Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2312507, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38895889

RESUMEN

Phonon polaritons enable waveguiding and localization of infrared light with extreme confinement and low losses. The spatial propagation and spectral resonances of such polaritons are usually probed with complementary techniques such as near-field optical microscopy and far-field reflection spectroscopy. Here, infrared-visible sum-frequency spectro-microscopy is introduced as a tool for spectroscopic imaging of phonon polaritons. The technique simultaneously provides sub-wavelength spatial resolution and highly-resolved spectral resonance information. This is implemented by resonantly exciting polaritons using a tunable infrared laser and wide-field microscopic detection of the upconverted light. The technique is employed to image hybridization and strong coupling of localized and propagating surface phonon polaritons in a metasurface of SiC micropillars. Spectro-microscopy allows to measure the polariton dispersion simultaneously in momentum space by angle-dependent resonance imaging, and in real space by polariton interferometry. Notably, it is possible to directly image how strong coupling affects the spatial localization of polaritons, inaccessible with conventional spectroscopic techniques. The formation of edge states is observed at excitation frequencies where strong coupling prevents polariton propagation into the metasurface. The technique is applicable to the wide range of polaritonic materials with broken inversion symmetry and can be used as a fast and non-perturbative tool to image polariton hybridization and propagation.

2.
Adv Mater ; : e2402925, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717326

RESUMEN

In heterostructures made from polar materials, e.g., AlN-GaN-AlN, the nonequivalence of the two interfaces is long recognized as a critical aspect of their electronic properties; in that, they host different 2D carrier gases. Interfaces play an important role in the vibrational properties of materials, where interface states enhance thermal conductivity and can generate unique infrared-optical activity. The nonequivalence of the corresponding interface atomic vibrations, however, is not investigated so far due to a lack of experimental techniques with both high spatial and high spectral resolution. Herein, the nonequivalence of AlN-(Al0.65Ga0.35)N and (Al0.65Ga0.35)N-AlN interface vibrations is experimentally demonstrated using monochromated electron energy-loss spectroscopy in the scanning transmission electron microscope (STEM-EELS) and density-functional-theory (DFT) calculations are employed to gain insights in the physical origins of observations. It is demonstrated that STEM-EELS possesses sensitivity to the displacement vector of the vibrational modes as well as the frequency, which is as critical to understanding vibrations as polarization in optical spectroscopies. The combination enables direct mapping of the nonequivalent interface phonons between materials with different phonon polarizations. The results demonstrate the capacity to carefully assess the vibrational properties of complex heterostructures where interface states dominate the functional properties.

3.
Nat Commun ; 15(1): 2696, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538588

RESUMEN

Polariton canalization is characterized by intrinsic collimation of energy flow along a single crystalline axis. This optical phenomenon has been experimentally demonstrated at the nanoscale by stacking and twisting van der Waals (vdW) layers of α-MoO3, by combining α-MoO3 and graphene, or by fabricating an h-BN metasurface. However, these material platforms have significant drawbacks, such as complex fabrication and high optical losses in the case of metasurfaces. Ideally, it would be possible to canalize polaritons "naturally" in a single pristine layer. Here, we theoretically predict and experimentally demonstrate naturally canalized phonon polaritons (PhPs) in a single thin layer of the vdW crystal LiV2O5. In addition to canalization, PhPs in LiV2O5 exhibit strong field confinement ( λ p ~ λ 0 27 ), slow group velocity (0.0015c), and ultra-low losses (lifetimes of 2 ps). Our findings are promising for the implementation of low-loss optical nanodevices where strongly directional light propagation is needed, such as waveguides or optical routers.

4.
Nano Lett ; 24(1): 114-121, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38164942

RESUMEN

Extended defects in wide-bandgap semiconductors have been widely investigated using techniques providing either spectroscopic or microscopic information. Nano-Fourier transform infrared spectroscopy (nano-FTIR) is a nondestructive characterization method combining FTIR with nanoscale spatial resolution (∼20 nm) and topographic information. Here, we demonstrate the capability of nano-FTIR for the characterization of extended defects in semiconductors by investigating an in-grown stacking fault (IGSF) present in a 4H-SiC epitaxial layer. We observe a local spectral shift of the mid-infrared near-field response, consistent with the identification of the defect stacking order as 3C-SiC (cubic) from comparative simulations based on the finite dipole model (FDM). This 3C-SiC IGSF contrasts with the more typical 8H-SiC IGSFs reported previously and is exemplary in showing that nanoscale spectroscopy with nano-FTIR can provide new insights into the properties of extended defects, the understanding of which is crucial for mitigating deleterious effects of such defects in alternative semiconductor materials and devices.

