Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Pain ; : 17448069241266683, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38912637

RESUMEN

Pain and anxiety are two common and undertreated non-motor symptoms in Parkinson's disease (PD), which affect the life quality of PD patients, and the underlying mechanisms remain unclear. As an important subtype of adenylyl cyclases (ACs), adenylyl cyclase subtype 1 (AC1) is critical for the induction of cortical long-term potentiation (LTP) and injury induced synaptic potentiation in the cortical areas including anterior cingulate cortex (ACC) and insular cortex (IC). Genetic deletion of AC1 or pharmacological inhibition of AC1 improved chronic pain and anxiety in different animal models. In this study, we proved the motor deficit, pain, and anxiety symptoms of PD in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice model. As a lead candidate AC1 inhibitor, oral administration (1 dose and 7 doses) of NB001 (20 and 40 mg/kg) showed significant analgesic effect in MPTP-treated mice, and the anxiety behavior was also reduced (40 mg/kg). By using genetic knockout mice, we found that AC1 knockout mice showed reduced pain and anxiety symptoms after MPTP administration, but not AC8 knockout mice. In summary, genetic deletion of AC1 or pharmacological inhibition of AC1 improved pain and anxiety symptoms in PD model mice, but didn't affect motor function. These results suggest that NB001 is a potential drug for the treatment of pain and anxiety symptoms in PD patients by inhibiting AC1 target.

2.
Mol Brain ; 17(1): 39, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886822

RESUMEN

Areca nut, the seed of Areca catechu L., is one of the most widely consumed addictive substances in the world after nicotine, ethanol, and caffeine. The major effective constituent of A. catechu, arecoline, has been reported to affect the central nervous system. Less is known if it may affect pain and its related emotional responses. In this study, we found that oral application of arecoline alleviated the inflammatory pain and its induced anxiolytic and anti-depressive-like behavior. Arecoline also increased the mechanical nociceptive threshold and alleviated depression-like behavior in naïve mice. In the anterior cingulate cortex (ACC), which acts as a hinge of nociception and its related anxiety and depression, by using the multi-electrode field potential recording and whole-cell patch-clamp recording, we found that the evoked postsynaptic transmission in the ACC of adult mice has been inhibited by the application of arecoline. The muscarinic receptor is the major receptor of the arecoline in the ACC. Our results suggest that arecoline alleviates pain, anxiety, and depression-like behavior in both physiological and pathological conditions, and this new mechanism may help to treat patients with chronic pain and its related anxiety and disorder in the future.


Asunto(s)
Ansiedad , Arecolina , Conducta Animal , Depresión , Transmisión Sináptica , Animales , Transmisión Sináptica/efectos de los fármacos , Ansiedad/tratamiento farmacológico , Ansiedad/fisiopatología , Arecolina/farmacología , Masculino , Depresión/tratamiento farmacológico , Depresión/fisiopatología , Conducta Animal/efectos de los fármacos , Nocicepción/efectos de los fármacos , Ratones Endogámicos C57BL , Giro del Cíngulo/efectos de los fármacos , Giro del Cíngulo/fisiología , Ratones , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230240, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853555

RESUMEN

Synaptic plasticity is a key cellular model for learning, memory and chronic pain. Most previous studies were carried out in rats and mice, and less is known about synaptic plasticity in non-human primates. In the present study, we used integrative experimental approaches to study long-term potentiation (LTP) in the anterior cingulate cortex (ACC) of adult tree shrews. We found that glutamate is the major excitatory transmitter and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid (AMPA) receptors mediate postsynaptic responses. LTP in tree shrews was greater than that in adult mice and lasted for at least 5 h. N-methyl-d-aspartic acid (NMDA) receptors, Ca2+ influx and adenylyl cyclase 1 (AC1) contributed to tree shrew LTP. Our results suggest that LTP is a major form of synaptic plasticity in the ACC of primate-like animals. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Asunto(s)
Giro del Cíngulo , Potenciación a Largo Plazo , Receptores AMPA , Receptores de N-Metil-D-Aspartato , Tupaiidae , Animales , Potenciación a Largo Plazo/fisiología , Giro del Cíngulo/fisiología , Tupaiidae/fisiología , Ratones , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores AMPA/metabolismo , Adenilil Ciclasas/metabolismo , Ácido Glutámico/metabolismo , Masculino
4.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230475, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853563

