Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
JCI Insight ; 9(9)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564302

RESUMEN

Loss-of-function (LoF) variants in the filaggrin (FLG) gene are the strongest known genetic risk factor for atopic dermatitis (AD), but the impact of these variants on AD outcomes is poorly understood. We comprehensively identified genetic variants through targeted region sequencing of FLG in children participating in the Mechanisms of Progression of Atopic Dermatitis to Asthma in Children cohort. Twenty FLG LoF variants were identified, including 1 novel variant and 9 variants not previously associated with AD. FLG LoF variants were found in the cohort. Among these children, the presence of 1 or more FLG LoF variants was associated with moderate/severe AD compared with those with mild AD. Children with FLG LoF variants had a higher SCORing for Atopic Dermatitis (SCORAD) and higher likelihood of food allergy within the first 2.5 years of life. LoF variants were associated with higher transepidermal water loss (TEWL) in both lesional and nonlesional skin. Collectively, our study identifies established and potentially novel AD-associated FLG LoF variants and associates FLG LoF variants with higher TEWL in lesional and nonlesional skin.


Asunto(s)
Dermatitis Atópica , Proteínas Filagrina , Proteínas de Filamentos Intermediarios , Mutación con Pérdida de Función , Fenotipo , Dermatitis Atópica/genética , Dermatitis Atópica/patología , Humanos , Masculino , Femenino , Preescolar , Estudios Prospectivos , Lactante , Proteínas de Filamentos Intermediarios/genética , Predisposición Genética a la Enfermedad , Niño , Hipersensibilidad a los Alimentos/genética
2.
Nat Genet ; 54(7): 985-995, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35726067

RESUMEN

To chart cell composition and cell state changes that occur during the transformation of healthy colon to precancerous adenomas to colorectal cancer (CRC), we generated single-cell chromatin accessibility profiles and single-cell transcriptomes from 1,000 to 10,000 cells per sample for 48 polyps, 27 normal tissues and 6 CRCs collected from patients with or without germline APC mutations. A large fraction of polyp and CRC cells exhibit a stem-like phenotype, and we define a continuum of epigenetic and transcriptional changes occurring in these stem-like cells as they progress from homeostasis to CRC. Advanced polyps contain increasing numbers of stem-like cells, regulatory T cells and a subtype of pre-cancer-associated fibroblasts. In the cancerous state, we observe T cell exhaustion, RUNX1-regulated cancer-associated fibroblasts and increasing accessibility associated with HNF4A motifs in epithelia. DNA methylation changes in sporadic CRC are strongly anti-correlated with accessibility changes along this continuum, further identifying regulatory markers for molecular staging of polyps.


Asunto(s)
Adenoma , Neoplasias Colorrectales , Adenoma/genética , Adenoma/patología , Transformación Celular Neoplásica/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Metilación de ADN/genética , Humanos , Análisis de la Célula Individual
3.
J Heart Lung Transplant ; 41(6): 840-848, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35317953

RESUMEN

BACKGROUND: Heart transplantation provides a significant improvement in survival and quality of life for patients with end-stage heart disease, however many recipients experience different levels of graft rejection that can be associated with significant morbidities and mortality. Current clinical standard-of-care for the evaluation of heart transplant acute rejection (AR) consists of routine endomyocardial biopsy (EMB) followed by visual assessment by histopathology for immune infiltration and cardiomyocyte damage. We assessed whether the sensitivity and/or specificity of this process could be improved upon by adding RNA sequencing (RNA-seq) of EMBs coupled with histopathological interpretation. METHODS: Up to 6 standard-of-care, or for-cause EMBs, were collected from 26 heart transplant recipients from the prospective observational Clinical Trials of Transplantation (CTOT)-03 study, during the first 12-months post-transplant and subjected to RNA-seq (n = 125 EMBs total). Differential expression and random-forest-based machine learning were applied to develop signatures for classification and prognostication. RESULTS: Leveraging the unique longitudinal nature of this study, we show that transcriptional hallmarks for significant rejection events occur months before the actual event and are not visible using traditional histopathology. Using this information, we identified a prognostic signature for 0R/1R biopsies that with 90% accuracy can predict whether the next biopsy will be 2R/3R. CONCLUSIONS: RNA-seq-based molecular characterization of EMBs shows significant promise for the early detection of cardiac allograft rejection.


