Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Transl Med ; 14(9): e1802, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39245957

RESUMEN

Recent studies have established the pivotal roles of patient-derived tumour organoids (PDTOs), innovative three-dimensional (3D) culture systems, in various biological and medical applications. PDTOs, as promising tools, have been established and extensively used for drug screening, prediction of immune response and assessment of immunotherapeutic effectiveness in various cancer types, including glioma, ovarian cancer and so on. The overarching goal is to facilitate the translation of new therapeutic modalities to guide personalised immunotherapy. Notably, there has been a recent surge of interest in the co-culture of PDTOs with immune cells to investigate the dynamic interactions between tumour cells and immune microenvironment. A comprehensive and in-depth investigation is necessary to enhance our understanding of PDTOs as promising testing platforms for cancer immunotherapy. This review mainly focuses on the latest updates on the applications and challenges of PDTO-based methods in anti-cancer immune responses. We strive to provide a comprehensive understanding of the potential and prospects of PDTO-based technologies as next-generation strategies for advancing immunotherapy approaches.


Asunto(s)
Inmunoterapia , Organoides , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Organoides/inmunología , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia
3.
Phytomedicine ; 133: 155586, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39159503

RESUMEN

Autoimmune hepatitis (AIH) is characterized by persistent liver inflammation induced by aberrant immune responses. Glycyrrhizic acid (GA), a prominent bioactive ingredient of licorice, has shown potential as a safe and effective treatment for AIH. However, the immune regulatory mechanism by which GA exerts its therapeutic effect on AIH remains elusive. In this study, we found that GA intervention significantly alleviated ConA-induced acute liver injury in mice. Cytometry by time-of-flight (CyTOF) analysis revealed that GA increased the abundance of anti-inflammatory F4/80loCD11bhiMHCIIhi MoMF-1 and decreased the abundance of pro-inflammatory F4/80loCD11bhiiNOShi MoMF-3. Multiplex immunofluorescence demonstrated the infiltration of MoMFs in liver tissues. Single-cell RNA sequencing (scRNA-seq) analysis indicated that GA facilitated the immune activation in MoMFs, regulated gene expression of diverse cytokines secreted by MoMFs, and played a role in shaping the immune microenvironment. By integrating the results of CyTOF with scRNA-seq, our study comprehensively elucidates the immune landscape of ConA-induced liver injury following GA intervention, advancing the understanding of GA's mechanism of action. However, it is important to note that some single-cell data in this study remain raw and require further processing and annotation. Our findings suggest that GA alleviates ConA-induced acute liver injury by regulating the function of MoMFs, opening potential avenues for AIH treatment and management, and providing a theoretical basis for the design of novel MoMFs-centered immunotherapies.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Concanavalina A , Ácido Glicirrínico , Macrófagos , Ácido Glicirrínico/farmacología , Animales , Ratones , Macrófagos/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Hepatitis Autoinmune/tratamiento farmacológico , Ratones Endogámicos C57BL , Hígado/efectos de los fármacos , Citocinas/metabolismo , Masculino , Antiinflamatorios/farmacología
4.
Viruses ; 16(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38932254

RESUMEN

The human immunodeficiency virus type-1 epidemic in Pakistan has significantly increased over the last two decades. In Karachi, Pakistan, there is a lack of updated information on the complexity of HIV-1 genetic diversity and the burden of drug resistance mutations (DRMs) that can contribute to ART failure and poor treatment outcomes. This study aimed to determine HIV-1 genetic diversity and identify drug-resistance mutations among people living with HIV in Karachi. A total of 364 HIV-positive individuals, with a median age of 36 years, were enrolled in the study. The HIV-1 partial pol gene was successfully sequenced from 268 individuals. The sequences were used to generate phylogenetic trees to determine clade diversity and also to assess the burden of DRMs. Based on the partial pol sequences, 13 distinct HIV-1 subtypes and recombinant forms were identified. Subtype A1 was the most common clade (40%), followed by CRF02_AG (33.2%). Acquired DRMs were found in 30.6% of the ART-experienced patients, of whom 70.7%, 20.7%, and 8.5% were associated with resistance to NNRTIs, NRTIs, and PIs, respectively. Transmitted DRMs were found in 5.6% of the ART-naïve patients, of whom 93% were associated with resistance against NNRTIs and 7% to PIs. The high prevalence of DRMs in ART-experienced patients poses significant challenges to the long-term benefits and sustainability of the ART program. This study emphasizes the importance of continuous HIV molecular epidemiology and drug resistance surveillance to support evidence-based HIV prevention, precise ART, and targeted AIDS care.


