Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 14: 1341766, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571493

RESUMEN

Introduction: Breast cancer (BC) is the leading cause of cancer-related deaths among women, with triple-negative breast cancer (TNBC) representing one of the most aggressive and treatment-resistant subtypes. In this study, we aimed to evaluate the antitumor potential of C14 and P8 molecules in both TNBC and radioresistant TNBC cells. These compounds were chosen for their ability to stabilize the complex formed by the overactivated form of K-Ras4BG13D and its membrane transporter (PDE6δ). Methods: The antitumor potential of C14 and P8 was assessed using TNBC cell lines, MDA-MB-231, and the radioresistant derivative MDA-MB-231RR, both carrying the K-Ras4B> G13D mutation. We investigated the compounds' effects on K-Ras signaling pathways, cell viability, and tumor growth in vivo. Results: Western blotting analysis determined the negative impact of C14 and P8 on the activation of mutant K-Ras signaling pathways in MDA-MB-231 and MDA-MB-231RR cells. Proliferation assays demonstrated their efficacy as cytotoxic agents against K-RasG13D mutant cancer cells and in inducing apoptosis. Clonogenic assays proven their ability to inhibit TNBC and radioresistant TNBC cell clonogenicity. In In vivo studies, C14 and P8 inhibited tumor growth and reduced proliferation, angiogenesis, and cell cycle progression markers. Discussion: These findings suggest that C14 and P8 could serve as promising adjuvant treatments for TNBC, particularly for non-responders to standard therapies. By targeting overactivated K-Ras and its membrane transporter, these compounds offer potential therapeutic benefits against TNBC, including its radioresistant form. Further research and clinical trials are warranted to validate their efficacy and safety as novel TNBC treatments.

2.
Life Sci Alliance ; 6(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37813486

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis among all human cancers as it is highly resistant to chemotherapy. K-Ras mutations usually trigger the development and progression of PDAC. We hypothesized that compounds stabilizing the KRas4B/PDE6δ complex could serve as PDAC treatments. Using in silico approaches, we identified the small molecules C14 and P8 that reduced K-Ras activation in primary PDAC cells. Importantly, C14 and P8 significantly prevented tumor growth in patient-derived xenotransplants. Combined treatment with C14 and P8 strongly increased cytotoxicity in PDAC cell lines and primary cultures and showed strong synergistic antineoplastic effects in preclinical murine PDAC models that were superior to conventional therapeutics without causing side effects. Mechanistically, C14 and P8 reduced tumor growth by inhibiting AKT and ERK signaling downstream of K-RAS leading to apoptosis, specifically in PDAC cells. Thus, combined treatment with C14 and P8 may be a superior pharmaceutical strategy to improve the outcome of PDAC.


Asunto(s)
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Antineoplásicos/farmacología , Neoplasias Pancreáticas
3.
Molecules ; 27(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36080216

RESUMEN

In 40-50% of colorectal cancer (CRC) cases, K-Ras gene mutations occur, which induce the expression of the K-Ras4B oncogenic isoform. K-Ras4B is transported by phosphodiesterase-6δ (PDE6δ) to the plasma membrane, where the K-Ras4B-PDE6δ complex dissociates and K-Ras4B, coupled to the plasma membrane, activates signaling pathways that favor cancer aggressiveness. Thus, the inhibition of the K-Ras4B-PDE6δ dissociation using specific small molecules could be a new strategy for the treatment of patients with CRC. This research aimed to perform a preclinical proof-of-concept and a therapeutic potential evaluation of the synthetic I-C19 and 131I-C19 compounds as inhibitors of the K-Ras4B-PDE6δ dissociation. Molecular docking and molecular dynamics simulations were performed to estimate the binding affinity and the anchorage sites of I-C19 in K-Ras4B-PDE6δ. K-Ras4B signaling pathways were assessed in HCT116, LoVo and SW620 colorectal cancer cells after I-C19 treatment. Two murine colorectal cancer models were used to evaluate the I-C19 therapeutic effect. The in vivo biokinetic profiles of I-C19 and 131I-C19 and the tumor radiation dose were also estimated. The K-Ras4B-PDE6δ stabilizer, 131I-C19, was highly selective and demonstrated a cytotoxic effect ten times greater than unlabeled I-C19. I-C19 prevented K-Ras4B activation and decreased its dependent signaling pathways. The in vivo administration of I-C19 (30 mg/kg) greatly reduced tumor growth in colorectal cancer. The biokinetic profile showed renal and hepatobiliary elimination, and the highest radiation absorbed dose was delivered to the tumor (52 Gy/74 MBq). The data support the idea that 131I-C19 is a novel K-Ras4B/PDE6δ stabilizer with two functionalities: as a K-Ras4B signaling inhibitor and as a compound with radiotherapeutic activity against colorectal tumors.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , Yoduros , Radioisótopos de Yodo , Ratones , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas p21(ras)/genética
4.
Front Cell Dev Biol ; 9: 759259, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35111748