Asunto(s)
Trasplante de Corazón , Calidad de Vida , Aloinjertos , Biopsia , Perfilación de la Expresión Génica , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/genética , Rechazo de Injerto/patología , Humanos , Miocardio/patología , Complicaciones Posoperatorias/patología , Pronóstico , Estudios Prospectivos
4.
Transl Stroke Res ; 12(2): 331-346, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32588199

RESUMEN

Obesity is associated with chronic peripheral inflammation, is a risk factor for stroke, and causes increased infarct sizes. To characterize how obesity increases infarct size, we fed a high-fat diet to wild-type C57BL/6J mice for either 6 weeks or 15 weeks and then induced distal middle cerebral artery strokes. We found that infarct expansion happened late after stroke. There were no differences in cortical neuroinflammation (astrogliosis, microgliosis, or pro-inflammatory cytokines) either prior to or 10 h after stroke, and also no differences in stroke size at 10 h. However, by 3 days after stroke, animals fed a high-fat diet had a dramatic increase in microgliosis and astrogliosis that was associated with larger strokes and worsened functional recovery. RNA sequencing revealed a dramatic increase in inflammatory genes in the high-fat diet-fed animals 3 days after stroke that were not present prior to stroke. Genetic pathways unique to diet-induced obesity were primarily related to adaptive immunity, extracellular matrix components, cell migration, and vasculogenesis. The late appearance of neuroinflammation and infarct expansion indicates that there may be a therapeutic window between 10 and 36 h after stroke where inflammation and obesity-specific transcriptional programs could be targeted to improve outcomes in people with obesity and stroke.


Asunto(s)
Redes Reguladoras de Genes , Accidente Cerebrovascular , Animales , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/genética , Inflamación , Ratones , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Obesidad/complicaciones , Obesidad/genética , Accidente Cerebrovascular/genética
5.
Gigascience ; 9(7)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32649757

RESUMEN

BACKGROUND: Macaque species share >93% genome homology with humans and develop many disease phenotypes similar to those of humans, making them valuable animal models for the study of human diseases (e.g., HIV and neurodegenerative diseases). However, the quality of genome assembly and annotation for several macaque species lags behind the human genome effort. RESULTS: To close this gap and enhance functional genomics approaches, we used a combination of de novo linked-read assembly and scaffolding using proximity ligation assay (HiC) to assemble the pig-tailed macaque (Macaca nemestrina) genome. This combinatorial method yielded large scaffolds at chromosome level with a scaffold N50 of 127.5 Mb; the 23 largest scaffolds covered 90% of the entire genome. This assembly revealed large-scale rearrangements between pig-tailed macaque chromosomes 7, 12, and 13 and human chromosomes 2, 14, and 15. We subsequently annotated the genome using transcriptome and proteomics data from personalized induced pluripotent stem cells derived from the same animal. Reconstruction of the evolutionary tree using whole-genome annotation and orthologous comparisons among 3 macaque species, human, and mouse genomes revealed extensive homology between human and pig-tailed macaques with regards to both pluripotent stem cell genes and innate immune gene pathways. Our results confirm that rhesus and cynomolgus macaques exhibit a closer evolutionary distance to each other than either species exhibits to humans or pig-tailed macaques. CONCLUSIONS: These findings demonstrate that pig-tailed macaques can serve as an excellent animal model for the study of many human diseases particularly with regards to pluripotency and innate immune pathways.


Asunto(s)
Cromosomas , Genoma , Genómica , Macaca nemestrina/genética , Animales , Biología Computacional/métodos , Genómica/métodos , Humanos , Cariotipificación/métodos , Masculino , Anotación de Secuencia Molecular , Proteómica/métodos , Secuencias Repetitivas de Ácidos Nucleicos
6.
Cell ; 181(5): 1112-1130.e16, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32470399

RESUMEN

Acute physical activity leads to several changes in metabolic, cardiovascular, and immune pathways. Although studies have examined selected changes in these pathways, the system-wide molecular response to an acute bout of exercise has not been fully characterized. We performed longitudinal multi-omic profiling of plasma and peripheral blood mononuclear cells including metabolome, lipidome, immunome, proteome, and transcriptome from 36 well-characterized volunteers, before and after a controlled bout of symptom-limited exercise. Time-series analysis revealed thousands of molecular changes and an orchestrated choreography of biological processes involving energy metabolism, oxidative stress, inflammation, tissue repair, and growth factor response, as well as regulatory pathways. Most of these processes were dampened and some were reversed in insulin-resistant participants. Finally, we discovered biological pathways involved in cardiopulmonary exercise response and developed prediction models revealing potential resting blood-based biomarkers of peak oxygen consumption.


