Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1365298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736441

RESUMEN

Cannabis sativa L. is an industrially valuable plant known for its cannabinoids, such as cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), renowned for its therapeutic and psychoactive properties. Despite its significance, the cannabis industry has encountered difficulties in guaranteeing consistent product quality throughout the drying process. Hyperspectral imaging (HSI), combined with advanced machine learning technology, has been used to predict phytochemicals that presents a promising solution for maintaining cannabis quality control. We examined the dynamic changes in cannabinoid compositions under diverse drying conditions and developed a non-destructive method to appraise the quality of cannabis flowers using HSI and machine learning. Even when the relative weight and water content remained constant throughout the drying process, drying conditions significantly influenced the levels of CBD, THC, and their precursors. These results emphasize the importance of determining the exact drying endpoint. To develop HSI-based models for predicting cannabis quality indicators, including dryness, precursor conversion of CBD and THC, and CBD : THC ratio, we employed various spectral preprocessing methods and machine learning algorithms, including logistic regression (LR), support vector machine (SVM), k-nearest neighbor (KNN), random forest (RF), and Gaussian naïve Bayes (GNB). The LR model demonstrated the highest accuracy at 94.7-99.7% when used in conjunction with spectral pre-processing techniques such as multiplicative scatter correction (MSC) or Savitzky-Golay filter. We propose that the HSI-based model holds the potential to serve as a valuable tool for monitoring cannabinoid composition and determining optimal drying endpoint. This tool offers the means to achieve uniform cannabis quality and optimize the drying process in the industry.

2.
J Cancer Prev ; 28(3): 93-105, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37830115

RESUMEN

Roseburia faecis, a butyrate-producing, gram-positive anaerobic bacterium, was evaluated for its usefulness against repeated water avoidance stress (WAS)-induced irritable bowel syndrome (IBS) in a rat model, and the underlying mechanism was explored. We divided the subjects into three groups: one without stress exposure, another subjected to daily 1-hour WAS for 10 days, and a third exposed to the same WAS regimen while also receiving two different R. faecis strains (BBH024 or R22-12-24) via oral gavage for the same 10-day duration. Fecal pellet output (FPO), a toluidine blue assay for mast cell infiltration, and fecal microbiota analyses were conducted using 16S rRNA metagenomic sequencing. Predictive functional profiling of microbial communities in metabolism was also conducted. FPO and colonic mucosal mast cell counts were significantly higher in the WAS group than in the control group (male, P = 0.004; female, P = 0.027). The administration of both BBH024 (male, P = 0.015; female, P = 0.022) and R22-12-24 (male, P = 0.003; female, P = 0.040) significantly reduced FPO. Submucosal mast cell infiltration in the colon showed a similar pattern in males. In case of fecal microbiota, the WAS with R. faecis group showed increased abundance of the Roseburia genus compared to WAS alone. Moreover, the expression of a gene encoding a D-methionine transport system substrate-binding protein was significantly elevated in the WAS with R. faecis group compared to that in the WAS (male, P = 0.028; female, P = 0.025) group. These results indicate that R. faecis is a useful probiotic for treating IBS and colonic microinflammation.

