Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 173: 108328, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552282

RESUMEN

Computational fluid dynamics (CFD) is a valuable asset for patient-specific cardiovascular-disease diagnosis and prognosis, but its high computational demands hamper its adoption in practice. Machine-learning methods that estimate blood flow in individual patients could accelerate or replace CFD simulation to overcome these limitations. In this work, we consider the estimation of vector-valued quantities on the wall of three-dimensional geometric artery models. We employ group-equivariant graph convolution in an end-to-end SE(3)-equivariant neural network that operates directly on triangular surface meshes and makes efficient use of training data. We run experiments on a large dataset of synthetic coronary arteries and find that our method estimates directional wall shear stress (WSS) with an approximation error of 7.6% and normalised mean absolute error (NMAE) of 0.4% while up to two orders of magnitude faster than CFD. Furthermore, we show that our method is powerful enough to accurately predict transient, vector-valued WSS over the cardiac cycle while conditioned on a range of different inflow boundary conditions. These results demonstrate the potential of our proposed method as a plugin replacement for CFD in the personalised prediction of hemodynamic vector and scalar fields.


Asunto(s)
Hemodinámica , Modelos Cardiovasculares , Humanos , Hemodinámica/fisiología , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/fisiología , Simulación por Computador , Redes Neurales de la Computación , Estrés Mecánico , Hidrodinámica , Velocidad del Flujo Sanguíneo
2.
Sci Rep ; 12(1): 21530, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513711

RESUMEN

This work proposes a stochastic variational deep kernel learning method for the data-driven discovery of low-dimensional dynamical models from high-dimensional noisy data. The framework is composed of an encoder that compresses high-dimensional measurements into low-dimensional state variables, and a latent dynamical model for the state variables that predicts the system evolution over time. The training of the proposed model is carried out in an unsupervised manner, i.e., not relying on labeled data. Our learning method is evaluated on the motion of a pendulum-a well studied baseline for nonlinear model identification and control with continuous states and control inputs-measured via high-dimensional noisy RGB images. Results show that the method can effectively denoise measurements, learn compact state representations and latent dynamical models, as well as identify and quantify modeling uncertainties.

3.
IEEE Trans Med Imaging ; 41(9): 2532-2542, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35404813

RESUMEN

Recently, super-resolution ultrasound imaging with ultrasound localization microscopy (ULM) has received much attention. However, ULM relies on low concentrations of microbubbles in the blood vessels, ultimately resulting in long acquisition times. Here, we present an alternative super-resolution approach, based on direct deconvolution of single-channel ultrasound radio-frequency (RF) signals with a one-dimensional dilated convolutional neural network (CNN). This work focuses on low-frequency ultrasound (1.7 MHz) for deep imaging (10 cm) of a dense cloud of monodisperse microbubbles (up to 1000 microbubbles in the measurement volume, corresponding to an average echo overlap of 94%). Data are generated with a simulator that uses a large range of acoustic pressures (5-250 kPa) and captures the full, nonlinear response of resonant, lipid-coated microbubbles. The network is trained with a novel dual-loss function, which features elements of both a classification loss and a regression loss and improves the detection-localization characteristics of the output. Whereas imposing a localization tolerance of 0 yields poor detection metrics, imposing a localization tolerance corresponding to 4% of the wavelength yields a precision and recall of both 0.90. Furthermore, the detection improves with increasing acoustic pressure and deteriorates with increasing microbubble density. The potential of the presented approach to super-resolution ultrasound imaging is demonstrated with a delay-and-sum reconstruction with deconvolved element data. The resulting image shows an order-of-magnitude gain in axial resolution compared to a delay-and-sum reconstruction with unprocessed element data.