Asunto(s)
Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Anciano , Biomarcadores/metabolismo , Femenino , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Leucocitos Mononucleares/metabolismo , Estudios Longitudinales , Masculino , Metaboloma , Persona de Mediana Edad , Oxígeno/metabolismo , Consumo de Oxígeno , Proteoma , Transcriptoma
7.
Circulation ; 140(17): 1409-1425, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31462075

RESUMEN

BACKGROUND: Bmpr2 (bone morphogenetic protein receptor 2) mutations are critical risk factors for hereditary pulmonary arterial hypertension (PAH) with approximately 20% of carriers developing disease. There is an unmet medical need to understand how environmental factors, such as inflammation, render Bmpr2 mutants susceptible to PAH. Overexpressing 5-LO (5-lipoxygenase) provokes lung inflammation and transient PAH in Bmpr2+/- mice. Accordingly, 5-LO and its metabolite, leukotriene B4, are candidates for the second hit. The purpose of this study was to determine how 5-LO-mediated pulmonary inflammation synergized with phenotypically silent Bmpr2 defects to elicit significant pulmonary vascular disease in rats. METHODS: Monoallelic Bmpr2 mutant rats were generated and found phenotypically normal for up to 1 year of observation. To evaluate whether a second hit would elicit disease, animals were exposed to 5-LO-expressing adenovirus, monocrotaline, SU5416, SU5416 with chronic hypoxia, or chronic hypoxia alone. Bmpr2-mutant hereditary PAH patient samples were assessed for neointimal 5-LO expression. Pulmonary artery endothelial cells with impaired BMPR2 signaling were exposed to increased 5-LO-mediated inflammation and were assessed for phenotypic and transcriptomic changes. RESULTS: Lung inflammation, induced by intratracheal delivery of 5-LO-expressing adenovirus, elicited severe PAH with intimal remodeling in Bmpr2+/- rats but not in their wild-type littermates. Neointimal lesions in the diseased Bmpr2+/- rats gained endogenous 5-LO expression associated with elevated leukotriene B4 biosynthesis. Bmpr2-mutant hereditary PAH patients similarly expressed 5-LO in the neointimal cells. In vitro, BMPR2 deficiency, compounded by 5-LO-mediated inflammation, generated apoptosis-resistant and proliferative pulmonary artery endothelial cells with mesenchymal characteristics. These transformed cells expressed nuclear envelope-localized 5-LO consistent with induced leukotriene B4 production, as well as a transcriptomic signature similar to clinical disease, including upregulated nuclear factor Kappa B subunit (NF-κB), interleukin-6, and transforming growth factor beta (TGF-ß) signaling pathways. The reversal of PAH and vasculopathy in Bmpr2 mutants by TGF-ß antagonism suggests that TGF-ß is critical for neointimal transformation. CONCLUSIONS: In a new 2-hit model of disease, lung inflammation induced severe PAH pathology in Bmpr2+/- rats. Endothelial transformation required the activation of canonical and noncanonical TGF-ß signaling pathways and was characterized by 5-LO nuclear envelope translocation with enhanced leukotriene B4 production. This study offers an explanation of how an environmental injury unleashes the destructive potential of an otherwise silent genetic mutation.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Inflamación/metabolismo , Neointima/metabolismo , Hipertensión Arterial Pulmonar/fisiopatología , Animales , Células Endoteliales/metabolismo , Hipertensión Pulmonar/fisiopatología , Miocitos del Músculo Liso/metabolismo , Hipertensión Arterial Pulmonar/genética , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Ratas Transgénicas , Transducción de Señal/fisiología
8.
Nature ; 569(7758): 663-671, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31142858

RESUMEN

Type 2 diabetes mellitus (T2D) is a growing health problem, but little is known about its early disease stages, its effects on biological processes or the transition to clinical T2D. To understand the earliest stages of T2D better, we obtained samples from 106 healthy individuals and individuals with prediabetes over approximately four years and performed deep profiling of transcriptomes, metabolomes, cytokines, and proteomes, as well as changes in the microbiome. This rich longitudinal data set revealed many insights: first, healthy profiles are distinct among individuals while displaying diverse patterns of intra- and/or inter-personal variability. Second, extensive host and microbial changes occur during respiratory viral infections and immunization, and immunization triggers potentially protective responses that are distinct from responses to respiratory viral infections. Moreover, during respiratory viral infections, insulin-resistant participants respond differently than insulin-sensitive participants. Third, global co-association analyses among the thousands of profiled molecules reveal specific host-microbe interactions that differ between insulin-resistant and insulin-sensitive individuals. Last, we identified early personal molecular signatures in one individual that preceded the onset of T2D, including the inflammation markers interleukin-1 receptor agonist (IL-1RA) and high-sensitivity C-reactive protein (CRP) paired with xenobiotic-induced immune signalling. Our study reveals insights into pathways and responses that differ between glucose-dysregulated and healthy individuals during health and disease and provides an open-access data resource to enable further research into healthy, prediabetic and T2D states.