5.
Adv Mater ; 36(3): e2305106, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38039437

RESUMEN

Polar dielectrics are key materials of interest for infrared (IR) nanophotonic applications due to their ability to host phonon-polaritons that allow for low-loss, subdiffractional control of light. The properties of phonon-polaritons are limited by the characteristics of optical phonons, which are nominally fixed for most "bulk" materials. Superlattices composed of alternating atomically thin materials offer control over crystal anisotropy through changes in composition, optical phonon confinement, and the emergence of new modes. In particular, the modified optical phonons in superlattices offer the potential for so-called crystalline hybrids whose IR properties cannot be described as a simple mixture of the bulk constituents. To date, however, studies have primarily focused on identifying the presence of new or modified optical phonon modes rather than assessing their impact on the IR response. This study focuses on assessing the impact of confined optical phonon modes on the hybrid IR dielectric function in superlattices of GaSb and AlSb. Using a combination of first principles theory, Raman, FTIR, and spectroscopic ellipsometry, the hybrid dielectric function is found to track the confinement of optical phonons, leading to optical phonon spectral shifts of up to 20 cm-1 . These results provide an alternative pathway toward designer IR optical materials.

6.
Nat Commun ; 14(1): 7965, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042825

RESUMEN

Hyperbolic phonon polaritons (HPhPs) can be supported in materials where the real parts of their permittivities along different directions are opposite in sign. HPhPs offer confinements of long-wavelength light to deeply subdiffractional scales, while the evanescent field allows for interactions with substrates, enabling the tuning of HPhPs by altering the underlying materials. Yet, conventionally used noble metal and dielectric substrates restrict the tunability of this approach. To overcome this challenge, here we show that doped semiconductor substrates, e.g., InAs and CdO, enable a significant tuning effect and dynamic modulations. We elucidated HPhP tuning with the InAs plasma frequency in the near-field, with a maximum difference of 8.3 times. Moreover, the system can be dynamically modulated by photo-injecting carriers into the InAs substrate, leading to a wavevector change of ~20%. Overall, the demonstrated hBN/doped semiconductor platform offers significant improvements towards manipulating HPhPs, and potential for engineered and modulated polaritonic systems.

7.
ACS Appl Mater Interfaces ; 15(40): 47649-47660, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37782678

RESUMEN

Intercalation is the process of inserting chemical species into the heterointerfaces of two-dimensional (2D) layered materials. While much research has focused on the intercalation of metals and small gas molecules into graphene, the intercalation of larger molecules through the basal plane of graphene remains challenging. In this work, we present a new mechanism for intercalating large molecules through monolayer graphene to form confined oxide materials at the graphene-substrate heterointerface. We investigate the intercalation of phosphorus pentoxide (P2O5) molecules directly from the vapor phase and confirm the formation of confined P2O5 at the graphene-substrate heterointerface using various techniques. Density functional theory (DFT) corroborates the experimental results and reveals the intercalation mechanism, whereby P2O5 dissociates into small fragments catalyzed by defects in the graphene that then permeates through lattice defects and reacts at the heterointerface to form P2O5. This process can also be used to form new confined metal phosphates (e.g., 2D InPO4). While the focus of this study is on P2O5 intercalation, the possibility of intercalation from predissociated molecules catalyzed by defects in graphene may exist for other types of molecules as well. This in-depth study advances our understanding of intercalation routes of large molecules via the basal plane of graphene as well as heterointerface chemical reactions leading to the formation of distinctive confined complex oxide compounds.

8.
Nature ; 623(7986): 307-312, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37880364

RESUMEN

Surface waves can lead to intriguing transport phenomena. In particular, surface phonon polaritons (SPhPs), which result from coupling between infrared light and optical phonons, have been predicted to contribute to heat conduction along polar thin films and nanowires1. However, experimental efforts so far suggest only very limited SPhP contributions2-5. Through systematic measurements of thermal transport along the same 3C-SiC nanowires with and without a gold coating on the end(s) that serves to launch SPhPs, here we show that thermally excited SPhPs can substantially enhance the thermal conductivity of the uncoated portion of these wires. The extracted pre-decay SPhP thermal conductance is more than two orders of magnitude higher than the Landauer limit predicted on the basis of equilibrium Bose-Einstein distributions. We attribute the notable SPhP conductance to the efficient launching of non-equilibrium SPhPs from the gold-coated portion into the uncoated SiC nanowires, which is strongly supported by the observation that the SPhP-mediated thermal conductivity is proportional to the length of the gold coating(s). The reported discoveries open the door for modulating energy transport in solids by introducing SPhPs, which can effectively counteract the classical size effect in many technologically important films and improve the design of solid-state devices.