4.
Microorganisms ; 9(3)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33803998

RESUMEN

Recently, it has been reported that the rt269I type of hepatitis B virus (HBV) polymerase (Pol) versus the rt269L type is more significantly related to lower viral replication and HBeAg negative infections in chronic hepatitis B (CHB) patients of genotype C2. In this study, we compared mutation rates within HBV genomes between rt269L and rt269I using a total of 234 HBV genotype C2 full genome sequences randomly selected from the HBV database (115 of rt269L and 119 of rt269I type). When we applied the Benjamini and Hochberg procedure for multiple comparisons, two parameters, dN and d, at the amino acids level in the Pol region were significantly higher in the rt269I type than in the rt269L type. Although it could not reach statistical significance from the Benjamini and Hochberg procedure, nonsynonymous (NS) mutations in the major hydrophilic region (MHR) or "a" determinant in the surface antigens (HBsAg ORF) related to host immune escape or vaccine escape are more frequently generated in rt269I strains than in rt269L. We also found that there are a total of 19 signature single nucleotide polymorphisms (SNPs), of which 2 and 17 nonsynonymous mutation types were specific to rt269L and rt269I, respectively: Of these, most are HBeAg negative infections (preC-W28*, X-V5M and V131I), lowered HBV DNA or virion production (C-I97F/L, rtM204I/V) or preexisting nucleot(s)ide analog resistance (NAr) (rtN139K/H, rtM204I/V and rtI224V) or disease severity (preC-W28*, C-I97F/L, C-Q182K/*, preS2-F141L, S-L213I/S, V/L5M, T36P/S/A, V131I, rtN139K/H, rtM204I/V and rtI224V). In conclusion, our data showed that rt269I types versus rt269L types are more prone to overall genome mutations, particularly in the Pol region and in the MHR or "a" determinant in genotype C2 infections and are more prevalent in signature NS mutations related to lowered HBV DNA replication, HBsAg and HBeAg secretion and potential NAr variants and hepatocellular carcinoma (HCC), possibly via type I interferon (IFN-I)-mediated enhanced inflammation. Our data suggest that rt269L types could contribute to liver disease progression via the generation of immune escape or enhanced persistent infection in chronic patients of genotype C2.

5.
Front Microbiol ; 11: 1657, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793151

RESUMEN

Beef is one of the most consumed food worldwide, and it is prone to spoilage by bacteria. This risk could be caused by resident microbiota and their alterations in fresh beef meat during processing. However, scarce information is available regarding potential spoilage factors due to resident microbiota in fresh beef meat. In this study, we analyzed the microbiota composition and their predicted functions on fresh beef meat. A total of 120 beef meat samples (60 fresh ground and 60 non-ground beef samples) were collected from three different sites in South Korea on different months, and the microbiota were analyzed by the MiSeq system. Our results showed that although the microbiota in beef meat were varied among sampling site and months, the dominant phyla were the same with shared core bacteria. Notably, psychrotrophic genera, related to spoilage, were detected in all samples, and their prevalence increased significantly in July. These genera could inhibit the growth of other microbes with using glucose by fermentation. The results of this study extend our understanding of initial microbiota in fresh beef meat and potential functions influencing spoilage and can be useful to develop the preventive measures to reduce the spoilage of beef meat products.

6.
Food Res Int ; 132: 109118, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32331694

RESUMEN

Outbreaks of food poisoning due to the consumption of contaminated beef from fast-food chains are becoming more frequent. Pathogen contamination in beef influences its spoilage as well as the development of foodborne illness. Thus, the influence of pathogen contamination on beef microbiota should be analyzed to evaluate food safety. We analyzed the influence of pathogen contamination on the shift in microbiota and the interactions between the pathogen and indigenous microbes in beef stored under different conditions. Sixty beef samples were stored at 25 °C and 4 °C for 24 h, and the shifts in microbiota were analyzed using the MiSeq system. The influence of pathogen contamination on microbiota was analyzed by artificial contamination experiments with Escherichia coli FORC_044, which was isolated from the stool of a food poisoning patient in Korea. The bacterial amounts and the proportion of Escherichia were higher when the beef was stored at 25 °C. Artificially contaminated Escherichia positively correlated with the indigenous microbes such as Pseudomonas, Brochothrix, Staphylococcus, Rahnella, and Rhizobium as determined by co-occurrence network analyses. Carnobacterium, a potential spoilage microbe, was negatively correlated with other microbes. The predicted functions of altered microbiota showed that the pathways related to the process of spoilage including biosynthesis of acetic acid and lactic acid increased over time. The shift in pathways was more pronounced in contaminated beef stored at 25 °C. Carnobacterium, Lactobacillus, and Escherichia were the main genera contributing to the shift in the relative abundance of functional genes involved in the various spoilage pathways. Our results indicated that pathogen contamination could influence beef microbiota and mediate spoilage. This study extends our understanding of the beef microbiota and provides insights into the role of pathogen and storage conditions in meat spoilage.