Asunto(s)
Biomarcadores/metabolismo , Biología Computacional , Diabetes Mellitus Tipo 2/microbiología , Microbioma Gastrointestinal , Interacciones Microbiota-Huesped/genética , Estado Prediabético/microbiología , Proteoma/metabolismo , Transcriptoma , Adulto , Anciano , Antibacterianos/administración & dosificación , Biomarcadores/análisis , Estudios de Cohortes , Conjuntos de Datos como Asunto , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Glucosa/metabolismo , Voluntarios Sanos , Humanos , Inflamación/metabolismo , Vacunas contra la Influenza/inmunología , Insulina/metabolismo , Resistencia a la Insulina , Estudios Longitudinales , Masculino , Microbiota/fisiología , Persona de Mediana Edad , Estado Prediabético/genética , Estado Prediabético/metabolismo , Infecciones del Sistema Respiratorio/genética , Infecciones del Sistema Respiratorio/metabolismo , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/virología , Estrés Fisiológico , Vacunación/estadística & datos numéricos
9.
Am J Med Genet A ; 176(4): 1030-1036, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29575631

RESUMEN

Robinow syndrome (RS) is a well-recognized Mendelian disorder known to demonstrate both autosomal dominant and autosomal recessive inheritance. Typical manifestations include short stature, characteristic facies, and skeletal anomalies. Recessive inheritance has been associated with mutations in ROR2 while dominant inheritance has been observed for mutations in WNT5A, DVL1, and DVL3. Through trio whole genome sequencing, we identified a homozygous frameshifting single nucleotide deletion in WNT5A in a previously reported, deceased infant with a unique constellation of features comprising a 46,XY disorder of sex development with multiple congenital malformations including congenital diaphragmatic hernia, ambiguous genitalia, dysmorphic facies, shortened long bones, adactyly, and ventricular septal defect. The parents, who are both heterozygous for the deletion, appear clinically unaffected. In conjunction with published observations of Wnt5a double knockout mice, we provide evidence for the possibility of autosomal recessive inheritance in association with WNT5A loss-of-function mutations in RS.


Asunto(s)
Alelos , Anomalías Craneofaciales/diagnóstico , Anomalías Craneofaciales/genética , Enanismo/diagnóstico , Enanismo/genética , Deformidades Congénitas de las Extremidades/diagnóstico , Deformidades Congénitas de las Extremidades/genética , Mutación con Pérdida de Función , Fenotipo , Anomalías Urogenitales/diagnóstico , Anomalías Urogenitales/genética , Proteína Wnt-5a/genética , Animales , Modelos Animales de Enfermedad , Femenino , Mutación del Sistema de Lectura , Frecuencia de los Genes , Estudios de Asociación Genética , Homocigoto , Humanos , Lactante , Ratones , Ratones Noqueados , Mutación Puntual , Índice de Severidad de la Enfermedad , Evaluación de Síntomas , Ultrasonografía , Secuenciación Completa del Genoma
10.
Am J Med Genet A ; 167(6): 1360-4, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25898814

RESUMEN

The association of 46,XY disorder of sex development (DSD) with congenital diaphragmatic hernia (CDH) is rare, but has been previously described with and without other congenital anomalies. Literature review identified five cases of 46,XY DSD associated with CDH and other congenital anomalies. These five cases share characteristics including CDH, 46,XY karyotype with external female appearing or ambiguous genitalia, cardiac anomalies, and decreased life span. The present case had novel features including truncus arteriosus, bifid thymus, gut malrotation, and limb anomalies consisting of rhizomelia and adactyly. With this case report, we present a review of the literature of cases of 46,XY DSD and CDH in association with multiple congenital abnormalities. This case may represent a unique syndrome of 46,XY DSD and diaphragmatic hernia or a more severe presentation of a syndrome represented in the previously reported cases.


Asunto(s)
Anomalías Múltiples/genética , Anomalías del Sistema Digestivo/genética , Trastorno del Desarrollo Sexual 46,XY/genética , Deformidades Congénitas de la Mano/genética , Cardiopatías Congénitas/genética , Hernias Diafragmáticas Congénitas/genética , Vólvulo Intestinal/genética , Anomalías Múltiples/patología , Anomalías del Sistema Digestivo/patología , Trastorno del Desarrollo Sexual 46,XY/patología , Facies , Resultado Fatal , Femenino , Deformidades Congénitas de la Mano/patología , Cardiopatías Congénitas/patología , Hernias Diafragmáticas Congénitas/patología , Humanos , Lactante , Recién Nacido , Vólvulo Intestinal/patología , Masculino , Timo/metabolismo , Timo/patología , Tronco Arterial/metabolismo , Tronco Arterial/patología
11.
Hum Mol Genet ; 24(1): 50-63, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25122662