Asunto(s)
Fármacos Anti-VIH , Farmacorresistencia Viral , Variación Genética , Infecciones por VIH , VIH-1 , Mutación , Filogenia , Humanos , VIH-1/genética , VIH-1/efectos de los fármacos , VIH-1/clasificación , Pakistán/epidemiología , Infecciones por VIH/virología , Infecciones por VIH/epidemiología , Farmacorresistencia Viral/genética , Adulto , Masculino , Femenino , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Persona de Mediana Edad , Adulto Joven , Genotipo , Adolescente
5.
Signal Transduct Target Ther ; 9(1): 128, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38797752

RESUMEN

Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.


Asunto(s)
Neoplasias , Receptores Notch , Transducción de Señal , Humanos , Receptores Notch/genética , Receptores Notch/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Transducción de Señal/genética , Transición Epitelial-Mesenquimal/genética , Terapia Molecular Dirigida , Microambiente Tumoral/genética , Microambiente Tumoral/efectos de los fármacos
6.
Microbiol Spectr ; 12(7): e0052924, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38771033

RESUMEN

The objective of this study was to characterize a novel circulating recombinant form of human immunodeficiency virus type 1 (HIV-1) among people living with HIV in Karachi, Pakistan. We conducted near-full-length genome (NFLG) sequencing on eight samples exhibiting D/G recombination signals in the pol gene region. We successfully obtained NFLG sequences (790-9,614; with reference to the HXB2 genome) from four of the eight samples and then conducted phylogenetic and recombination analyses on them. The four NFLG sequences from our study and one DG unique recombinant form previously identified in the United Kingdom (GenBank accession: MF109700) formed a distinct monophyletic cluster with an Shimodaira-Hasegawa approximate likelihood ratio test node support value of 100%. Bootscan analyses of the five NFLG sequences of DG recombinants showed that all five NFLGs shared the same unique mosaic pattern of recombination breakpoints between D and G clades, with two D fragments in the pol and vif regions inserted into a G backbone. Subregion phylogenetic analyses confirmed these sequences to be a novel circulating recombinant form (CRF) composed of subtypes D and G. The DG recombinant sequences were eventually designated as CRF152_DG by the Los Alamos HIV Sequence Database staff. IMPORTANCE: In Pakistan, the genetic diversity of human immunodeficiency virus type 1 (HIV-1) is becoming increasingly complex, compared to the early years of the epidemic that started after the detection of the first cases of HIV-1 in 1987 in Karachi. Based on the available molecular studies, two dominant HIV-1 clades, sub-subtype A1 and CRF02_AG, have been found to co-circulate with other clades, namely B, C, D, G, CRF01_AE, CRF35_A1D, and CRF56_cpx, in various urban areas of Pakistan. Several novel recombinant forms have also been detected. This first report of CRF152_DG highlights the complex nature of the HIV epidemic in Pakistan and emphasizes the importance of continual molecular surveillance (ideally based on whole-genome sequences) of HIV.


Asunto(s)
Genoma Viral , Infecciones por VIH , VIH-1 , Filogenia , Recombinación Genética , Humanos , VIH-1/genética , VIH-1/clasificación , VIH-1/aislamiento & purificación , Pakistán/epidemiología , Infecciones por VIH/virología , Infecciones por VIH/epidemiología , Masculino , Genoma Viral/genética , Femenino , Adulto , Genotipo , Persona de Mediana Edad
7.
Mol Cell Biochem ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519710

RESUMEN

Liver cancer (LC) poses a significant global health challenge due to its high incidence and poor prognosis. Current systemic treatment options, such as surgery, chemotherapy, radiofrequency ablation, and immunotherapy, have shown limited effectiveness for advanced LC patients. Moreover, owing to the heterogeneous nature of LC, it is crucial to uncover more in-depth pathogenic mechanisms and develop effective treatments to address the limitations of the existing therapeutic modalities. Increasing evidence has revealed the crucial role of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway in the pathogenesis of LC. The specific mechanisms driving the JAK-STAT pathway activation in LC, participate in a variety of malignant biological processes, including cell differentiation, evasion, anti-apoptosis, immune escape, and treatment resistance. Both preclinical and clinical investigations on the JAK-STAT pathway inhibitors have exhibited potential in LC treatment, thereby opening up avenues for the development of more targeted therapeutic strategies for LC. In this study, we provide an overview of the JAK-STAT pathway, delving into the composition, activation, and dynamic interplay within the pathway. Additionally, we focus on the molecular mechanisms driving the aberrant activation of the JAK-STAT pathway in LC. Furthermore, we summarize the latest advancements in targeting the JAK-STAT pathway for LC treatment. The insights presented in this review aim to underscore the necessity of research into the JAK-STAT signaling pathway as a promising avenue for LC therapy.