9.
Nat Commun ; 14(1): 5240, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640711

RESUMEN

Structural anisotropy in crystals is crucial for controlling light propagation, particularly in the infrared spectral regime where optical frequencies overlap with crystalline lattice resonances, enabling light-matter coupled quasiparticles called phonon polaritons (PhPs). Exploring PhPs in anisotropic materials like hBN and MoO3 has led to advancements in light confinement and manipulation. In a recent study, PhPs in the monoclinic crystal ß-Ga2O3 (bGO) were shown to exhibit strongly asymmetric propagation with a frequency dispersive optical axis. Here, using scanning near-field optical microscopy (s-SNOM), we directly image the symmetry-broken propagation of hyperbolic shear polaritons in bGO. Further, we demonstrate the control and enhancement of shear-induced propagation asymmetry by varying the incident laser orientation and polariton momentum using different sizes of nano-antennas. Finally, we observe significant rotation of the hyperbola axis by changing the frequency of incident light. Our findings lay the groundwork for the widespread utilization and implementation of polaritons in low-symmetry crystals.

10.
Microsc Microanal ; 29(Supplement_1): 639, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37613184
11.
Nanoscale Horiz ; 8(10): 1386-1394, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37575070

RESUMEN

Techniques are well established for the control of nanoparticle shape and size in colloidal synthesis, but very little is understood about precursor interactions and their effects on the resultant crystalline phase. Here we show that oleate, a surface stabilizing ligand that is ubiquitous in nanocrystal synthesis, plays a large role in the mechanism of phase selection of various metal sulfide nanoparticles when thiourea is used as the sulfur source. Gas and solid-phase FTIR, 13C, and 1H NMR studies revealed that oleate and thiourea interact to produce oleamide which promotes the isomeric shift of thiourea into ammonium thiocyanate, a less reactive sulfur reagent. Because of these sulfur sequestering reactions, sulfur deficient and metastable nanoparticles are produced, a trend seen across four different metals: copper, iron, nickel, and cobalt. At low carboxylate concentrations, powder XRD indicated that the following phases formed: covellite (CuS); vaesite (NiS2); smythite (FeS1.3), greigite (FeS1.3), marcasite (FeS2) and pyrite (FeS2); and cattierite (CoS2). At high sodium oleate concentration, these phases formed: digenite (CuS0.55), nickel sulfide (NiS), pyrrhotite (FeS1.1), and jaipurite (CoS).

12.
ACS Nano ; 17(15): 14253-14282, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37459320

RESUMEN

The coupled interactions among the fundamental carriers of charge, heat, and electromagnetic fields at interfaces and boundaries give rise to energetic processes that enable a wide array of technologies. The energy transduction among these coupled carriers results in thermal dissipation at these surfaces, often quantified by the thermal boundary resistance, thus driving the functionalities of the modern nanotechnologies that are continuing to provide transformational benefits in computing, communication, health care, clean energy, power recycling, sensing, and manufacturing, to name a few. It is the purpose of this Review to summarize recent works that have been reported on ultrafast and nanoscale energy transduction and heat transfer mechanisms across interfaces when different thermal carriers couple near or across interfaces. We review coupled heat transfer mechanisms at interfaces of solids, liquids, gasses, and plasmas that drive the resulting interfacial heat transfer and temperature gradients due to energy and momentum coupling among various combinations of electrons, vibrons, photons, polaritons (plasmon polaritons and phonon polaritons), and molecules. These interfacial thermal transport processes with coupled energy carriers involve relatively recent research, and thus, several opportunities exist to further develop these nascent fields, which we comment on throughout the course of this Review.

13.
Nano Lett ; 23(11): 5035-5041, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37235534

RESUMEN

Highly anisotropic materials show great promise for spatial control and the manipulation of polaritons. In-plane hyperbolic phonon polaritons (HPhPs) supported by α-phase molybdenum trioxide (MoO3) allow for wave propagation with a high directionality due to the hyperbola-shaped isofrequency contour (IFC). However, the IFC prohibits propagations along the [001] axis, hindering information or energy flow. Here, we illustrate a novel approach to manipulating the HPhP propagation direction. We experimentally demonstrate that geometrical confinement in the [100] axis can guide HPhPs along the forbidden direction with phase velocity becoming negative. We further developed an analytical model to provide insights into this transition. Moreover, as the guided HPhPs are formed in-plane, modal profiles were directly imaged to further expand our understanding of the formation of HPhPs. Our work reveals a possibility for manipulating HPhPs and paves the way for promising applications in metamaterials, nanophotonics, and quantum optics based on natural van der Waals materials.