RESUMEN

p21-Activated kinase-1 (Pak1) is frequently overexpressed and/or amplified in human breast cancer and is necessary for transformation of mammary epithelial cells. Here, we show that Pak1 interacts with and phosphorylates the Calcium/Calmodulin-dependent Protein Kinase II (CaMKII), and that pharmacological inhibition or depletion of Pak1 leads to diminished activity of CaMKII. We found a strong correlation between Pak1 and CaMKII expression in human breast cancer samples, and combined inhibition of Pak1 and CaMKII with small-molecule inhibitors was synergistic and induced apoptosis more potently in Her2 positive and triple negative breast cancer (TNBC) cells. Co-adminstration of Pak and CaMKII small-molecule inhibitors resulted in a dramatic reduction of proliferation and an increase in apoptosis in a 3D cell culture setting, as well as an impairment in migration and invasion of TNBC cells. Finally, mice bearing xenografts of TNBC cells showed a significant delay in tumor growth when treated with small-molecule inhibitors of Pak and CaMKII. These data delineate a signaling pathway from Pak1 to CaMKII that is required for efficient proliferation, migration and invasion of mammary epithelial cells, and suggest new therapeutic strategies in breast cancer.

6.
Int J Parasitol ; 50(12): 1011-1022, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32822677

RESUMEN

Epigenetic mechanisms such as histone acetylation and deacetylation participate in regulation of the genes involved in encystation of Entamoeba invadens. However, the histones and target residues involved, and whether the acetylation and deacetylation of the histones leads to the regulation of gene expression associated with the encystation of this parasite, remain unknown. In this study, we found that E. invadens histone H4 is acetylated in both stages of the parasite and is more highly acetylated during the trophozoite stage than in the cyst. Histone hyperacetylation induced by Trichostatin A negatively affects the encystation of E. invadens, and this inhibition is associated with the downregulation of the expression of genes implicated in the synthesis of chitin, polyamines, gamma-aminobutyric acid pathways and cyst wall proteins, all of which are important in the formation of cysts. Finally, in silico analysis and activity assays suggest that a class I histone deacetylase (EiHDAC3) could be involved in control of the expression of a subset of genes that are important in several pathways during encystation. Therefore, the identification of enzymes that acetylate and/or deacetylate histones that control encystation in E. invadens could be a promising therapeutic target for preventing transmission of other amoebic parasites such as E. histolytica, the causative agent of amoebiasis in humans.


Asunto(s)
Entamoeba , Histona Desacetilasas/metabolismo , Animales , Quitina/metabolismo , Entamoeba/enzimología , Humanos , Procesamiento Proteico-Postraduccional , Trofozoítos/enzimología
7.
Case Rep Endocrinol ; 2020: 4768281, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32426170

RESUMEN

OBJECTIVE: To report the immunohistochemical and molecular evaluation of a patient with ectopic ACTH syndrome (EAS) from a MCAT which has single cells with features of both 96 medullary and cortical differentiation. Case Description and Methods. A 16-year-old woman presented with severe EAS and a large right MCAT composed of ACTH-secreting cells resembling pheochromocytoma and another lineage similar to adrenal carcinoma. Immunohistochemistry (IHC) showed positivity for medullary (ACTH, chromogranin A, synaptophysin, and PS-100) and epithelial components (inhibin, melan-A, and calretinin). Embryonic stem cell markers were evaluated using RT/PCR and immunofluorescence. After initial surgery, the tumor recurred shifting to rapidly progressive ACTH-independent liver metastasis. RESULTS: Histopathology and IHC revealed two distinct and intermingled cellular patterns, while some cells immunostained for both medullary and cortical markers. Demonstration of all stem cell biomarkers by RT/PCR and immunofluorescence was predominantly localized to the nucleus, whereas SOX2 immunoreactivity was evident in the cytoplasm as well. CONCLUSION: The expression of cancer stem cell biomarkers points towards the involvement of primitive embryonic cells as the origin of this neoplasm and maybe to the clinically aggressive and biochemically changing behavior.