8.
Sci Rep ; 14(1): 4926, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418897

RESUMEN

The peroxisome proliferator-activated receptor (PPAR) signaling pathway plays a crucial role in systemic cell metabolism, energy homeostasis and immune response inhibition. However, its significance in hepatocellular carcinoma (HCC) has not been well documented. In our study, based on the RNA sequencing data of HCC, consensus clustering analyses were performed to identify PPAR signaling pathway-related molecular subtypes, each of which displaying varying survival probabilities and immune infiltration status. Following, a prognostic prediction model of HCC was developed by using the random survival forest method and Cox regression analysis. Significant difference in survival outcome, immune landscape, drug sensitivity and pathological features were observed between patients with different prognosis. Additionally, decision tree and nomogram models were adopted to optimize the prognostic prediction model. Furthermore, the robustness of the model was verified through single-cell RNA-sequencing data. Collectively, this study systematically elucidated that the PPAR signaling pathway-related prognostic model has good predictive efficacy for patients with HCC. These findings provide valuable insights for further research on personalized treatment approaches for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Pronóstico , Carcinoma Hepatocelular/genética , Receptores Activados del Proliferador del Peroxisoma/genética , Neoplasias Hepáticas/genética , Nomogramas
9.
mBio ; 15(3): e0334923, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38385695

RESUMEN

CRF01_AE strains have been shown to form multiple transmission clusters in China, and some clusters have disparate pathogenicity in Chinese men who have sex with men. This study focused on other CRF01_AE clusters prevalent in heterosexual populations. The CD4+ T-cell counts from both cross-section data in National HIV Molecular Epidemiology Survey and seropositive cohort data were used to evaluate the pathogenicity of the CRF01_AE clusters and other HIV-1 sub-types. Their mechanisms of pathogenicity were evaluated by co-receptor tropisms, predicted by genotyping and confirmed with virus isolate phenotyping, as well as inflammation parameters. Our research elucidated that individuals infected with CRF01_AE clusters 1 and 2 exhibited significantly lower baseline CD4+ T-cell counts and greater CD4+ T-cell loss in cohort follow-up, compared with other HIV-1 sub-types and CRF01_AE clusters. The increased pathogenesis of cluster 1 or 2 was associated with higher CXCR4 tropisms, higher inflammation/immune activation, and increased pyroptosis. The protein structure modeling analysis revealed that the envelope V3 loop of clusters 1 and 2 viruses is favorable for CXCR4 co-receptor usage. Imbedded with the most mutating reverse transcriptase, HIV-1 is one of the most variable viruses. CRF01_AE clusters 1 and 2 have been found to have evolved into more virulent strains in regions with predominant heterosexual infections. The virulent strains increased the pressure for early diagnosis and treatment in HIV patients. To save more lives, HIV-1 surveillance systems should be upgraded from serology and genotyping to phenotyping, which could support precision interventions for those infected by virulent viruses. IMPORTANCE: Retroviruses swiftly adapt, employing error-prone enzymes for genetic and phenotypic evolution, optimizing survival strategies, and enhancing virulence levels. HIV-1 CRF01_AE has persistently undergone adaptive selection, and cluster 1 and 2 infections display lower counts and fast loss of CD4+ T cells than other HIV-1 sub-types and CRF01_AE clusters. Its mechanisms are associated with increased CXCR4 tropism due to an envelope structure change favoring a tropism shift from CCR5 to CXCR4, thereby shaping viral phenotype features and impacting pathogenicity. This underscores the significance of consistently monitoring HIV-1 genetic evolution and phenotypic transfer to see whether selection bias across risk groups alters the delicate balance of transmissible versus toxic trade-offs, since virulent strains such as CRF01_AE clusters 1 and 2 could seriously compromise the efficacy of antiviral treatment. Only through such early warning and diagnostic services can precise antiviral treatments be administered to those infected with more virulent HIV-1 strains.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Minorías Sexuales y de Género , Masculino , Humanos , VIH-1/genética , Homosexualidad Masculina , Genotipo , Linfocitos T CD4-Positivos , China/epidemiología , Inflamación , Antivirales , Filogenia
10.
Cell Commun Signal ; 21(1): 359, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38111040