RESUMEN

Pediatric tumors are relatively infrequent, but are often associated with significant lethality and lifelong morbidity. A major goal of pediatric cancer research has been to identify key drivers of tumorigenesis to eventually develop targeted therapies to enhance cure rate and minimize acute and long-term toxic effects. Here, we used genomic approaches to identify biomarkers and candidate drivers for fibrolamellar hepatocellular carcinoma (FL-HCC), a very rare subtype of pediatric liver cancer for which limited therapeutic options exist. In-depth genomic analyses of one tumor followed by immunohistochemistry validation on seven other tumors showed expression of neuroendocrine markers in FL-HCC. DNA and RNA sequencing data further showed that common cancer pathways are not visibly altered in FL-HCC but identified two novel structural variants, both resulting in fusion transcripts. The first, a 400 kb deletion, results in a DNAJB1-PRKCA fusion transcript, which leads to increased cAMP-dependent protein kinase (PKA) activity in the index tumor case and other FL-HCC cases compared with normal liver. This PKA fusion protein is oncogenic in HCC cells. The second gene fusion event, a translocation between the CLPTM1L and GLIS3 genes, generates a transcript whose product also promotes cancer phenotypes in HCC cell lines. These experiments further highlight the tumorigenic role of gene fusions in the etiology of pediatric solid tumors and identify both candidate biomarkers and possible therapeutic targets for this lethal pediatric disease.


Asunto(s)
Carcinoma Hepatocelular/genética , Proteínas del Choque Térmico HSP40/genética , Neoplasias Hepáticas/genética , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Proteína Quinasa C-alfa/genética , Factores de Transcripción/genética , Adolescente , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Niño , Preescolar , Proteínas de Unión al ADN , Estudio de Asociación del Genoma Completo , Proteínas del Choque Térmico HSP40/metabolismo , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína Quinasa C-alfa/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Eliminación de Secuencia , Transactivadores , Factores de Transcripción/metabolismo , Translocación Genética
12.
JAMA ; 311(10): 1035-45, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24618965

RESUMEN

IMPORTANCE: Whole-genome sequencing (WGS) is increasingly applied in clinical medicine and is expected to uncover clinically significant findings regardless of sequencing indication. OBJECTIVES: To examine coverage and concordance of clinically relevant genetic variation provided by WGS technologies; to quantitate inherited disease risk and pharmacogenomic findings in WGS data and resources required for their discovery and interpretation; and to evaluate clinical action prompted by WGS findings. DESIGN, SETTING, AND PARTICIPANTS: An exploratory study of 12 adult participants recruited at Stanford University Medical Center who underwent WGS between November 2011 and March 2012. A multidisciplinary team reviewed all potentially reportable genetic findings. Five physicians proposed initial clinical follow-up based on the genetic findings. MAIN OUTCOMES AND MEASURES: Genome coverage and sequencing platform concordance in different categories of genetic disease risk, person-hours spent curating candidate disease-risk variants, interpretation agreement between trained curators and disease genetics databases, burden of inherited disease risk and pharmacogenomic findings, and burden and interrater agreement of proposed clinical follow-up. RESULTS: Depending on sequencing platform, 10% to 19% of inherited disease genes were not covered to accepted standards for single nucleotide variant discovery. Genotype concordance was high for previously described single nucleotide genetic variants (99%-100%) but low for small insertion/deletion variants (53%-59%). Curation of 90 to 127 genetic variants in each participant required a median of 54 minutes (range, 5-223 minutes) per genetic variant, resulted in moderate classification agreement between professionals (Gross κ, 0.52; 95% CI, 0.40-0.64), and reclassified 69% of genetic variants cataloged as disease causing in mutation databases to variants of uncertain or lesser significance. Two to 6 personal disease-risk findings were discovered in each participant, including 1 frameshift deletion in the BRCA1 gene implicated in hereditary breast and ovarian cancer. Physician review of sequencing findings prompted consideration of a median of 1 to 3 initial diagnostic tests and referrals per participant, with fair interrater agreement about the suitability of WGS findings for clinical follow-up (Fleiss κ, 0.24; P < 001). CONCLUSIONS AND RELEVANCE: In this exploratory study of 12 volunteer adults, the use of WGS was associated with incomplete coverage of inherited disease genes, low reproducibility of detection of genetic variation with the highest potential clinical effects, and uncertainty about clinically reportable findings. In certain cases, WGS will identify clinically actionable genetic variants warranting early medical intervention. These issues should be considered when determining the role of WGS in clinical medicine.