RESUMEN

Nitric oxide (NO) is a key diffusible messenger in the mammalian brain. It has been proposed that NO may diffuse retrogradely into presynaptic terminals, contributing to the induction of hippocampal long-term potentiation (LTP). Here, we present novel evidence that NO is required for kainate receptor (KAR)-dependent presynaptic form of LTP (pre-LTP) in the adult insular cortex (IC). In the IC, we found that inhibition of NO synthase erased the maintenance of pre-LTP, while the induction of pre-LTP required the activation of KAR. Furthermore, NO is essential for pre-LTP induced between two pyramidal cells in the IC using the double patch-clamp recording. These results suggest that NO is required for homosynaptic pre-LTP in the IC. Our results present strong evidence for the critical roles of NO in pre-LTP in the IC. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Asunto(s)
Corteza Cerebral , Potenciación a Largo Plazo , Óxido Nítrico , Terminales Presinápticos , Potenciación a Largo Plazo/fisiología , Óxido Nítrico/metabolismo , Animales , Corteza Cerebral/fisiología , Terminales Presinápticos/fisiología , Receptores de Ácido Kaínico/metabolismo , Técnicas de Placa-Clamp , Ratas , Células Piramidales/fisiología , Óxido Nítrico Sintasa/metabolismo , Ratones
5.
Biomedicines ; 12(5)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38791034

RESUMEN

Nitric oxide (NO) is a key diffusible messenger in the mammalian brain. It has been proposed that NO may diffuse in retrograde into presynaptic terminals, contributing to the induction of hippocampal long-term potentiation (LTP). Here, we present novel evidence that NO is selectively required for the synaptic potentiation of the interhemispheric projection in the anterior cingulate cortex (ACC). Unilateral low-frequency stimulation (LFS) induced a short-term synaptic potentiation on the contralateral ACC through the corpus callosum (CC). The use of the antagonists of the NMDA receptor (NMDAR), or the inhibitor of the L-type voltage-dependent Ca2+ channels (L-VDCCs), blocked the induction of this ACC-ACC potentiation. In addition, the inhibitor of NO synthase, or inhibitors for its downstream signaling pathway, also blocked this ACC-ACC potentiation. However, the application of the NOS inhibitor blocked neither the local electric stimulation-induced LTP nor the stimulation-induced recruitment of silent responses. Our results present strong evidence for the pathway-selective roles of NO in the LTP of the ACC.

6.
Mol Pain ; 20: 17448069241258110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38744422

RESUMEN

Recent studies using different experimental approaches demonstrate that silent synapses may exist in the adult cortex including the sensory cortex and anterior cingulate cortex (ACC). The postsynaptic form of long-term potentiation (LTP) in the ACC recruits some of these silent synapses and the activity of calcium-stimulated adenylyl cyclases (ACs) is required for such recruitment. It is unknown if the chemical activation of ACs may recruit silent synapses. In this study, we found that activation of ACs contributed to synaptic potentiation in the ACC of adult mice. Forskolin, a selective activator of ACs, recruited silent responses in the ACC of adult mice. The recruitment was long-lasting. Interestingly, the effect of forskolin was not universal, some silent synapses did not undergo potentiation or recruitment. These findings suggest that these adult cortical synapses are not homogenous. The application of a selective calcium-permeable AMPA receptor inhibitor 1-naphthyl acetyl spermine (NASPM) reversed the potentiation and the recruitment of silent responses, indicating that the AMPA receptor is required. Our results strongly suggest that the AC-dependent postsynaptic AMPA receptor contributes to the recruitment of silent responses at cortical LTP.


Asunto(s)
Adenilil Ciclasas , Colforsina , Giro del Cíngulo , Potenciación a Largo Plazo , Animales , Ratones , Giro del Cíngulo/efectos de los fármacos , Giro del Cíngulo/metabolismo , Colforsina/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Adenilil Ciclasas/metabolismo , Masculino , Receptores AMPA/metabolismo , Ratones Endogámicos C57BL , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Calcio/metabolismo
7.
J Headache Pain ; 25(1): 81, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760739

RESUMEN

BACKGROUND: Recent animal and clinical findings consistently highlight the critical role of calcitonin gene-related peptide (CGRP) in chronic migraine (CM) and related emotional responses. CGRP antibodies and receptor antagonists have been approved for CM treatment. However, the underlying CGRP-related signaling pathways in the pain-related cortex remain poorly understood. METHODS: The SD rats were used to establish the CM model by dural infusions of inflammatory soup. Periorbital mechanical thresholds were assessed using von-Frey filaments, and anxiety-like behaviors were observed via open field and elevated plus maze tests. Expression of c-Fos, CGRP and NMDA GluN2B receptors was detected using immunofluorescence and western blotting analyses. The excitatory synaptic transmission was detected by whole-cell patch-clamp recording. A human-used adenylate cyclase 1 (AC1) inhibitor, hNB001, was applied via insula stereotaxic and intraperitoneal injections in CM rats. RESULTS: The insular cortex (IC) was activated in the migraine model rats. Glutamate-mediated excitatory transmission and NMDA GluN2B receptors in the IC were potentiated. CGRP levels in the IC significantly increased during nociceptive and anxiety-like activities. Locally applied hNB001 in the IC or intraperitoneally alleviated periorbital mechanical thresholds and anxiety behaviors in migraine rats. Furthermore, CGRP expression in the IC decreased after the hNB001 application. CONCLUSIONS: Our study indicated that AC1-dependent IC plasticity contributes to migraine and AC1 may be a promising target for treating migraine in the future.