14.
Nat Commun ; 14(1): 2716, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169788

RESUMEN

One of the main bottlenecks in the development of terahertz (THz) and long-wave infrared (LWIR) technologies is the limited intrinsic response of traditional materials. Hyperbolic phonon polaritons (HPhPs) of van der Waals semiconductors couple strongly with THz and LWIR radiation. However, the mismatch of photon - polariton momentum makes far-field excitation of HPhPs challenging. Here, we propose an In-Plane Hyperbolic Polariton Tuner that is based on patterning van der Waals semiconductors, here α-MoO3, into ribbon arrays. We demonstrate that such tuners respond directly to far-field excitation and give rise to LWIR and THz resonances with high quality factors up to 300, which are strongly dependent on in-plane hyperbolic polariton of the patterned α-MoO3. We further show that with this tuner, intensity regulation of reflected and transmitted electromagnetic waves, as well as their wavelength and polarization selection can be achieved. Our results can help the development of THz and LWIR miniaturized devices.

15.
Adv Mater ; 35(22): e2300301, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36892954

RESUMEN

Hyperbolic phonon polaritons (HPhPs) are stimulated by coupling infrared (IR) photons with the polar lattice vibrations. Such HPhPs offer low-loss, highly confined light propagation at subwavelength scales with out-of-plane or in-plane hyperbolic wavefronts. For HPhPs, while a hyperbolic dispersion implies multiple propagating modes with a distribution of wavevectors at a given frequency, so far it has been challenging to experimentally launch and probe the higher-order modes that offer stronger wavelength compression, especially for in-plane HPhPs. In this work, the experimental observation of higher-order in-plane HPhP modes stimulated on a 3C-SiC nanowire (NW)/α-MoO3 heterostructure is reported where leveraging both the low-dimensionality and low-loss nature of the polar NWs, higher-order HPhPs modes within 2D α-MoO3 crystal are launched by the 1D 3C-SiC NW. The launching mechanism is further studied and the requirements for efficiently launching of such higher-order modes are determined. In addition, by altering the geometric orientation between the 3C-SiC NW and α-MoO3 crystal, the manipulation of higher-order HPhP dispersions as a method of tuning is demonstrated. This work illustrates an extremely anisotropic low dimensional heterostructure platform to confine and configure electromagnetic waves at the deep-subwavelength scales for a range of IR applications including sensing, nano-imaging, and on-chip photonics.

16.
Adv Mater ; 35(20): e2209909, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36843308

RESUMEN

Wavelength-selective absorbers (WS-absorbers) are of interest for various applications, including chemical sensing and light sources. Lithography-free fabrication of WS-absorbers can be realized via Tamm plasmon polaritons (TPPs) supported by distributed Bragg reflectors (DBRs) on plasmonic materials. While multifrequency and nearly arbitrary spectra can be realized with TPPs via inverse design algorithms, demanding and thick DBRs are required for high quality-factors (Q-factors) and/or multiband TPP-absorbers, increasing the cost and reducing fabrication error tolerance. Here, high Q-factor multiband absorption with limited DBR layers (3 layers) is experimentally demonstrated by Tamm hybrid polaritons (THPs) formed by coupling TPPs and Tamm phonon polaritons when modal frequencies are overlapped. Compared to the TPP component, the Q-factors of THPs are improved twofold, and the angular broadening is also reduced twofold, facilitating applications where narrow-band and nondispersive WS-absorbers are needed. Moreover, an open-source algorithm is developed to inversely design THP-absorbers consisting of anisotropic media and exemplify that the modal frequencies can be assigned to desirable positions. Furthermore, it is demonstrated that inversely designed THP-absorbers can realize same spectral resonances with fewer DBR layers than a TPP-absorber, thus reducing the fabrication complexity and enabling more cost-effective, lithography-free, wafer-scale WS-absorberss for applications such as free-space communications and gas sensing.