Asunto(s)
Genoma Humano/genética , Mutación , Farmacogenética , Análisis de Secuencia de ADN/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Genes BRCA1 , Predisposición Genética a la Enfermedad , Variación Genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados
13.
J Clin Invest ; 120(3): 791-802, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20179356

RESUMEN

The autosomal recessive kidney disease nephronophthisis (NPHP) constitutes the most frequent genetic cause of terminal renal failure in the first 3 decades of life. Ten causative genes (NPHP1-NPHP9 and NPHP11), whose products localize to the primary cilia-centrosome complex, support the unifying concept that cystic kidney diseases are "ciliopathies". Using genome-wide homozygosity mapping, we report here what we believe to be a new locus (NPHP-like 1 [NPHPL1]) for an NPHP-like nephropathy. In 2 families with an NPHP-like phenotype, we detected homozygous frameshift and splice-site mutations, respectively, in the X-prolyl aminopeptidase 3 (XPNPEP3) gene. In contrast to all known NPHP proteins, XPNPEP3 localizes to mitochondria of renal cells. However, in vivo analyses also revealed a likely cilia-related function; suppression of zebrafish xpnpep3 phenocopied the developmental phenotypes of ciliopathy morphants, and this effect was rescued by human XPNPEP3 that was devoid of a mitochondrial localization signal. Consistent with a role for XPNPEP3 in ciliary function, several ciliary cystogenic proteins were found to be XPNPEP3 substrates, for which resistance to N-terminal proline cleavage resulted in attenuated protein function in vivo in zebrafish. Our data highlight an emerging link between mitochondria and ciliary dysfunction, and suggest that further understanding the enzymatic activity and substrates of XPNPEP3 will illuminate novel cystogenic pathways.


Asunto(s)
Aminopeptidasas/metabolismo , Enfermedades Genéticas Congénitas/enzimología , Riñón/enzimología , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Insuficiencia Renal/enzimología , Aminopeptidasas/genética , Animales , Centrosoma/enzimología , Centrosoma/patología , Mapeo Cromosómico/métodos , Cilios/enzimología , Cilios/genética , Cilios/patología , Familia , Femenino , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/patología , Estudio de Asociación del Genoma Completo/métodos , Humanos , Riñón/patología , Masculino , Mitocondrias/patología , Proteínas Mitocondriales/genética , Ratas , Ratas Sprague-Dawley , Insuficiencia Renal/genética , Insuficiencia Renal/patología , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
14.
Nephrol Dial Transplant ; 25(5): 1496-501, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20007758

RESUMEN

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) account for the majority of end-stage renal disease in children (50%). Previous studies have mapped autosomal dominant loci for CAKUT. We here report a genome-wide search for linkage in a large pedigree of Somalian descent containing eight affected individuals with a non-syndromic form of CAKUT. METHODS: Clinical data and blood samples were obtained from a Somalian family with eight individuals with CAKUT including high-grade vesicoureteral reflux and unilateral renal agenesis. Total genome search for linkage was performed using a 50K SNP Affymetric DNA microarray. As neither parent is affected, the results of the SNP array were analysed under recessive models of inheritance, with and without the assumption of consanguinity. RESULTS: Using the non-consanguineous recessive model, a new gene locus (CAKUT1) for CAKUT was mapped to chromosome 8q24 with a significant maximum parametric Logarithm of the ODDs (LOD) score (LOD(max)) of 4.2. Recombinations were observed in two patients defining a critical genetic interval of 2.5 Mb physical distance flanked by markers SNP_A-1740062 and SNP_A-1653225. CONCLUSION: We have thus identified a new non-syndromic recessive gene locus for CAKUT (CAKUT1) on chromosome 8q24. The identification of the disease-causing gene will provide further insights into the pathogenesis of urinary tract malformations and mechanisms of renal development.


Asunto(s)
Mapeo Cromosómico , Cromosomas Humanos Par 8 , Riñón/anomalías , Sistema Urinario/anomalías , Niño , Preescolar , Femenino , Haplotipos , Humanos , Lactante , Recién Nacido , Escala de Lod , Masculino , Linaje , Polimorfismo de Nucleótido Simple
15.
PLoS Genet ; 5(1): e1000353, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19165332

RESUMEN

The identification of recessive disease-causing genes by homozygosity mapping is often restricted by lack of suitable consanguineous families. To overcome these limitations, we apply homozygosity mapping to single affected individuals from outbred populations. In 72 individuals of 54 kindred ascertained worldwide with known homozygous mutations in 13 different recessive disease genes, we performed total genome homozygosity mapping using 250,000 SNP arrays. Likelihood ratio Z-scores (ZLR) were plotted across the genome to detect ZLR peaks that reflect segments of homozygosity by descent, which may harbor the mutated gene. In 93% of cases, the causative gene was positioned within a consistent ZLR peak of homozygosity. The number of peaks reflected the degree of inbreeding. We demonstrate that disease-causing homozygous mutations can be detected in single cases from outbred populations within a single ZLR peak of homozygosity as short as 2 Mb, containing an average of only 16 candidate genes. As many specialty clinics have access to cohorts of individuals from outbred populations, and as our approach will result in smaller genetic candidate regions, the new strategy of homozygosity mapping in single outbred individuals will strongly accelerate the discovery of novel recessive disease genes.


Asunto(s)
Genes Recesivos , Análisis Mutacional de ADN , Reacciones Falso Positivas , Salud de la Familia , Femenino , Marcadores Genéticos , Genética de Población , Homocigoto , Humanos , Enfermedades Renales Quísticas/genética , Masculino , Modelos Genéticos , Síndrome Nefrótico/genética , Linaje , Esteroides/farmacología
16.
J Cell Biochem ; 104(6): 2298-309, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18561328

RESUMEN

An unbiased cDNA expression phage library derived from bone-marrow endothelial cells was used to identify novel surface adhesion molecules that might participate in metastasis. Herein we report that reticulocalbin 1 (RCN1) is a cell surface-associated protein on both endothelial (EC) and prostate cancer (PCa) cell lines. RCN1 is an H/KDEL protein with six EF-hand, calcium-binding motifs, found in the endoplasmic reticulum. Our data indicate that RCN1 also is expressed on the cell surface of several endothelial cell lines, including human dermal microvascular endothelial cells (HDMVECs), bone marrow endothelial cells (BMEC), and transformed human bone marrow endothelial cells (TrHBMEC). While RCN1 protein levels were highest in lysates from HDMVEC, this difference was not statistically significant compared BMEC and TrHBMEC. Given preferential adhesion of PCa to bone-marrow EC, these data suggest that RCN1 is unlikely to account for the preferential metastasis of PCa to bone. In addition, there was not a statistically significant difference in total RCN1 protein expression among the PCa cell lines. RCN1 also was expressed on the surface of several PCa cell lines, including those of the LNCaP human PCa progression model and the highly metastatic PC-3 cell line. Interestingly, RCN1 expression on the cell surface was upregulated by tumor necrosis factor alpha treatment of bone-marrow endothelial cells. Taken together, we show cell surface localization of RCN1 that has not been described previously for either PCa or BMEC and that the surface expression on BMEC is regulated by pro-inflammatory TNF-alpha.


Asunto(s)
Huesos/citología , Proteínas de Unión al Calcio/metabolismo , Membrana Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Neoplasias de la Próstata/patología , Factor de Necrosis Tumoral alfa/farmacología , Western Blotting , Proteínas de Unión al Calcio/genética , Línea Celular , Membrana Celular/metabolismo , Citometría de Flujo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Microscopía Confocal , Biblioteca de Péptidos , ARN Mensajero/genética , ARN Mensajero/metabolismo
17.
Am J Physiol Renal Physiol ; 294(1): F93-9, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17942568

RESUMEN

Steroid-resistant nephrotic syndrome is a malfunction of the kidney glomerular filter that leads to proteinuria, hypoalbuminemia, edema, and renal failure. Recently, we identified recessive mutations in the phospholipase C epsilon 1 gene (PLCE1) as a new cause of early-onset nephrotic syndrome and demonstrated interaction of PLCepsilon1 with IQGAP1. To further elucidate the mechanism by which PLCE1 mutations cause nephrotic syndrome, we sought to identify new protein interaction partners of PLCepsilon1. We utilized information from the genetic interaction network of C. elegans. It relates the PLCE1 ortholog (plc-1) to the C. elegans ortholog (lin-45) of human BRAF (v-raf murine sarcoma viral oncogene homolog B1). We hypothesized that this may indicate a functional protein-protein interaction. Using GST pull down of HEK293T cell lysates in vitro and coimmunoprecipation of mouse kidney lysates in vivo, we show that BRAF interacts with PLCepsilon1. By immunohistochemistry in rat kidney, we demonstrate that both proteins are coexpressed and colocalize in developing and mature glomerular podocytes, reporting for the first time the expression of BRAF in the glomerular podocyte.


