Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903774

RESUMEN

Recently, we reported that device performance degradation mechanisms, which are generated by the γ-ray irradiation in GaN-based metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs), use extremely thin gate insulators. When the γ-ray was radiated, the total ionizing dose (TID) effects were generated and the device performance deteriorated. In this work, we investigated the device property alteration and its mechanisms, which were caused by the proton irradiation in GaN-based MIS-HEMTs for the 5 nm-thick Si3N4 and HfO2 gate insulator. The device property, such as threshold voltage, drain current, and transconductance varied by the proton irradiation. When the 5 nm-thick HfO2 layer was employed for the gate insulator, the threshold voltage shift was larger than that of the 5 nm-thick Si3N4 gate insulator, despite the HfO2 gate insulator exhibiting better radiation resistance compared to the Si3N4 gate insulator. On the other hand, the drain current and transconductance degradation were less for the 5 nm-thick HfO2 gate insulator. Unlike the γ-ray irradiation, our systematic research included pulse-mode stress measurements and carrier mobility extraction and revealed that the TID and displacement damage (DD) effects were simultaneously generated by the proton irradiation in GaN-based MIS-HEMTs. The degree of the device property alteration was determined by the competition or superposition of the TID and DD effects for the threshold voltage shift and drain current and transconductance deterioration, respectively. The device property alteration was diminished due to the reduction of the linear energy transfer with increasing irradiated proton energy. We also studied the frequency performance degradation that corresponded to the irradiated proton energy in GaN-based MIS-HEMTs using an extremely thin gate insulator.

2.
ACS Appl Mater Interfaces ; 12(1): 970-979, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31840489

RESUMEN

We report the fast response characteristics of flexible ultraviolet photosensors with GaN nanowires (NWs) and a graphene channel. The GaN NWs used as light-absorbing media are horizontally and randomly embedded in a graphene sandwich structure in which the number of bottom graphene layers is varied from zero to three and the top is a fixed single layer of graphene. In the response curve of the photosensor with a double-layer bottom graphene, as obtained under pulsed illumination with a pulse width of 50 ms and a duty cycle of 50%, the rise and decay times were measured as 24.1 ± 0.1 and 28.2 ± 0.1 ms, respectively. The eye-crossing percentage was evaluated as 52.1%, indicating no substantial distortion of the duty cycle and no pulse symmetry problem. The rise and decay times estimated from an equivalent circuit analysis represented by resistances and capacitances agree well with the measured values. When the device was under the bending condition, the rise and decay times of the photosensor were comparable to those in the unbent state.

3.
ACS Appl Mater Interfaces ; 11(20): 18876-18884, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31037936

RESUMEN

Group III-nitride light-emitting diodes (LEDs) fabricated on sapphire substrates typically suffer from insufficient heat dissipation, largely due to the low thermal conductivities (TCs) of their epitaxial layers and substrates. In the current work, we significantly improved the heat-dissipation characteristics of an InGaN/GaN quantum-well (QW) green LED by using hexagonal boron nitride (hBN) as a heat-transfer medium. Multiple-layer hBN with an average thickness of 11 nm was attached to the back of an InGaN/GaN-QW LED (hBN-LED). As a reference, an LED without the hBN (Ref-LED) was also prepared. After injecting current, heat-transfer characteristics inside each LED were analyzed by measuring temperature distribution throughout the LED as a function of time. For both LED chips, the maximum temperature was measured on the edge n-type electrode brightly shining fabricated on an n-type GaN cladding layer and the minimum temperature was measured at the relatively dark-contrast top surface between the p-type electrodes. The hBN-LED took 6 s to reach its maximum temperature (136.1 °C), whereas the Ref-LED took considerably longer, specifically 11 s. After being switched off, the hBN-LED took 35 s to cool down to 37.5 °C and the Ref-LED took much longer, specifically 265 s. These results confirmed the considerable contribution of the attached hBN to the transfer and dissipation of heat in the LED. The spatial heat-transfer and distribution characteristics along the vertical direction of each LED were theoretically analyzed by carrying out simulations based on the TCs, thicknesses, and thermal resistances of the materials used in the chips. The results of these simulations agreed well with the experimental results.

4.
ACS Appl Mater Interfaces ; 10(44): 38173-38182, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30360044

RESUMEN

In this study, we report highly efficient and flexible photosensors with GaN nanowires (NWs) horizontally embedded in a graphene sandwich structure fabricated on polyethylene terephthalate. GaN NWs and the graphene sandwich structure are used as light-absorbing media and the channel for carrier movement, respectively. To form uniform high-quality crystalline GaN NWs on Si(111) substrates, the initial nucleation behavior of the NWs was manipulated by applying the new growth technique of Ga predeposition. High-resolution transmission electron microscopic images obtained along the vertical direction of GaN NWs showed that stacking faults, typically observed in Si-based (In,Ga)As NWs, were rare. Consequently, narrow and strong optical emission was observed from the GaN NWs at wavelengths of 365.12 nm at 300 K. The photocurrent and photoresponsivity of the flexible photosensor with 802 nm long GaN NWs horizontally embedded in the graphene sandwich channel were measured as 9.17 mA and 91.70 A/W, respectively, at the light intensity of 100 mW/cm2, which are much higher than those previously reported. The high optical-to-electrical conversion characteristics of our flexible photosensors are attributed to the increase in the effective interface between the light-absorbing media and the carrier channel by the horizontal distribution of the GaN NWs within the graphene sandwich structure. After 200 cyclic-bending test of the GaN NW photosensor at the strain of 3%, the photoresponsivity under strain was measured as 89.04 A/W at 100 mW/cm2, corresponding to 97.1% of the photoresponsivity obtained before bending. The photosensor proposed in this study is relatively simple in device design and fabrication, and it requires no sophisticated nanostructural design to minimize the resistance to metal contacts.