Asunto(s)
Aprendizaje Profundo , Microburbujas , Medios de Contraste , Microscopía/métodos , Ondas de Radio , Ultrasonografía/métodos
4.
Phys Med Biol ; 66(11)2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33906186

RESUMEN

Deep learning (DL) has become widely used for medical image segmentation in recent years. However, despite these advances, there are still problems for which DL-based segmentation fails. Recently, some DL approaches had a breakthrough by using anatomical information which is the crucial cue for manual segmentation. In this paper, we provide a review of anatomy-aided DL for medical image segmentation which covers systematically summarized anatomical information categories and corresponding representation methods. We address known and potentially solvable challenges in anatomy-aided DL and present a categorized methodology overview on using anatomical information with DL from over 70 papers. Finally, we discuss the strengths and limitations of the current anatomy-aided DL approaches and suggest potential future work.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador
5.
Hypertension ; 77(5): 1591-1599, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33775123
6.
IEEE Trans Med Imaging ; 39(1): 129-139, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31180846

RESUMEN

In an inhomogeneously illuminated photoacoustic image, important information like vascular geometry is not readily available, when only the initial pressure is reconstructed. To obtain the desired information, algorithms for image segmentation are often applied as a post-processing step. In this article, we propose to jointly acquire the photoacoustic reconstruction and segmentation, by modifying a recently developed partially learned algorithm based on a convolutional neural network. We investigate the stability of the algorithm against changes in initial pressures and photoacoustic system settings. These insights are used to develop an algorithm that is robust to input and system settings. Our approach can easily be applied to other imaging modalities and can be modified to perform other high-level tasks different from segmentation. The method is validated on challenging synthetic and experimental photoacoustic tomography data in limited angle and limited view scenarios. It is computationally less expensive than classical iterative methods and enables higher quality reconstructions and segmentations than the state-of-the-art learned and non-learned methods.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Técnicas Fotoacústicas/métodos , Fantasmas de Imagen , Tomografía/métodos
7.
Phys Rev Lett ; 123(4): 047701, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31491275

RESUMEN

Quantum spin Hall edge channels hold great promise as dissipationless one-dimensional conductors. However, the ideal quantized conductance of 2e^{2}/h is only found in very short channels-in contradiction with the expected protection against backscattering of the topological insulator state. In this Letter we show that enhancing the band gap does not improve quantization. When we instead alter the potential landscape by charging trap states in the gate dielectric using gate training, we approach conductance quantization for macroscopically long channels. Effectively, the scattering length increases to 175 µm, more than 1 order of magnitude longer than in previous works for HgTe-based quantum wells. Our experiments show that the distortion of the potential landscape by impurities, leading to puddle formation in the narrow gap material, is the major obstacle for observing undisturbed quantum spin Hall edge channel transport.

8.
Nano Lett ; 19(6): 4078-4082, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31120766

RESUMEN

In this Letter we report on proximity superconductivity induced in CdTe-HgTe core-shell nanowires, a quasi-one-dimensional heterostructure of the topological insulator HgTe. We demonstrate a Josephson supercurrent in our nanowires contacted with superconducting Al leads. The observation of a sizable Ic Rn product, a positive excess current, and multiple Andreev reflections up to fourth order further indicate a high interface quality of the junctions.

9.
Cytometry A ; 93(12): 1202-1206, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30246927

RESUMEN

For using counts of circulating tumor cells (CTCs) in the clinic to aid a physician's decision, its reported values will need to be accurate and comparable between institutions. Many technologies have become available to enumerate and characterize CTCs, thereby showing a large range of reported values. Here we introduce an Open Source CTC scoring tool to enable comparison of different reviewers and facilitate the reach of a consensus on assigning objects as CTCs. One hundred images generated from two different platforms were used to assess concordance between 15 reviewers and an expert panel. Large differences were observed between reviewers in assigning objects as CTCs urging the need for computer recognition of CTCs. A demonstration of a deep learning approach on the 100 images showed the promise of this technique for future CTC enumeration. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Asunto(s)
Recuento de Células/métodos , Citometría de Flujo/métodos , Células Neoplásicas Circulantes/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Consenso , Humanos , Neoplasias Pulmonares/patología
10.
Oncotarget ; 9(27): 19283-19293, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29721202

RESUMEN

PURPOSE: The presence of Circulating Tumor Cells (CTCs) in Castration-Resistant Prostate Cancer (CRPC) patients is associated with poor prognosis. In this study, we evaluated the association of clinical outcome in 129 CRPC patients with CTCs, tumor-derived Extracellular Vesicles (tdEVs) and plasma levels of total (CK18) and caspase-cleaved cytokeratin 18 (ccCK18). EXPERIMENTAL DESIGN: CTCs and tdEVs were isolated with the CellSearch system and automatically enumerated. Cut-off values dichotomizing patients into favorable and unfavorable groups of overall survival were set on a retrospective data set of 84 patients and validated on a prospective data set of 45 patients. Plasma levels of CK18 and ccCK18 were assessed by ELISAs. RESULTS: CTCs, tdEVs and both cytokeratin plasma levels were significantly increased in CRPC patients compared to healthy donors (HDs). All biomarkers except for ccCK18 were prognostic showing a decreased median overall survival for the unfavorable groups of 9.2 vs 21.1, 8.1 vs 23.0 and 10.0 vs 21.5 months respectively. In multivariable Cox regression analysis, tdEVs remained significant. CONCLUSIONS: Automated CTC and tdEV enumeration allows fast and reliable scoring eliminating inter- and intra- operator variability. tdEVs provide similar prognostic information to CTC counts.

11.
Phys Med Biol ; 63(4): 045018, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29364136

RESUMEN

Photoacoustic tomography is a hybrid imaging technique that combines high optical tissue contrast with high ultrasound resolution. Direct reconstruction methods such as filtered back-projection, time reversal and least squares suffer from curved line artefacts and blurring, especially in the case of limited angles or strong noise. In recent years, there has been great interest in regularised iterative methods. These methods employ prior knowledge of the image to provide higher quality reconstructions. However, easy comparisons between regularisers and their properties are limited, since many tomography implementations heavily rely on the specific regulariser chosen. To overcome this bottleneck, we present a modular reconstruction framework for photoacoustic tomography, which enables easy comparisons between regularisers with different properties, e.g. nonlinear, higher-order or directional. We solve the underlying minimisation problem with an efficient first-order primal-dual algorithm. Convergence rates are optimised by choosing an operator-dependent preconditioning strategy. A variety of reconstruction methods are tested on challenging 2D synthetic and experimental data sets. They outperform direct reconstruction approaches for strong noise levels and limited angle measurements, offering immediate benefits in terms of acquisition time and quality. This work provides a basic platform for the investigation of future advanced regularisation methods in photoacoustic tomography.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Técnicas Fotoacústicas/métodos , Tomografía/métodos , Humanos , Análisis de los Mínimos Cuadrados , Fantasmas de Imagen
12.
PLoS One ; 12(10): e0186562, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29084234

RESUMEN

Circulating tumor cells (CTCs) isolated from blood can be probed for the expression of treatment targets. Immunofluorescence is often used for both the enumeration of CTC and the determination of protein expression levels related to treatment targets. Accurate and reproducible assessment of such treatment target expression levels is essential for their use in the clinic. To enable this, an open source image analysis program named ACCEPT was developed in the EU-FP7 CTCTrap and CANCER-ID programs. Here its application is shown on a retrospective cohort of 132 metastatic breast cancer patients from which blood samples were processed by CellSearch® and stained for HER-2 expression as additional marker. Images were digitally stored and reviewers identified a total of 4084 CTCs. CTC's HER-2 expression was determined in the thumbnail images by ACCEPT. 150 of these images were selected and sent to six independent investigators to score the HER-2 expression with and without ACCEPT. Concordance rate of the operators' scoring results for HER-2 on CTCs was 30% and could be increased using the ACCEPT tool to 51%. Automated assessment of HER-2 expression by ACCEPT on 4084 CTCs of 132 patients showed 8 (6.1%) patients with all CTCs expressing HER-2, 14 (10.6%) patients with no CTC expressing HER-2 and 110 (83.3%) patients with CTCs showing a varying HER-2 expression level. In total 1576 CTCs were determined HER-2 positive. We conclude that the use of image analysis enables a more reproducible quantification of treatment targets on CTCs and leads the way to fully automated and reproducible approaches.


