Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Intervalo de año de publicación
1.
Res Sq ; 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38196595

RESUMEN

Monoclonal antibodies (mAbs) against Ebola virus (EBOV) glycoprotein (GP1,2) are the standard of care for Ebola virus disease (EVD). Anti-GP1,2 mAbs targeting the stalk and membrane proximal external region (MPER) potently neutralize EBOV in vitro. However, their neutralization mechanism is poorly understood because they target a GP1,2 epitope that has evaded structural characterization. Moreover, their in vivo efficacy has only been evaluated in the mouse model of EVD. Using x-ray crystallography and cryo-electron tomography of 3A6 complexed with its stalk- GP1,2 MPER epitope we reveal a novel mechanism in which 3A6 elevates the stalk or stabilizes a conformation of GP1,2 that is lifted from the virion membrane. In domestic guinea pig and rhesus monkey EVD models, 3A6 provides therapeutic benefit at high viremia levels, advanced disease stages, and at the lowest dose yet demonstrated for any anti-EBOV mAb-based monotherapy. These findings can guide design of next-generation, highly potent anti-EBOV mAbs.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-513517

RESUMEN

A detailed understanding of the molecular features of the neutralizing epitopes developed by viral escape mutants is important for predicting and developing vaccines or therapeutic antibodies against continuously emerging SARS-CoV-2 variants. Here, we report three human monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during first wave of pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, but poorly neutralized Beta and completely failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these three mAbs in complex with trimeric spike protein showed that all three mAbs are involved in bivalent spike binding with two mAbs targeting class-1 and one targeting class-4 Receptor Binding Domain (RBD) epitope. Comparison of immunogenetic makeup, structure, and function of these three mAbs with our recently reported class-3 RBD binding mAb that potently neutralized all SARS-CoV-2 variants revealed precise antibody footprint, specific molecular interactions associated with the most potent multi-variant binding / neutralization efficacy. This knowledge has timely significance for understanding how a combination of certain mutations affect the binding or neutralization of an antibody and thus have implications for predicting structural features of emerging SARS-CoV-2 escape variants and to develop vaccines or therapeutic antibodies against these.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-491770

RESUMEN

The SARS-CoV-2 BA.1 and BA.2 (Omicron) variants contain more than 30 mutations within the spike protein and evade therapeutic monoclonal antibodies (mAbs). Here, we report a receptor-binding domain (RBD) targeting human antibody (002-S21F2) that effectively neutralizes live viral isolates of SARS-CoV-2 variants of concern (VOCs) including Alpha, Beta, Gamma, Delta, and Omicron (BA.1 and BA.2) with IC50 ranging from 0.02 - 0.05 g/ml. This near germline antibody 002-S21F2 has unique genetic features that are distinct from any reported SARS-CoV-2 mAbs. Structural studies of the full-length IgG in complex with spike trimers (Omicron and WA.1) reveal that 002-S21F2 recognizes an epitope on the outer face of RBD (class-3 surface), outside the ACE2 binding motif and its unique molecular features enable it to overcome mutations found in the Omicron variants. The discovery and comprehensive structural analysis of 002-S21F2 provide valuable insight for broad and potent neutralization of SARS-CoV-2 Omicron variants BA.1 and BA.2.

4.
Cell ; 185(6): 995-1007.e18, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35303429

RESUMEN

Several ebolaviruses cause outbreaks of severe disease. Vaccines and monoclonal antibody cocktails are available to treat Ebola virus (EBOV) infections, but not Sudan virus (SUDV) or other ebolaviruses. Current cocktails contain antibodies that cross-react with the secreted soluble glycoprotein (sGP) that absorbs virus-neutralizing antibodies. By sorting memory B cells from EBOV infection survivors, we isolated two broadly reactive anti-GP monoclonal antibodies, 1C3 and 1C11, that potently neutralize, protect rodents from disease, and lack sGP cross-reactivity. Both antibodies recognize quaternary epitopes in trimeric ebolavirus GP. 1C11 bridges adjacent protomers via the fusion loop. 1C3 has a tripartite epitope in the center of the trimer apex. One 1C3 antigen-binding fragment anchors simultaneously to the three receptor-binding sites in the GP trimer, and separate 1C3 paratope regions interact differently with identical residues on the three protomers. A cocktail of both antibodies completely protected nonhuman primates from EBOV and SUDV infections, indicating their potential clinical value.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Epítopos , Glicoproteínas/química , Subunidades de Proteína
5.
Science ; 370(6513): 237-241, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32792465

RESUMEN

A universal vaccine against influenza would ideally generate protective immune responses that are not only broadly reactive against multiple influenza strains but also long-lasting. Because long-term serum antibody levels are maintained by bone marrow plasma cells (BMPCs), we investigated the production and maintenance of these cells after influenza vaccination. We found increased numbers of influenza-specific BMPCs 4 weeks after immunization with the seasonal inactivated influenza vaccine, but numbers returned to near their prevaccination levels after 1 year. This decline was driven by the loss of BMPCs induced by the vaccine, whereas preexisting BMPCs were maintained. Our results suggest that most BMPCs generated by influenza vaccination in adults are short-lived. Designing strategies to enhance their persistence will be a key challenge for the next generation of influenza vaccines.