8.
BMC Cancer ; 18(1): 1299, 2018 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-30594165

RESUMEN

BACKGROUND: The GTPase KRas4B has been utilized as a principal target in the development of anticancer drugs. PDE6δ transports KRas4B to the plasma membrane, where it is released to activate various signaling pathways required for the initiation and maintenance of cancer. Therefore, identifying new small molecules that prevent activation of this GTPase by stabilizing the KRas4B-PDE6δ molecular complex is a practical strategy to fight against cancer. METHODS: The crystal structure of the KRas4B-PDE6δ heterodimer was employed to locate possible specific binding sites at the protein-protein interface region. Virtual screening of Enamine-database compounds was performed on the located potential binding sites to identify ligands able to simultaneously bind to the KRas4B-PDE6δ heterodimer. A molecular dynamics approach was used to estimate the binding free-energy of the complex. Cell viability and apoptosis were measured by flow cytometry. G-LISA was used to measure Ras inactivation. Western blot was used to measure AKT and ERK activation. MIA PaCa-2 cells implanted subcutaneously into nude mice were treated with D14 or C22 and tumor volumes were recorded. RESULTS: According to the binding affinity estimation, D14 and C22 stabilized the protein-protein interaction in the KRas4B-PDE6δ complex based on in vitro evaluation of the 38 compounds showing antineoplastic activity against pancreatic MIA PaCa-2 cancer cells. In this work, we further investigated the antineoplastic cellular properties of two of them, termed D14 and C22, which reduced the viability in the human pancreatic cancer cells lines MIA PaCa-2, PanC-1 and BxPC-3, but not in the normal pancreatic cell line hTERT-HPNE. Compounds D14 and C22 induced cellular death via apoptosis. D14 and C22 significantly decreased Ras-GTP activity by 33% in MIA PaCa-2 cells. Moreover, D14 decreased AKT phosphorylation by 70% and ERK phosphorylation by 51%, while compound C22 reduced AKT phosphorylation by 60% and ERK phosphorylation by 36%. In addition, compounds C22 and D14 significantly reduced tumor growth by 88.6 and 65.9%, respectively, in a mouse xenograft model. CONCLUSIONS: We identified two promising compounds, D14 and C22, that might be useful as therapeutic drugs for pancreatic ductal adenocarcinoma treatment.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/química , Descubrimiento de Drogas/métodos , Humanos , Masculino , Ratones , Ratones Desnudos , Simulación de Dinámica Molecular , Neoplasias Pancreáticas/patología , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/química , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
9.
BMC Cancer ; 18(1): 1056, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30382908

RESUMEN

BACKGROUND: Colorectal cancer is the third most common cancer worldwide; and in 40% of all cases, KRAS4b-activating mutations occur. KRAS4b is transported by phosphodiesterase-6δ (PDEδ) to the plasma membrane, where it gets activated. PDEδ downregulation prevents redistribution and activation of KRAS4b. Thus, targeting the KRAS4b-PDEδ complex is a treatment strategy for colorectal cancer. METHODS: Using docking and molecular dynamics simulations coupled to molecular mechanics, the generalized born model and solvent accessibility (MMGBSA) approach to explore protein-ligand stability, we found that the compound ((2S)-N-(2,5-diclorofenil)-2-[(3,4-dimetoxifenil)metilamino]-propanamida), termed C19, bound and stabilized the KRAS4b-PDEδ complex. We investigated whether C19 decreases the viability and proliferation of colorectal cancer cells, in addition to knowing the type of cell death that it causes and if C19 decreases the activation of KRAS4b and their effectors. RESULTS: C19 showed high cytotoxicity in the colorectal cancer cell lines HCT116 and LoVo, with a stronger effect in KRAS-dependent LoVo cells. Importantly, C19 significantly decreased tumor size in a xenograft mouse model and showed lower side effects than 5-fluorouracil that is currently used as colorectal cancer treatment. CONCLUSIONS: Mechanistically, the cytotoxic effect was due to increased apoptosis of tumor cells and decreased phosphorylation of Erk and Akt. Therefore, our results suggest that C19 may serve as a promising new treatment for colorectal cancer.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/química , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Ratones , Modelos Moleculares , Conformación Molecular , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/química , Transducción de Señal , Relación Estructura-Actividad , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...