Asunto(s)
Ansiedad , Péptido Relacionado con Gen de Calcitonina , Corteza Cerebral , Modelos Animales de Enfermedad , Trastornos Migrañosos , Ratas Sprague-Dawley , Animales , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Ansiedad/metabolismo , Ansiedad/tratamiento farmacológico , Ratas , Masculino , Adenilil Ciclasas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
8.
Neuron ; 112(8): 1202-1204, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38636453

RESUMEN

Insomnia is an important comorbidity of chronic pain. In this issue of Neuron, Li et al. report that chronic-pain-induced insomnia is mediated by the pyramidal neurons in the anterior cingulate cortex and their dopaminergic projections to the dorsal medial striatum.


Asunto(s)
Dolor Crónico , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Giro del Cíngulo/fisiología , Cuerpo Estriado , Células Piramidales , Neostriado
9.
Mol Brain ; 17(1): 11, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38389098

RESUMEN

Adenylyl cyclase 1 (AC1) is a selective subtype of ACs, which is selectively expressed in neurons. The activation of AC1 is activity-dependent, and AC1 plays an important role in cortical excitation that contributes to chronic pain and related emotional disorders. Previous studies have reported that human-used NB001 (hNB001, a selective AC1 inhibitor) produced analgesic effects in different animal models of chronic pain. However, the potential effects of hNB001 on learning and memory have been less investigated. In the present study, we found that hNB001 affected neither the induction nor the expression of trace fear, but selectively enhanced the relearning ability during the extinction in aged mice. By contrast, the same application of hNB001 did not affect recent, remote auditory fear memory, or remote fear extinction in either adult or aged mice. Furthermore, a single or consecutive 30-day oral administration of hNB001 did not affect acute nociceptive response, motor function, or anxiety-like behavior in either adult or aged mice. Our results are consistent with previous findings that inhibition of AC1 did not affect general sensory, emotional, and motor functions in adult mice, and provide strong evidence that inhibiting the activity of AC1 may be beneficial for certain forms of learning and memory in aged mice.


Asunto(s)
Dolor Crónico , Miedo , Humanos , Ratones , Animales , Miedo/fisiología , Extinción Psicológica , Adenilil Ciclasas/metabolismo , Neuronas/metabolismo
10.
Commun Biol ; 6(1): 1247, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071375

RESUMEN

The brain consists of the left and right cerebral hemispheres and both are connected by callosal projections. Less is known about the basic mechanism of this cortical-cortical connection and its functional importance. Here we investigate the cortical-cortical connection between the bilateral anterior cingulate cortex (ACC) by using the classic electrophysiological and optogenetic approach. We find that there is a direct synaptic projection from one side ACC to the contralateral ACC. Glutamate is the major excitatory transmitter for bilateral ACC connection, including projections to pyramidal cells in superficial (II/III) and deep (V/VI) layers of the ACC. Both AMPA and kainate receptors contribute to synaptic transmission. Repetitive stimulation of the projection also evoked postsynaptic Ca2+ influx in contralateral ACC pyramidal neurons. Behaviorally, light activation of the ACC-ACC connection facilitated behavioral withdrawal responses to mechanical stimuli and noxious heat. In an animal model of neuropathic pain, light inhibitory of ACC-ACC connection reduces both primary and secondary hyperalgesia. Our findings provide strong direct evidence for the excitatory or facilitatory contribution of ACC-ACC connection to pain perception, and this mechanism may provide therapeutic targets for future treatment of chronic pain and related emotional disorders.


Asunto(s)
Giro del Cíngulo , Neuralgia , Ratones , Animales , Giro del Cíngulo/fisiología , Transmisión Sináptica/fisiología , Células Piramidales , Ácido Glutámico
11.
Mol Pain ; 19: 17448069231197158, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37606554

RESUMEN

Music seems promising as an adjuvant pain treatment in humans, while its mechanism remains to be illustrated. In rodent models of chronic pain, few studies reported the analgesic effect of music. Recently, Zhou et al. stated that the analgesic effects of sound depended on a low (5 dB) signal-to-noise ratio (SNR) relative to ambient noise in mice. However, despite employing multiple behavioral analysis approaches, we were unable to extend these findings to a mice model of chronic pain listening to the 5 dB SNR.


Asunto(s)
Analgesia , Dolor Crónico , Adulto , Humanos , Animales , Ratones , Ruido , Manejo del Dolor , Analgésicos
12.
iScience ; 26(6): 106790, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37235050

RESUMEN

Migraines are a common medical condition. From a basic science point of view, the central mechanism for migraine and headache is largely unknown. In the present study, we demonstrate that cortical excitatory transmission is significantly enhanced in the anterior cingulate cortex (ACC)-a brain region which is critical for pain perception. Biochemical studies found that the phosphorylation levels of both the NMDA receptor GluN2B and AMPA receptor GluA1 were enhanced in ACC of migraine rats. Both the presynaptic release of glutamate and postsynaptic responses of AMPA receptors and NMDA receptors were enhanced. Synaptic long-term potentiation (LTP) was occluded. Furthermore, behavioral anxiety and nociceptive responses were increased, which were reversed by application of AC1 inhibitor NB001 within ACC. Our results provide strong evidence that cortical LTPs contribute to migraine-related pain and anxiety. Drugs that inhibit cortical excitation such as NB001 may serve as potential medicines for treating migraine in the future.

13.
Front Synaptic Neurosci ; 15: 1122381, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143481

RESUMEN

Chronic pain is long-lasting pain that often persists during chronic diseases or after recovery from disease or injury. It often causes serious side effects, such as insomnia, anxiety, or depression which negatively impacts the patient's overall quality of life. Serotonin (5-HT) in the central nervous system (CNS) has been recognized as an important neurotransmitter and neuromodulator which regulates various physiological functions, such as pain sensation, cognition, and emotions-especially anxiety and depression. Its widespread and diverse receptors underlie the functional complexity of 5-HT in the CNS. Recent studies found that both chronic pain and anxiety are associated with synaptic plasticity in the anterior cingulate cortex (ACC), the insular cortex (IC), and the spinal cord. 5-HT exerts multiple modulations of synaptic transmission and plasticity in the ACC and the spinal cord, including activation, inhibition, and biphasic actions. In this review, we will discuss the multiple actions of the 5-HT system in both chronic pain and injury-related anxiety, and the synaptic mechanisms behind them. It is likely that the specific 5-HT receptors would be new promising therapeutic targets for the effective treatment of chronic pain and injury-related anxiety in the future.

14.
Mol Brain ; 16(1): 4, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36604761

RESUMEN

Long-term potentiation (LTP) is a key cellular mechanism for learning and memory, and recent studies in the hippocampus found that LTP was impaired in aged animals. Previous studies of cortical LTP have focused primarily on the homosynaptic plasticity in adult mice, while fewer studies have looked at heterosynaptic plasticity-such as synaptic tagging in aged mice. In the present study, we investigated synaptic tagging in adult and middle-aged mice's anterior cingulate cortex (ACC) using the 64-channel multielectrode dish (MED64) recording system. We found that synaptic tagging was impaired in the ACC of middle-aged male mice as compared to adult mice. Both the network late-phase LTP (L-LTP) and the recruitment of inactive responses were reduced in the ACC of middle-aged male mice. Similar results were found in female middle-aged mice, indicating that there is no gender difference. Furthermore, bath application of brain-derived neurotrophic factor (BDNF) or systemic treatment with newly developed TrkB receptor agonists R13, was shown to rescue both synaptic tagging, and L-LTP, in middle-aged mice. To determine the distribution of synaptic LTP within the ACC, a new visualization method was developed to map the Spatio-temporal variation of LTP in the ACC. Our results provide strong evidence that cortical potentiation and synaptic tagging show an age-dependent reduction, and point to the TrkB receptor as a potential drug target for the treatment of memory decline.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Receptor trkB , Ratones , Masculino , Femenino , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Receptor trkB/metabolismo , Giro del Cíngulo , Potenciación a Largo Plazo/fisiología , Hipocampo/metabolismo
15.
Mol Pain ; 19: 17448069231152101, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36604775

RESUMEN

Itch sensation is one of the major sensory experiences of humans and animals. Recent studies using genetic deletion techniques have proposed that gastrin-releasing peptide (GRP) is a key neurotransmitter for itch in the spinal cord. However, these studies are mainly based on behavioral responses and lack direct electrophysiological evidence that GRP indeed mediates itch information between primary afferent fibers and spinal dorsal horn neurons. In this review, we reviewed recent studies using different experimental approaches and proposed that glutamate but not GRP acts as the key neurotransmitter in the primary afferents in the transmission of itch. GRP is more likely to serve as an itch-related neuromodulator. In the cerebral cortex, we propose that the anterior cingulate cortex (ACC) plays a significant role in both itch and pain sensations. Only behavioral measurement of itch (scratching) is not sufficient for itch measurement, since scratching the itching area also produces pleasure. Integrative experimental approaches as well as better behavioral scoring models are needed to help to understand the neuronal mechanism of itch and aid future treatment for patients with pruritic diseases.