5.
Bioorg Chem ; 80: 57-63, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29874630

RESUMEN

An effective screening method for inhibitors of NO production in natural products using LC-QTOF MS/MS coupled with a cell-based assay was proposed. The ethyl acetate fraction of Catalpa ovata exhibited a strong inhibitory effect on NO production in lipopolysaccharide-induced BV2 microglia cells. We attempted to identify the active constituents of C. ovata by using LC-QTOF MS/MS coupled with a cell-based assay. Peaks at approximately 14-15 min on the MS chromatogram were estimated to be the bioactive constituents. A new iridoid compound, 6-O-trans-feruloyl-3ß-hydroxy-7-deoxyrehamaglutin A (4), and nine known compounds (1-3, 5-10) were isolated from the ethyl acetate fraction of C. ovata by repeated column chromatography. Compounds 3, 4, 5, 7, and 8 significantly attenuated lipopolysaccharide-stimulated NO production in BV2 cells. Our results indicate that LC-QTOF MS/MS coupled with a cell-based NO production inhibitory assay successfully predicted active compounds without a time-consuming isolation process.


Asunto(s)
Bignoniaceae/química , Productos Biológicos/química , Espectrometría de Masas en Tándem , Animales , Bignoniaceae/metabolismo , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Línea Celular , Cromatografía Líquida de Alta Presión , Lipopolisacáridos/farmacología , Espectroscopía de Resonancia Magnética , Ratones , Microglía/citología , Microglía/efectos de los fármacos , Microglía/metabolismo , Conformación Molecular , Óxido Nítrico/metabolismo , Extractos Vegetales/química
6.
Nanotechnology ; 29(31): 315603, 2018 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-29749963

RESUMEN

This paper reports the formation of GaN and InN quantum dots (QDs) with symmetric spherical shapes, grown on SiN/Si(111). Spherical QDs are grown by modulating initial growth behavior via gallium and indium droplets functioning as nucleation sites for QDs. Field-emission scanning electron microscope (FE-SEM) images show that GaN and InN QDs are formed on curved SiN/Si(111) instead of on a flat surface similar to balls on a latex mattress. This is considerably different from the structural properties of In(Ga)As QDs grown on GaAs or InP. In addition, considering the shape of the other III-V semiconductor QDs, the QDs in this study are very close to the ideal shape of zero-dimensional nanostructures. Transmission-electron microscope images show the formation of symmetric GaN and InN QDs with a round shape, agreeing well with the FE-SEM results. Compared to other III-V semiconductor QDs, the unique structural properties of Si-based GaN and InN QDs are strongly related to the modulation in the initial nucleation characteristics due to the presence of droplets, the degree of lattice mismatch between GaN or InN and SiN/Si(111), and the melt-back etching phenomenon.

7.
Sci Rep ; 7(1): 7164, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28769103

RESUMEN

We report a phosphor-free white light-emitting diodes (LED) realized by the monolithic integration of In0.18Ga0.82N/GaN (438 nm, blue), In0.26Ga0.74N/GaN (513 nm, green), and In0.45Ga0.55N/In0.13Ga0.87N (602 nm, red) quantum wells (QWs) as an active medium. The QWs corresponding to blue and green light were grown using a conventional growth mode. For the red spectral emission, five-stacked In0.45Ga0.55N/In0.13Ga0.87N QWs were realized by the so-called Ga-flow-interruption (Ga-FI) technique, wherein the Ga supply was periodically interrupted during the deposition of In0.3Ga0.7N to form an In0.45Ga0.55N well. The vertical and lateral distributions of the three different light emissions were investigated by fluorescence microscope (FM) images. The FM image measured at a focal point in the middle of the n-GaN cladding layer for the red-emitting LED shows that light emissions with flower-like patterns with six petals are periodically observed. The chromaticity coordinates of the electroluminescence spectrum for the white LEDs at an injection current of 80 mA are measured to be (0.316, 0.312), which is close to ideal white light. In contrast with phosphor-free white-light-emitting devices based on nanostructures, our white light device exhibits a mixture of three independent wavelengths by monolithically grown InGaN-based QWs, thus demonstrating a more facile technique to obtain white LEDs.

8.
J Nanosci Nanotechnol ; 14(12): 9623-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25971109

RESUMEN

We report the influences of a dot-in-a-well structure with a thin GaAs layer and the thickness of a waveguide (WG) on the lasing characteristics of InAs quantum dots (QDs) based on InP. The QD laser diodes (QDLDs) consist of seven-stacked InAs QDs separated by a 10 nm-thick InGaAsP (1.15 µm, 1.15Q-InGaAsP) layer, which is further sandwiched by a 800 nm-thick 1.15Q-lnGaAsP WG (reference QDLD). For comparison, the InAs QDs were inserted into the InGaAsP (1.35 µm, 1.35Q-InGaAsP) quantum well embedded in the 1.15Q-InGaAsP matrix at the active layer. And a 2 monolayer (ML)-thick GaAs layer was additionally introduced right before the QD layer (GDWELL-LDs). Lasing emission from the reference QDLD with only the 1.15Q-InGaAsP structure was not observed at room temperature (RT). However, the lasing emission from the GDWELL-LDs was clearly observed at the wavelength of 1.46 µm at RT under continuous-wave (CW) mode. The threshold current density of the GDWELL-LD with the 800 nm-thick InGaAsP WG was measured to be 830 A/cm2, which was lower than that of the GDWELL-LD with the 200 nm-thick WG (900 A/cm2). Also, the slope efficiency of the GDWELL-LD was significantly improved with increasing thickness of the InGaAsP WG.


Asunto(s)
Arsenicales/química , Indio/química , Puntos Cuánticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...