Asunto(s)
Neoplasias de la Mama/sangre , Células Neoplásicas Circulantes/metabolismo , Receptor ErbB-2/metabolismo , Femenino , Humanos
13.
Proc Natl Acad Sci U S A ; 114(40): 10761-10766, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923948

RESUMEN

Small-scale neuronal networks may impose widespread effects on large network dynamics. To unravel this relationship, we analyzed eight multiscale recordings of spontaneous seizures from four patients with epilepsy. During seizures, multiunit spike activity organizes into a submillimeter-sized wavefront, and this activity correlates significantly with low-frequency rhythms from electrocorticographic recordings across a 10-cm-sized neocortical network. Notably, this correlation effect is specific to the ictal wavefront and is absent interictally or from action potential activity outside the wavefront territory. To examine the multiscale interactions, we created a model using a multiscale, nonlinear system and found evidence for a dual role for feedforward inhibition in seizures: while inhibition at the wavefront fails, allowing seizure propagation, feedforward inhibition of the surrounding centimeter-scale networks is activated via long-range excitatory connections. Bifurcation analysis revealed that distinct dynamical pathways for seizure termination depend on the surrounding inhibition strength. Using our model, we found that the mesoscopic, local wavefront acts as the forcing term of the ictal process, while the macroscopic, centimeter-sized network modulates the oscillatory seizure activity.


Asunto(s)
Potenciales de Acción/fisiología , Ondas Encefálicas/fisiología , Epilepsia Refractaria/fisiopatología , Epilepsias Parciales/fisiopatología , Neocórtex/fisiopatología , Convulsiones/fisiopatología , Electroencefalografía , Humanos
15.
Proc Natl Acad Sci U S A ; 114(13): 3381-3386, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28280101

RESUMEN

Topological insulators are a new class of materials with an insulating bulk and topologically protected metallic surface states. Although it is widely assumed that these surface states display a Dirac-type dispersion that is symmetric above and below the Dirac point, this exact equivalence across the Fermi level has yet to be established experimentally. Here, we present a detailed transport study of the 3D topological insulator-strained HgTe that strongly challenges this prevailing viewpoint. First, we establish the existence of exclusively surface-dominated transport via the observation of an ambipolar surface quantum Hall effect and quantum oscillations in the Seebeck and Nernst effect. Second, we show that, whereas the thermopower is diffusion driven for surface electrons, both diffusion and phonon drag contributions are essential for the hole surface carriers. This distinct behavior in the thermoelectric response is explained by a strong deviation from the linear dispersion relation for the surface states, with a much flatter dispersion for holes compared with electrons. These findings show that the metallic surface states in topological insulators can exhibit both strong electron-hole asymmetry and a strong deviation from a linear dispersion but remain topologically protected.

16.
Nat Nanotechnol ; 12(2): 137-143, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27570940

RESUMEN

In recent years, Majorana physics has attracted considerable attention because of exotic new phenomena and its prospects for fault-tolerant topological quantum computation. To this end, one needs to engineer the interplay between superconductivity and electronic properties in a topological insulator, but experimental work remains scarce and ambiguous. Here, we report experimental evidence for topological superconductivity induced in a HgTe quantum well, a 2D topological insulator that exhibits the quantum spin Hall (QSH) effect. The a.c. Josephson effect demonstrates that the supercurrent has a 4π periodicity in the superconducting phase difference, as indicated by a doubling of the voltage step for multiple Shapiro steps. In addition, this response like that of a superconducting quantum interference device to a perpendicular magnetic field shows that the 4π-periodic supercurrent originates from states located on the edges of the junction. Both features appear strongest towards the QSH regime, and thus provide evidence for induced topological superconductivity in the QSH edge states.