Asunto(s)
Microbiología de Alimentos , Almacenamiento de Alimentos/métodos , Microbiota , Carne Roja/microbiología , Temperatura , Animales , Bacterias/clasificación , Bovinos , ADN Bacteriano/genética , Contaminación de Alimentos/análisis , Inocuidad de los Alimentos , Enfermedades Transmitidas por los Alimentos , Interacciones Microbianas , Microbiota/genética , ARN Ribosómico 16S/genética , República de Corea
8.
Microorganisms ; 7(9)2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31547260

RESUMEN

A number of studies from different countries have characterized mcr-1-harboring plasmids isolated from food; however, nothing has been reported about it in South Korea. In this study, we report the characterization of mcr-1 plasmids from pan drug-resistant (PDR) Escherichia coli strains isolated from retail food in the country. Colistin-resistant E. coli strains were isolated from retail raw chicken, and PCR was carried out to detect the mcr-1 gene. Whole genome sequencing of the mcr-1-positive strains was performed for further characterization. The results of whole genome sequencing revealed that all mcr-1 plasmids belonged to the IncI2 type. In addition to the mcr-1 plasmids, all of the isolates also carried additional plasmids possessing multiple antibiotic resistance genes, and the PDR was mediated by resistant plasmids except for fluoroquinolone resistance resulting from mutations in gyrA and parC. Interestingly, the mcr-1 plasmids were transferred by conjugation to other pathogenic strains including enterohemorrhagic E. coli (EHEC), enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), Salmonella, and Klebsiella at the frequencies of 10-3-10-6, 10-2-10-5, 10-4-10-5, 10-4-10-6, and 10-5-10-6, respectively. The results showed that mcr-1 plasmids can be easily transmitted to pathogenic bacteria by conjugation.

9.
Small ; 13(34)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28722350

RESUMEN

Mesoscopic solar cells based on nanostructured oxide semiconductors are considered as a promising candidates to replace conventional photovoltaics employing costly materials. However, their overall performances are below the sufficient level required for practical usages. Herein, this study proposes an anodized Ti foam (ATF) with multidimensional and hierarchical architecture as a highly efficient photoelectrode for the generation of a large photocurrent. ATF photoelectrodes prepared by electrochemical anodization of freeze-cast Ti foams have three favorable characteristics: (i) large surface area for enhanced light harvesting, (ii) 1D semiconductor structure for facilitated charge collection, and (iii) 3D highly conductive metallic current collector that enables exclusion of transparent conducting oxide substrate. Based on these advantages, when ATF is utilized in dye-sensitized solar cells, short-circuit photocurrent density up to 22.0 mA cm-2 is achieved in the conventional N719 dye-I3- /I- redox electrolyte system even with an intrinsically inferior quasi-solid electrolyte.

10.
Angew Chem Int Ed Engl ; 56(23): 6583-6588, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28471078

RESUMEN

Nanostructured metal oxide semiconductors have shown outstanding performances in photoelectrochemical (PEC) water splitting, but limitations in light harvesting and charge collection have necessitated further advances in photoelectrode design. Herein, we propose anodized Fe foams (AFFs) with multidimensional nano/micro-architectures as a highly efficient photoelectrode for PEC water splitting. Fe foams fabricated by freeze-casting and sintering were electrochemically anodized and directly used as photoanodes. We verified the superiority of our design concept by achieving an unprecedented photocurrent density in PEC water splitting over 5 mA cm-2 before the dark current onset, which originated from the large surface area and low electrical resistance of the AFFs. A photocurrent of over 6.8 mA cm-2 and an accordingly high incident photon-to-current efficiency of over 50 % at 400 nm were achieved with incorporation of Co oxygen evolution catalysts. In addition, research opportunities for further advances by structual and compositional modifications are discussed, which can resolve the low fill factoring behavior and improve the overall performance.