Asunto(s)
Mutación/genética , Síndrome Nefrótico/metabolismo , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Animales , Células COS , Caenorhabditis elegans , Línea Celular , Chlorocebus aethiops , Humanos , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Síndrome Nefrótico/patología , Podocitos/metabolismo , Podocitos/patología , Dominios y Motivos de Interacción de Proteínas , Ratas
18.
Nat Genet ; 38(12): 1397-405, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17086182

RESUMEN

Nephrotic syndrome, a malfunction of the kidney glomerular filter, leads to proteinuria, edema and, in steroid-resistant nephrotic syndrome, end-stage kidney disease. Using positional cloning, we identified mutations in the phospholipase C epsilon gene (PLCE1) as causing early-onset nephrotic syndrome with end-stage kidney disease. Kidney histology of affected individuals showed diffuse mesangial sclerosis (DMS). Using immunofluorescence, we found PLCepsilon1 expression in developing and mature glomerular podocytes and showed that DMS represents an arrest of normal glomerular development. We identified IQ motif-containing GTPase-activating protein 1 as a new interaction partner of PLCepsilon1. Two siblings with a missense mutation in an exon encoding the PLCepsilon1 catalytic domain showed histology characteristic of focal segmental glomerulosclerosis. Notably, two other affected individuals responded to therapy, making this the first report of a molecular cause of nephrotic syndrome that may resolve after therapy. These findings, together with the zebrafish model of human nephrotic syndrome generated by plce1 knockdown, open new inroads into pathophysiology and treatment mechanisms of nephrotic syndrome.


Asunto(s)
Mutación , Síndrome Nefrótico/enzimología , Síndrome Nefrótico/genética , Fosfolipasas de Tipo C/genética , Animales , Niño , Preescolar , Clonación Molecular , Modelos Animales de Enfermedad , Femenino , Marcación de Gen , Genes Recesivos , Homocigoto , Humanos , Lactante , Riñón/enzimología , Riñón/patología , Masculino , Modelos Genéticos , Mutación Missense , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/patología , Fosfoinositido Fosfolipasa C , Ratas , Eliminación de Secuencia , Pez Cebra/genética
19.
Genes Chromosomes Cancer ; 45(2): 136-46, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16235240

RESUMEN

Deletion, rearrangement, or amplification of sequences mapping to chromosome 8 are frequently observed in human prostate and other tumors. However, it is not clear whether these events alter the transcriptional activity of the affected genes. To examine this question, we have utilized oligonucleotide microarray technology and compared the transcriptional patterns of normal human prostate tissues and five immortalized cell lines carrying either two normal chromosomes 8 or one normal and one derivative chromosome 8. Comparison of the transcriptional profiles of the tissues and cell lines identified 125 differentially expressed transcripts specific to chromosome 8, with 46 transcripts mapping to 8p and 79 transcripts mapping to 8q. The majority of genes mapping to 8p (44/46, 96%) were transcriptionally down-regulated in cells hemizygous for 8p, whereas the majority of genes mapping to 8q (58/79, 73%) were up-regulated in cells carrying three copies of 8q. Moreover, hemizygous alleles on 8p exhibited sub-haploinsufficient transcript levels for several genes that could be induced to haploinsufficient levels under hypomethylating conditions, suggesting that epigenetic regulation is a common mechanism for gene silencing in cells deleted for one copy of 8p. The results of these studies clearly demonstrate that alterations of gene copy number and transcriptional activity are directly correlated in cell lines harboring derivative chromosomes 8, and that these events are commonly observed during cellular immortalization in vitro.


Asunto(s)
Transformación Celular Neoplásica/genética , Cromosomas Humanos Par 8 , Próstata/patología , Transcripción Genética , Mapeo Cromosómico , Epigénesis Genética , Humanos , Masculino , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , ARN Mensajero/genética
20.
Cancer Genet Cytogenet ; 154(1): 36-43, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15381370

RESUMEN

Deletion or rearrangement of sequences that map to the short arm of chromosome 8 (8p) are frequently associated with human prostate tumorigenesis. These losses often involve the entire short arm of chromosome 8 or very large regions of distal or proximal 8p, and several putative tumor suppressor genes mapping to 8p have been described. However, the mechanism responsible for 8p loss during prostate tumorigenesis has not been elucidated. In this study, we report data obtained using array comparative genomic hybridization and spectral karyotyping, which demonstrate successive translocation and deletion events responsible for loss of one copy of 8p in transformed human prostate epithelial cells. Moreover, this loss was accompanied by a pronounced transcriptional downregulation of genes mapping to the remaining copy of 8p and enhanced expression of traits associated with neoplastic transformation. Taken together, these studies illustrate a potential mechanism and functional role for 8p loss in human prostate tumorigenesis.


Asunto(s)
Transformación Celular Neoplásica/genética , Deleción Cromosómica , Cromosomas Humanos Par 8 , Neoplasias de la Próstata/genética , Línea Celular Tumoral , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Humanos , Cariotipificación , Masculino , Fenotipo , Neoplasias de la Próstata/patología , Transcripción Genética , Translocación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...