Asunto(s)
Células de la Médula Ósea/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Células Plasmáticas/inmunología , Animales , Anticuerpos Antivirales/sangre , Modelos Animales de Enfermedad , Humanos , Inmunoglobulina G/sangre , Gripe Humana/sangre , Gripe Humana/inmunología , Vacunación
6.
Proc Natl Acad Sci U S A ; 117(30): 17957-17964, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32661157

RESUMEN

There is a need for improved influenza vaccines. In this study we compared the antibody responses in humans after vaccination with an AS03-adjuvanted versus nonadjuvanted H5N1 avian influenza virus inactivated vaccine. Healthy young adults received two doses of either formulation 3 wk apart. We found that AS03 significantly enhanced H5 hemagglutinin (HA)-specific plasmablast and antibody responses compared to the nonadjuvanted vaccine. Plasmablast response after the first immunization was exclusively directed to the conserved HA stem region and came from memory B cells. Monoclonal antibodies (mAbs) derived from these plasmablasts had high levels of somatic hypermutation (SHM) and recognized the HA stem region of multiple influenza virus subtypes. Second immunization induced a plasmablast response to the highly variable HA head region. mAbs derived from these plasmablasts exhibited minimal SHM (naive B cell origin) and largely recognized the HA head region of the immunizing H5N1 strain. Interestingly, the antibody response to H5 HA stem region was much lower after the second immunization, and this suppression was most likely due to blocking of these epitopes by stem-specific antibodies induced by the first immunization. Taken together, these findings show that an adjuvanted influenza vaccine can substantially increase antibody responses in humans by effectively recruiting preexisting memory B cells as well as naive B cells into the response. In addition, we show that high levels of preexisting antibody can have a negative effect on boosting. These findings have implications toward the development of a universal influenza vaccine.


Asunto(s)
Adyuvantes Inmunológicos , Linfocitos B/inmunología , Reacciones Cruzadas/inmunología , Memoria Inmunológica , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Especificidad de Anticuerpos/inmunología , Linfocitos B/metabolismo , Epítopos de Linfocito B/inmunología , Femenino , Humanos , Inmunización Secundaria , Masculino , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo
7.
Cell ; 177(6): 1566-1582.e17, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31104840

RESUMEN

Ebola virus (EBOV) remains a public health threat. We performed a longitudinal study of B cell responses to EBOV in four survivors of the 2014 West African outbreak. Infection induced lasting EBOV-specific immunoglobulin G (IgG) antibodies, but their subclass composition changed over time, with IgG1 persisting, IgG3 rapidly declining, and IgG4 appearing late. Striking changes occurred in the immunoglobulin repertoire, with massive recruitment of naive B cells that subsequently underwent hypermutation. We characterized a large panel of EBOV glycoprotein-specific monoclonal antibodies (mAbs). Only a small subset of mAbs that bound glycoprotein by ELISA recognized cell-surface glycoprotein. However, this subset contained all neutralizing mAbs. Several mAbs protected against EBOV disease in animals, including one mAb that targeted an epitope under evolutionary selection during the 2014 outbreak. Convergent antibody evolution was seen across multiple donors, particularly among VH3-13 neutralizing antibodies specific for the GP1 core. Our study provides a benchmark for assessing EBOV vaccine-induced immunity.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Linfocitos B/fisiología , Fiebre Hemorrágica Ebola/inmunología , Adulto , Secuencia de Aminoácidos/genética , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/metabolismo , Chlorocebus aethiops , Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/genética , Ebolavirus/metabolismo , Ebolavirus/patogenicidad , Epítopos/sangre , Femenino , Glicoproteínas/genética , Fiebre Hemorrágica Ebola/metabolismo , Fiebre Hemorrágica Ebola/virología , Humanos , Inmunoglobulina G/inmunología , Células Jurkat , Estudios Longitudinales , Masculino , Ratones , Ratones Endogámicos BALB C , Sobrevivientes , Células Vero , Proteínas del Envoltorio Viral/genética
8.
Plant Physiol ; 153(2): 514-25, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20363856

RESUMEN

A collection of 130 new plant cell wall glycan-directed monoclonal antibodies (mAbs) was generated with the aim of facilitating in-depth analysis of cell wall glycans. An enzyme-linked immunosorbent assay-based screen against a diverse panel of 54 plant polysaccharides was used to characterize the binding patterns of these new mAbs, together with 50 other previously generated mAbs, against plant cell wall glycans. Hierarchical clustering analysis was used to group these mAbs based on the polysaccharide recognition patterns observed. The mAb groupings in the resulting cladogram were further verified by immunolocalization studies in Arabidopsis (Arabidopsis thaliana) stems. The mAbs could be resolved into 19 clades of antibodies that recognize distinct epitopes present on all major classes of plant cell wall glycans, including arabinogalactans (both protein- and polysaccharide-linked), pectins (homogalacturonan, rhamnogalacturonan I), xyloglucans, xylans, mannans, and glucans. In most cases, multiple subclades of antibodies were observed to bind to each glycan class, suggesting that the mAbs in these subgroups recognize distinct epitopes present on the cell wall glycans. The epitopes recognized by many of the mAbs in the toolkit, particularly those recognizing arabinose- and/or galactose-containing structures, are present on more than one glycan class, consistent with the known structural diversity and complexity of plant cell wall glycans. Thus, these cell wall glycan-directed mAbs should be viewed and utilized as epitope-specific, rather than polymer-specific, probes. The current world-wide toolkit of approximately 180 glycan-directed antibodies from various laboratories provides a large and diverse set of probes for studies of plant cell wall structure, function, dynamics, and biosynthesis.


Asunto(s)
Anticuerpos Monoclonales/química , Pared Celular/química , Plantas/química , Polisacáridos/análisis , Análisis por Conglomerados , Ensayo de Inmunoadsorción Enzimática , Epítopos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...