11.
J Mech Behav Biomed Mater ; 72: 66-73, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28458028

RESUMEN

Ti and Ti‒5wt% W alloy foams were produced by freeze-casting process and their mechanical behaviors were compared. The Ti‒5W alloy foam showed a typical acicular Widmanstätten α/ß structure with most of the W dissolved in the ß phase. An electron-probe microanalysis revealed that approximately 2wt% W was uniformly dissolved in the Ti matrix of Ti‒5W alloy foam with few partially dissolved W particles. The compressive-yield strength of Ti‒5W alloy foam (~323MPa) was approximately 20% higher than that of the Ti foam (~256MPa) owing to the solid-solution-strengthening effect of W in the Ti matrix, which also resulted in a dramatic improvement in the wear resistance of Ti‒5W alloy foam. The compressive behaviors of the Ti and Ti‒5W alloy foams were predicted by analytical models and compared with the experimental values. Compared with the Gibson-Ashby and cellular-lattice-structure-in-square-orientation models of porous materials, the orientation-averaging method provided prediction results that are much more accurate in terms of both the Young's modulus and the yield strength of the Ti and Ti‒5W alloy foams.


Asunto(s)
Aleaciones/análisis , Materiales Biocompatibles/análisis , Titanio/análisis , Fuerza Compresiva , Módulo de Elasticidad , Ensayo de Materiales , Porosidad
12.
J Mech Behav Biomed Mater ; 63: 407-416, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27469602

RESUMEN

Pure Ti and Ti-5%W foams were prepared via freeze casting. The porosity and grain size of both the materials were 32-33% and 15-17µm, respectively. The mechanical behavior of the foams was investigated by uniaxial compression up to a plastic strain of ~0.26. The Young׳s moduli of both foams were ~23GPa, which was in good agreement with the value expected from their porosity. The Young׳s moduli of the foams were similar to the elastic modulus of cortical bones, thereby eliminating the osteoporosis-causing stress-shielding effect. The addition of W increased the yield strength from ~196MPa to ~235MPa. The microstructure evolution in the grains during compression was studied using electron backscatter diffraction (EBSD) and X-ray line profile analysis (XLPA). After compression up to a plastic strain of ~0.26, the average dislocation densities increased to ~3.4×10(14)m(-2) and ~5.9×10(14)m(-2) in the Ti and Ti-W foams, respectively. The higher dislocation density in the Ti-W foam can be attributed to the pinning effect of the solute tungsten atoms on dislocations. The experimentally measured yield strength was in good agreement with the strength calculated from the dislocation density and porosity. This study demonstrated that the addition of W to Ti foam is beneficial for biomedical applications, because the compressive yield strength increased while its Young׳s modulus remained similar to that of cortical bones.


Asunto(s)
Fuerza Compresiva , Ensayo de Materiales , Titanio/análisis , Tungsteno/análisis , Aleaciones , Módulo de Elasticidad , Porosidad
13.
ACS Appl Mater Interfaces ; 6(10): 7665-71, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24758316

RESUMEN

In spite of their high conversion efficiency and no emission of greenhouse gases, polymer electrolyte membrane fuel cells (PEMFCs) suffer from prohibitively high cost and insufficient life-span of their core component system, the membrane electrode assembly (MEA). In this paper, we are proposing Ti foam as a promising alternative electrode material in the MEA. Indeed, it showed a current density of 462 mA cm(-2), being ca. 166% higher than that with the baseline Toray 060 gas diffusion layer (GDL) (278 mA cm(-2)) with 200 ccm oxygen supply at 0.7 V, when used as the anode GDL, because of its unique three-dimensional strut structure promoting highly efficient catalytic reactions. Furthermore, it exhibits superior corrosion resistance with almost no thickness and weight changes in the accelerated corrosion test, as opposed to considerable reductions in the weight and thickness of the conventional GDL. We believe that this paper suggests profound implications in the commercialization of PEMFCs, because the metallic Ti foam provides a longer-term reliability and chemical stability, which can reduce the loss of Pt catalyst and, hence, the cost of PEMFCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA