Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Res Toxicol ; 36(12): 1912-1920, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-37950699

RESUMEN

Oxime reactivators of acetylcholinesterase (AChE) are used as causal antidotes for intended and unintended poisoning by organophosphate nerve agents and pesticides. Despite all efforts to develop new AChE reactivators, none of these drug candidates replaced conventional clinically used oximes. In addition to the therapeutic efficacy, determining the safety profile is crucial in preclinical drug evaluation. The exact mechanism of oxime toxicity and the structure-toxicity relationship are subjects of ongoing research, with oxidative stress proposed as a possible mechanism. In the present study, we investigated four promising bispyridinium oxime AChE reactivators, K048, K074, K075, and K203, and their ability to induce oxidative stress in vitro. Cultured human hepatoma cells were exposed to oximes at concentrations corresponding to their IC50 values determined by the MTT assay after 24 h. Their potency to generate reactive oxygen species, interfere with the thiol antioxidant system, and induce lipid peroxidation was evaluated at 1, 4, and 24 h of exposure. Reactivators without a double bond in the four-carbon linker, K048 and K074, showed a greater potential to induce oxidative stress compared with K075 and K203, which contain a double bond. Unlike oximes with a three-carbon-long linker, the number of aldoxime groups attached to the pyridinium moieties does not determine the oxidative stress induction for K048, K074, K075, and K203 oximes. In conclusion, our results emphasize that the structure of oximes plays a critical role in inducing oxidative stress, and this relationship does not correlate with their cytotoxicity expressed as the IC50 value. However, it is important to note that oxidative stress cannot be disregarded as a potential contributor to the side effects associated with oximes.


Asunto(s)
Reactivadores de la Colinesterasa , Humanos , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/química , Acetilcolinesterasa/metabolismo , Células Hep G2 , Inhibidores de la Colinesterasa/toxicidad , Oximas/farmacología , Oximas/química , Antídotos/farmacología , Organofosfatos/toxicidad , Estrés Oxidativo , Carbono , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/química
2.
Food Chem Toxicol ; 167: 113236, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35738326

RESUMEN

Oxime reactivators are causal antidotes for organophosphate intoxication. Herein, the toxicity, pharmacokinetics, and reactivation effectiveness of o-chlorinated bispyridinium oxime K870 are reported. Oxime K870 was found to have a safe profile at a dose of 30 mg/kg in rats. It exhibited rapid absorption and renal clearance similar to those of other charged oximes after intramuscular administration. Its isoxazole-pyridinium degradation product was identified in vivo. Although it showed some improvement in brain targeting, it was nevertheless rapidly effluxed from the central nervous system. Its reactivation effectiveness was evaluated in rats and mice intoxicated with sarin, tabun, VX, and paraoxon and compared with pralidoxime and asoxime. K870 was found to be less effective in reversing tabun poisoning compared to its parent unchlorinated oxime K203. However, K870 efficiently reactivated blood acetylcholinesterase for all tested organophosphates in rats. In addition, K870 significantly protected against intoxication by all tested organophosphates in mice. For these reasons, oxime K870 seems to have a broader reactivation spectrum against multiple organophosphates. It seems important to properly modulate the oximate forming properties (pKa) to obtain more versatile oxime reactivators.


Asunto(s)
Reactivadores de la Colinesterasa , Oximas , Acetilcolinesterasa/metabolismo , Animales , Antídotos , Inhibidores de la Colinesterasa/metabolismo , Inhibidores de la Colinesterasa/toxicidad , Reactivadores de la Colinesterasa/uso terapéutico , Ratones , Organofosfatos , Compuestos de Piridinio/toxicidad , Ratas
3.
Future Med Chem ; 13(9): 785-804, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33829876

RESUMEN

The authors report on the synthesis and biological evaluation of new compounds whose structure combines tacrine and indole moieties. Tacrine-indole heterodimers were designed to inhibit cholinesterases and ß-amyloid formation, and to cross the blood-brain barrier. The most potent new acetylcholinesterase inhibitors were compounds 3c and 4d (IC50 = 25 and 39 nM, respectively). Compound 3c displayed considerably higher selectivity for acetylcholinesterase relative to human plasma butyrylcholinesterase in comparison to compound 4d (selectivity index: IC50 [butyrylcholinesterase]/IC50 [acetylcholinesterase] = 3 and 0.6, respectively). Furthermore, compound 3c inhibited ß-amyloid-dependent amyloid nucleation in the yeast-based prion nucleation assay and displayed no dsDNA destabilizing interactions with DNA. Compounds 3c and 4d displayed a high probability of crossing the blood-brain barrier. The results support the potential of 3c for future development as a dual-acting therapeutic agent in the prevention and/or treatment of Alzheimer's disease.


Asunto(s)
Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Inhibidores de la Colinesterasa/química , Indoles/química , Fármacos Neuroprotectores/química , Tacrina/química , Barrera Hematoencefálica , Inhibidores de la Colinesterasa/farmacología , ADN/química , Dimerización , Evaluación Preclínica de Medicamentos , Humanos , Indoles/farmacología , Concentración 50 Inhibidora , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Terapia Molecular Dirigida , Fármacos Neuroprotectores/farmacología , Unión Proteica , Relación Estructura-Actividad , Tacrina/farmacología
4.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33917200

RESUMEN

A series of novel C4-C7-tethered biscoumarin derivatives (12a-e) linked through piperazine moiety was designed, synthesized, and evaluated biological/therapeutic potential. Biscoumarin 12d was found to be the most effective inhibitor of both acetylcholinesterase (AChE, IC50 = 6.30 µM) and butyrylcholinesterase (BChE, IC50 = 49 µM). Detailed molecular modelling studies compared the accommodation of ensaculin (well-established coumarin derivative tested in phase I of clinical trials) and 12d in the human recombinant AChE (hAChE) active site. The ability of novel compounds to cross the blood-brain barrier (BBB) was predicted with a positive outcome for compound 12e. The antiproliferative effects of newly synthesized biscoumarin derivatives were tested in vitro on human lung carcinoma cell line (A549) and normal colon fibroblast cell line (CCD-18Co). The effect of derivatives on cell proliferation was evaluated by MTT assay, quantification of cell numbers and viability, colony-forming assay, analysis of cell cycle distribution and mitotic activity. Intracellular localization of used derivatives in A549 cells was confirmed by confocal microscopy. Derivatives 12d and 12e showed significant antiproliferative activity in A549 cancer cells without a significant effect on normal CCD-18Co cells. The inhibition of hAChE/human recombinant BChE (hBChE), the antiproliferative activity on cancer cells, and the ability to cross the BBB suggest the high potential of biscoumarin derivatives. Beside the treatment of cancer, 12e might be applicable against disorders such as schizophrenia, and 12d could serve future development as therapeutic agents in the prevention and/or treatment of Alzheimer's disease.


Asunto(s)
Técnicas de Química Sintética , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Cumarinas/química , Cumarinas/farmacología , Modelos Moleculares , Células A549 , Enfermedad de Alzheimer/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Inhibidores de la Colinesterasa/síntesis química , Cumarinas/síntesis química , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Humanos , Estructura Molecular , Relación Estructura-Actividad
5.
Int J Mol Sci ; 21(11)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486316

RESUMEN

In this communication, we report the synthesis and cholinesterase (ChE)/monoamine oxidase (MAO) inhibition of 19 quinolinones (QN1-19) and 13 dihydroquinolinones (DQN1-13) designed as potential multitarget small molecules (MSM) for Alzheimer's disease therapy. Contrary to our expectations, none of them showed significant human recombinant MAO inhibition, but compounds QN8, QN9, and DQN7 displayed promising human recombinant acetylcholinesterase (hrAChE) and butyrylcholinesterase (hrBuChE) inhibition. In particular, molecule QN8 was found to be a potent and quite selective non-competitive inhibitor of hrAChE (IC50 = 0.29 µM), with Ki value in nanomolar range (79 nM). Pertinent docking analysis confirmed this result, suggesting that this ligand is an interesting hit for further investigation.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Quinolonas/farmacología , Acetilcolinesterasa/metabolismo , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Humanos , Concentración 50 Inhibidora , Cinética , Ligandos , Espectroscopía de Resonancia Magnética , Simulación del Acoplamiento Molecular , Monoaminooxidasa/metabolismo , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
6.
ACS Med Chem Lett ; 11(1): 65-71, 2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31938465

RESUMEN

Acetylcholinesterase cysteine-targeted insecticides against malaria vector Anopheles gambia and other mosquitos have already been introduced. We have applied the olefin metathesis for the preparation of cysteine-targeted insecticides in high yields. The prepared compounds with either a succinimide or maleimide moiety were evaluated on Anopheles gambiae and human acetylcholinesterase with relatively high irreversible inhibition of both enzymes but poor selectivity. The concept of cysteine binding was not proved by several methods, and poor stability was observed of the chosen most potent/selective compounds in a water/buffer environment. Thus, our findings do not support the proposed concept of cysteine-targeted selective insecticides for the prepared series of succinimide or maleimide compounds.

7.
J Enzyme Inhib Med Chem ; 35(1): 478-488, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31910701

RESUMEN

The series of symmetrical and unsymmetrical isoquinolinium-5-carbaldoximes was designed and prepared for cholinesterase reactivation purposes. The novel compounds were evaluated for intrinsic acetylcholinesterase (AChE) or butyrylcholinesterase (BChE) inhibition, when the majority of novel compounds resulted with high inhibition of both enzymes and only weak inhibitors were selected for reactivation experiments on human AChE or BChE inhibited by sarin, VX, or paraoxon. The AChE reactivation for all used organophosphates was found negligible if compared to the reactivation ability of obidoxime. Importantly, two compounds were found to reactivate BChE inhibited by sarin or VX better to obidoxime at human attainable concentration. One compound resulted as better reactivator of NEMP (VX surrogate)-inhibited BChE than obidoxime. The in vitro results were further rationalized by molecular docking studies showing future directions on designing potent BChE reactivators.


Asunto(s)
Acetilcolinesterasa/efectos de los fármacos , Butirilcolinesterasa/efectos de los fármacos , Reactivadores de la Colinesterasa/farmacología , Isoquinolinas/síntesis química , Isoquinolinas/farmacología , Inhibidores de la Colinesterasa/farmacología , Humanos , Isoquinolinas/química , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...