RESUMEN

RNA methylation modification plays a crucial role as an epigenetic regulator in the oncogenesis of hepatocellular carcinoma (HCC). Numerous studies have investigated the molecular mechanisms underlying the methylation of protein-coding RNAs in the progression of HCC. Beyond their impact on mRNA, methylation modifications also influence the biological functions of non-coding RNAs (ncRNAs). Here, we present an advanced and comprehensive overview of the interplay between methylation modifications and ncRNAs in HCC, with a specific focus on their potential implications for the tumor immune microenvironment. Moreover, we summarize promising therapeutic targets for HCC based on methylation-related proteins. In the future, a more profound investigation is warranted to elucidate the effects of ncRNA methylation modifications on HCC pathogenesis and devise valuable intervention strategies. Video Abstract.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Metilación de ARN , ARN no Traducido/genética , ARN no Traducido/metabolismo , Metilación , ARN/metabolismo , Microambiente Tumoral
11.
Emerg Microbes Infect ; 12(2): 2271065, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37824698

RESUMEN

ABBREVIATIONS: AIDS: acquired immune deficiency syndrome; CI: confidence interval; EPHI: Ethiopian Public Health Institute; HAART: highly active antiretroviral therapy; HIV: human immunodeficiency virus; HR: hazard ratio; Mg/dl: milligram per deciliter; TB: tuberculosis; PCP: pneumocystis carinii pneumonia; ZJU: Zhejiang University.


Asunto(s)
Infecciones Oportunistas Relacionadas con el SIDA , Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , Neoplasias , Humanos , Femenino , Etiopía/epidemiología , Infecciones Oportunistas Relacionadas con el SIDA/epidemiología , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Síndrome de Inmunodeficiencia Adquirida/tratamiento farmacológico , Terapia Antirretroviral Altamente Activa
12.
Cell Metab ; 35(8): 1304-1326, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37352864

RESUMEN

Tryptophan (Trp) metabolism primarily involves the kynurenine, 5-hydroxytryptamine, and indole pathways. A variety of bioactive compounds produced via Trp metabolism can regulate various physiological functions, including inflammation, metabolism, immune responses, and neurological function. Emerging evidence supports an intimate relationship between Trp metabolism disorder and diseases. The levels or ratios of Trp metabolites are significantly associated with many clinical features. Additionally, studies have shown that disease progression can be controlled by modulating Trp metabolism. Indoleamine-2,3-dioxygenase, Trp-2,3-dioxygenase, kynurenine-3-monooxygenase, and Trp hydroxylase are the rate-limiting enzymes that are critical for Trp metabolism. These key regulatory enzymes can be targeted for treating several diseases, including tumors. These findings provide novel insights into the treatment of diseases. In this review, we have summarized the recent research progress on the role of Trp metabolites in health and disease along with their clinical applications.


Asunto(s)
Dioxigenasas , Neoplasias , Humanos , Quinurenina/metabolismo , Triptófano/metabolismo
13.
Signal Transduct Target Ther ; 8(1): 204, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208335

RESUMEN

The Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved mechanism of transmembrane signal transduction that enables cells to communicate with the exterior environment. Various cytokines, interferons, growth factors, and other specific molecules activate JAK-STAT signaling to drive a series of physiological and pathological processes, including proliferation, metabolism, immune response, inflammation, and malignancy. Dysregulated JAK-STAT signaling and related genetic mutations are strongly associated with immune activation and cancer progression. Insights into the structures and functions of the JAK-STAT pathway have led to the development and approval of diverse drugs for the clinical treatment of diseases. Currently, drugs have been developed to mainly target the JAK-STAT pathway and are commonly divided into three subtypes: cytokine or receptor antibodies, JAK inhibitors, and STAT inhibitors. And novel agents also continue to be developed and tested in preclinical and clinical studies. The effectiveness and safety of each kind of drug also warrant further scientific trials before put into being clinical applications. Here, we review the current understanding of the fundamental composition and function of the JAK-STAT signaling pathway. We also discuss advancements in the understanding of JAK-STAT-related pathogenic mechanisms; targeted JAK-STAT therapies for various diseases, especially immune disorders, and cancers; newly developed JAK inhibitors; and current challenges and directions in the field.


Asunto(s)
Enfermedades Autoinmunes , Inhibidores de las Cinasas Janus , Neoplasias , