public health issue. Cognitive interventions such as computerized cognitive trainings (CCT) are effective in attenuating cognitive decline in AD. However, in those at risk of dementia related to AD, results are heterogeneous. Efficacy and feasibility of CCT needs to be explored in depth. Moreover, underlying mechanisms of CCT effects on the three cognitive domains typically affected by AD (episodic memory, semantic memory and spatial abilities) remain poorly understood. METHODS: In this bi-centric, randomized controlled trial (RCT) with parallel groups, participants (planned N = 162, aged 60-85 years) at risk for AD and with at least subjective cognitive decline will be randomized to one of three groups. We will compare serious game-based CCT against a passive wait list control condition and an active control condition (watching documentaries). Training will consist of daily at-home sessions for 10 weeks (50 sessions) and weekly on-site group meetings. Subsequently, the CCT group will continue at-home training for an additional twenty-weeks including monthly on-site booster sessions. Investigators conducting the cognitive assessments will be blinded. Group leaders will be aware of participants' group allocations. Primarily, we will evaluate change using a compound value derived from the comprehensive cognitive assessment for each of three cognitive domains. Secondary, longitudinal functional and structural magnetic resonance imaging (MRI) and evaluation of blood-based biomarkers will serve to investigate neuronal underpinnings of expected training benefits. DISCUSSION: The present study will address several shortcomings of previous CCT studies. This entails a comparison of serious game-based CCT with both a passive and an active control condition while including social elements crucial for training success and adherence, the combination of at-home and on-site training, inclusion of booster sessions and assessment of physiological markers. Study outcomes will provide information on feasibility and efficacy of serious game-based CCT in older adults at risk for AD and will potentially generalize to treatment guidelines. Moreover, we set out to investigate physiological underpinnings of CCT induced neuronal changes to form the grounds for future individually tailored interventions and neuro-biologically informed trainings. TRIAL REGISTRATION: This RCT was registered 1st of July 2020 at clinicaltrials.gov (Identifier NCT04452864).


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Memoria Episódica , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/terapia , Cognición/fisiología , Disfunción Cognitiva/psicología , Disfunción Cognitiva/terapia , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Ensayos Clínicos Controlados Aleatorios como Asunto
14.
Clin Neurophysiol Pract ; 7: 146-165, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734582

RESUMEN

Attempts to enhance human memory and learning ability have a long tradition in science. This topic has recently gained substantial attention because of the increasing percentage of older individuals worldwide and the predicted rise of age-associated cognitive decline in brain functions. Transcranial brain stimulation methods, such as transcranial magnetic (TMS) and transcranial electric (tES) stimulation, have been extensively used in an effort to improve cognitive functions in humans. Here we summarize the available data on low-intensity tES for this purpose, in comparison to repetitive TMS and some pharmacological agents, such as caffeine and nicotine. There is no single area in the brain stimulation field in which only positive outcomes have been reported. For self-directed tES devices, how to restrict variability with regard to efficacy is an essential aspect of device design and function. As with any technique, reproducible outcomes depend on the equipment and how well this is matched to the experience and skill of the operator. For self-administered non-invasive brain stimulation, this requires device designs that rigorously incorporate human operator factors. The wide parameter space of non-invasive brain stimulation, including dose (e.g., duration, intensity (current density), number of repetitions), inclusion/exclusion (e.g., subject's age), and homeostatic effects, administration of tasks before and during stimulation, and, most importantly, placebo or nocebo effects, have to be taken into account. The outcomes of stimulation are expected to depend on these parameters and should be strictly controlled. The consensus among experts is that low-intensity tES is safe as long as tested and accepted protocols (including, for example, dose, inclusion/exclusion) are followed and devices are used which follow established engineering risk-management procedures. Devices and protocols that allow stimulation outside these parameters cannot claim to be "safe" where they are applying stimulation beyond that examined in published studies that also investigated potential side effects. Brain stimulation devices marketed for consumer use are distinct from medical devices because they do not make medical claims and are therefore not necessarily subject to the same level of regulation as medical devices (i.e., by government agencies tasked with regulating medical devices). Manufacturers must follow ethical and best practices in marketing tES stimulators, including not misleading users by referencing effects from human trials using devices and protocols not similar to theirs.

15.
Cortex ; 154: 77-88, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35759817

RESUMEN

As transcranial electrical stimulation (tES) protocols advance, assumptions underlying the technique need to be retested to ensure they still hold. Whilst the safety of stimulation has been demonstrated mainly for a small number of sessions, and small sample size, adverse events (AEs) following multiple sessions remain largely untested. Similarly, whilst blinding procedures are typically assumed to be effective, the effect of multiple stimulation sessions on the efficacy of blinding procedures also remains under question. This is especially relevant in multisite projects where small unintentional variations in protocol could lead to inter-site difference. We report AE and blinding data from 1,019 participants who received up to 11 semi-consecutive sessions of active or sham transcranial alternating current stimulation (tACS), direct current stimulation (tDCS), and random noise stimulation (tRNS), at 4 sites in the UK and US. We found that AEs were often best predicted by factors other than tES, such as testing site or session number. Results from the blinding analysis suggested that blinding was less effective for tDCS and tACS than tRNS. The occurrence of AEs did not appear to be linked to tES despite the use of smaller electrodes or repeated delivery. However, blinding efficacy was impacted in tES conditions with higher cutaneous sensation, highlighting a need for alternative stimulation blinding protocols. This may be increasingly necessary in studies wishing to deliver stimulation with higher intensities.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Sensación , Piel
16.
Eur J Neurosci ; 55(9-10): 2464-2473, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33780086

RESUMEN

The prefrontal cortex is a key player in stress response regulation. Electroencephalographic (EEG) responses, such as a decrease in frontal alpha and an increase in frontal beta power, have been proposed to reflect stress-related brain activity. However, the stress response is likely composed of different parts such as cognitive effort, time pressure, and social-evaluative threat, which have not been distinguished in previous studies. This distinction, however, is crucial if we aim to establish reliable tools for early detection of stress-related conditions and monitoring of stress responses throughout treatment. This randomized cross-over study (N = 38) aimed to disentangle EEG correlates of stress. With linear mixed models accounting for missing values in some conditions, we found a decrease in frontal alpha and increase in beta power when performing the Paced Auditory Serial Addition Test (PASAT; cognitive effort; n = 32) compared to resting state (n = 33). No change in EEG power was found when the PASAT was performed under time pressure (n = 29) or when adding social-evaluative threat (video camera; n = 29). These findings suggest that frontal EEG power can discriminate stress from resting state but not more fine-grained differences of the stress response.


Asunto(s)
Cognición , Electroencefalografía , Cognición/fisiología , Pruebas Neuropsicológicas
18.
Cogn Affect Behav Neurosci ; 22(1): 112-122, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34519018

RESUMEN

The neuropeptide oxytocin (OT) has been associated with a broad range of human behaviors, particularly in the domain of social cognition, and is being discussed to play a role in a range of psychiatric disorders. Studies using the Reading The Mind In The Eyes Test (RMET) to investigate the role of OT in mental state recognition reported inconsistent outcomes. The present study applied a randomized, double-blind, cross-over design, and included measures of serum OT. Twenty healthy males received intranasal placebo or OT (24 IU) before performing the RMET. Frequentist and Bayesian analyses showed that contrary to previous studies (Domes et al., 2007; Radke & de Bruijn, 2015), individuals performed worse in the OT condition compared to the placebo condition (p = 0.023, Cohen's d = 0.55, 95% confidence interval [CI] [0.08, 1.02], BF10 = 6.93). OT effects did not depend on item characteristics (difficulty, valence, intensity, sex) of the RMET. Furthermore, OT serum levels did not change after intranasal OT administration. Given that similar study designs lead to heterogeneous outcomes, our results highlight the complexity of OT effects and support evidence that OT might even interfere with social cognitive abilities. However, the Bayesian analysis approach shows that there is only moderate evidence that OT influences mind-reading, highlighting the need for larger-scale studies considering the discussed aspects that might have led to divergent study results.


Asunto(s)
Oxitocina , Administración Intranasal , Teorema de Bayes , Método Doble Ciego , Humanos , Masculino , Oxitocina/farmacología
20.
Schizophr Res ; 235: 44-51, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34304146

RESUMEN

Cognitive deficits and negative symptoms in schizophrenia are associated with poor functional outcomes and limited in terms of treatment. The Schizophrenia Treatment With Electric Transcranial Stimulation (STARTS) trial has shown efficacy of transcranial direct current stimulation (tDCS) for improving negative symptoms. In this secondary analysis, we investigate its effects on cognitive performance. In STARTS, a double-blinded, sham-controlled, randomized clinical trial, patients were treated with twice-daily, 20-min, 2-mA fronto-temporal tDCS over 5 days or sham-tDCS. In 90 patients, we evaluated the cognitive performance up to 12 weeks post-treatment. We found that active-tDCS showed no beneficial effects over sham-tDCS in any of the tests. Based on a 5-factor cognitive model, improvements of executive functions and delayed memory were observed in favor of sham-tDCS. Overall, the applied active-tDCS protocol, primarily designed to improve negative symptoms, did not promote cognitive improvement. We discuss possible protocol modification potentially required to increase tDCS effects on cognition. ClinicalTrials.gov identifier: NCT02535676.


Asunto(s)
Disfunción Cognitiva , Esquizofrenia , Estimulación Transcraneal de Corriente Directa , Cognición , Método Doble Ciego , Humanos , Esquizofrenia/complicaciones , Esquizofrenia/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...