17.
PeerJ ; 4: e2683, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27917312

RESUMEN

Brain perfusion is of key importance to assess brain function. Modern CT scanners can acquire perfusion maps of the cerebral parenchyma in vivo at submillimeter resolution. These perfusion maps give insights into the hemodynamics of the cerebral parenchyma and are critical for example for treatment decisions in acute stroke. However, the relations between acquisition parameters, tissue attenuation curves, and perfusion values are still poorly understood and cannot be unraveled by studies involving humans because of ethical concerns. We present a 4D CT digital phantom specific for an individual human brain to analyze these relations in a bottom-up fashion. Validation of the signal and noise components was based on 1,000 phantom simulations of 20 patient imaging data. This framework was applied to quantitatively assess the relation between radiation dose and perfusion values, and to quantify the signal-to-noise ratios of penumbra regions with decreasing sizes in white and gray matter. This is the first 4D CT digital phantom that enables to address clinical questions without having to expose the patient to additional radiation dose.

18.
Phys Rev Lett ; 117(8): 086403, 2016 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-27588871

RESUMEN

The HgTe quantum well (QW) is a well-characterized two-dimensional topological insulator (2D TI). Its band gap is relatively small (typically on the order of 10 meV), which restricts the observation of purely topological conductance to low temperatures. Here, we utilize the strain dependence of the band structure of HgTe QWs to address this limitation. We use CdTe-Cd_{0.5}Zn_{0.5}Te strained-layer superlattices on GaAs as virtual substrates with adjustable lattice constant to control the strain of the QW. We present magnetotransport measurements, which demonstrate a transition from a semimetallic to a 2D-TI regime in wide QWs, when the strain is changed from tensile to compressive. Most notably, we demonstrate a much enhanced energy gap of 55 meV in heavily compressively strained QWs. This value exceeds the highest possible gap on common II-VI substrates by a factor of 2-3, and extends the regime where the topological conductance prevails to much higher temperatures.

19.
Nat Commun ; 6: 7252, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-26006728

RESUMEN

The realization of quantum spin Hall effect in HgTe quantum wells is considered a milestone in the discovery of topological insulators. Quantum spin Hall states are predicted to allow current flow at the edges of an insulating bulk, as demonstrated in various experiments. A key prediction yet to be experimentally verified is the breakdown of the edge conduction under broken time-reversal symmetry. Here we first establish a systematic framework for the magnetic field dependence of electrostatically gated quantum spin Hall devices. We then study edge conduction of an inverted quantum well device under broken time-reversal symmetry using microwave impedance microscopy, and compare our findings to a non-inverted device. At zero magnetic field, only the inverted device shows clear edge conduction in its local conductivity profile, consistent with theory. Surprisingly, the edge conduction persists up to 9 T with little change. This indicates physics beyond simple quantum spin Hall model, including material-specific properties and possibly many-body effects.

20.
Phys Rev Lett ; 114(6): 066801, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25723235

RESUMEN

We use superconducting quantum interference device microscopy to characterize the current-phase relation (CPR) of Josephson junctions from the three-dimensional topological insulator HgTe (3D HgTe). We find clear skewness in the CPRs of HgTe junctions ranging in length from 200 to 600 nm. The skewness indicates that the Josephson current is predominantly carried by Andreev bound states with high transmittance, and the fact that the skewness persists in junctions that are longer than the mean free path suggests that the effect may be related to the helical nature of the Andreev bound states in the surface of HgTe. These experimental results suggest that the topological properties of the normal state can be inherited by the induced superconducting state, and that 3D HgTe is a promising material for realizing the many exciting proposals that require a topological superconductor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...