17.
Nat Nanotechnol ; 18(1): 64-70, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36509927

RESUMEN

Various optical crystals possess permittivity components of opposite signs along different principal directions in the mid-infrared regime, exhibiting exotic anisotropic phonon resonances. Such materials with hyperbolic polaritons-hybrid light-matter quasiparticles with open isofrequency contours-feature large-momenta optical modes and wave confinement that make them promising for nanophotonic on-chip technologies. So far, hyperbolic polaritons have been observed and characterized in crystals with high symmetry including hexagonal (boron nitride), trigonal (calcite) and orthorhombic (α-MoO3 or α-V2O5) crystals, where they obey certain propagation patterns. However, lower-symmetry materials such as monoclinic crystals were recently demonstrated to offer richer opportunities for polaritonic phenomena. Here, using scanning near-field optical microscopy, we report the direct real-space nanoscale imaging of symmetry-broken hyperbolic phonon polaritons in monoclinic CdWO4 crystals, and showcase inherently asymmetric polariton excitation and propagation associated with the nanoscale shear phenomena. We also introduce a quantitative theoretical model to describe these polaritons that leads to schemes to enhance crystal asymmetry via the damping loss of phonon modes. Ultimately, our findings show that polaritonic nanophotonics is attainable using natural materials with low symmetry, favouring a versatile and general way to manipulate light at the nanoscale.

18.
Nano Lett ; 22(20): 8060-8067, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36214538

RESUMEN

Dielectric metasurfaces governed by bound states in the continuum (BIC) are actively investigated for achieving high-quality factors and strong electromagnetic field enhancements. Traditional approaches reported for tuning the performance of quasi-BIC metasurfaces include tuning the resonator size, period, and structure symmetry. Here we propose and experimentally demonstrate an alternative approach through engineering slots within a zigzag array of elliptical silicon resonators. Through analytical theory, three-dimensional electromagnetic modeling, and infrared spectroscopy, we systematically investigate the spectral responses and field distributions of the slotted metasurface in the mid-IR. Our results show that by introducing slots, the electric field intensity enhancement near the apex and the quality factor of the quasi-BIC resonance are increased by a factor of 2.1 and 3.3, respectively, in comparison to the metasurface without slots. Furthermore, the slotted metasurface also provides extra regions of electromagnetic enhancement and confinement, which holds enormous potential in particle trapping, sensing, and emission enhancement.


Asunto(s)
Campos Electromagnéticos , Silicio , Vibración , Espectrofotometría Infrarroja , Electricidad
19.
ACS Nano ; 16(9): 15100-15107, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36018810

RESUMEN

Optical metasurfaces offer a compact platform for manipulation of the amplitude, phase, and polarization state of light. Independent control over these properties, however, is hindered by the symmetric transmission matrix associated with single-layer metasurfaces. Here, we utilize multilayer birefringent meta-optics to realize high-efficiency, independent control over the amplitude, phase, and polarization state of light. High-efficiency control is enabled by redistributing the wavefront between cascaded metasurfaces, while end-to-end inverse design is used to realize independent complex-valued functions for orthogonal polarization states. Based on this platform, we demonstrate spatial mode division multiplexing, optical mode conversion, and universal vectorial holograms, all with diffraction efficiencies over 80%. This meta-optic platform expands the design space of flat optics and could lead to advances in optical communications, quantum entanglement, and information encryption.

20.
Nature ; 602(7898): 595-600, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35197618

RESUMEN

The lattice symmetry of a crystal is one of the most important factors in determining its physical properties. Particularly, low-symmetry crystals offer powerful opportunities to control light propagation, polarization and phase1-4. Materials featuring extreme optical anisotropy can support a hyperbolic response, enabling coupled light-matter interactions, also known as polaritons, with highly directional propagation and compression of light to deeply sub-wavelength scales5. Here we show that monoclinic crystals can support hyperbolic shear polaritons, a new polariton class arising in the mid-infrared to far-infrared due to shear phenomena in the dielectric response. This feature emerges in materials in which the dielectric tensor cannot be diagonalized, that is, in low-symmetry monoclinic and triclinic crystals in which several oscillators with non-orthogonal relative orientations contribute to the optical response6,7. Hyperbolic shear polaritons complement previous observations of hyperbolic phonon polaritons in orthorhombic1,3,4 and hexagonal8,9 crystal systems, unveiling new features, such as the continuous evolution of their propagation direction with frequency, tilted wavefronts and asymmetric responses. The interplay between diagonal loss and off-diagonal shear phenomena in the dielectric response of these materials has implications for new forms of non-Hermitian and topological photonic states. We anticipate that our results will motivate new directions for polariton physics in low-symmetry materials, which include geological minerals10, many common oxides11 and organic crystals12, greatly expanding the material base and extending design opportunities for compact photonic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...