Asunto(s)
Ácido Glutámico , Prurito , Animales , Humanos , Neurotransmisores , Péptido Liberador de Gastrina/genética , Médula Espinal , Mamíferos
18.
Mol Pain ; 18: 17448069221111158, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35712881

RESUMEN

Can mice recognize themselves in a mirror? The answer is unclear. Previous studies have reported that adult mice - when shown itch-like videos - demonstrated itch empathy. However, this was proven to be unreproducible in other studies. In the present study, we wanted to examine whether adult mice were able to recognize their mirror image. In our testing, we found that mice spent more time in the central area in an open field with mirrors surrounding the chamber than those in a normal open field. In a similar open field test with four mice placed in four directions, mice showed similar behavioral responses to those with mirrors. These results indicate that mice are able to recognize images in the mirror, however, they cannot distinguish their own mirror images from the mirror images of other mice. To repeat the experiments of itch empathy, we compared the itch responses of mice in the mirrored environment, to those without. No significant difference in itching responses was detected. Differently, in the case of chemical pain (formalin injection), animals' nociceptive responses to formalin during Phase II were significantly enhanced in the mirrored open field. A new format of heat map was developed to help the analysis of the trace of mice in the open field. Our results suggest that mice do recognize the presence of mice in the mirror, and their nociceptive - but not itch - responses are enhanced.


Asunto(s)
Nocicepción , Prurito , Animales , Conducta Animal , Formaldehído , Ratones , Dolor
19.
Neuron ; 110(12): 1993-2008.e6, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35443154

RESUMEN

Empathic pain has attracted the interest of a substantial number of researchers studying the social transfer of pain in the sociological, psychological, and neuroscience fields. However, the neural mechanism of empathic pain remains elusive. Here, we establish a long-term observational pain model in mice and find that glutamatergic projection from the insular cortex (IC) to the basolateral amygdala (BLA) is critical for the formation of observational pain. The selective activation or inhibition of the IC-BLA projection pathway strengthens or weakens the intensity of observational pain, respectively. The synaptic molecules are screened, and the upregulated synaptotagmin-2 and RIM3 are identified as key signals in controlling the increased synaptic glutamate transmission from the IC to the BLA. Together, these results reveal the molecular and synaptic mechanisms of a previously unidentified neural pathway that regulates observational pain in mice.


Asunto(s)
Complejo Nuclear Basolateral , Animales , Complejo Nuclear Basolateral/fisiología , Corteza Cerebral/fisiología , Ácido Glutámico/fisiología , Corteza Insular , Ratones , Dolor , Sinapsis
20.
Mol Pain ; 18: 17448069221087034, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35240879

RESUMEN

The anterior cingulate cortex (ACC) is located in the frontal part of the cingulate cortex, and plays important roles in pain perception and emotion. The thalamocortical pathway is the major sensory input to the ACC. Previous studies have show that several different thalamic nuclei receive projection fibers from spinothalamic tract, that in turn send efferents to the ACC by using neural tracers and optical imaging methods. Most of these studies were performed in monkeys, cats, and rats, few studies were reported systematically in adult mice. Adult mice, especially genetically modified mice, have provided molecular and synaptic mechanisms for cortical plasticity and modulation in the ACC. In the present study, we utilized rabies virus-based retrograde tracing system to map thalamic-anterior cingulate monosynaptic inputs in adult mice. We also combined with a new high-throughput VISoR imaging technique to generate a three-dimensional whole-brain reconstruction, especially the thalamus. We found that cortical neurons in the ACC received direct projections from different sub-nuclei in the thalamus, including the anterior, ventral, medial, lateral, midline, and intralaminar thalamic nuclei. These findings provide key anatomic evidences for the connection between the thalamus and ACC.


Asunto(s)
Giro del Cíngulo , Tálamo , Animales , Giro del Cíngulo/metabolismo , Ratones , Vías Nerviosas , Neuronas , Ratas , Núcleos Talámicos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...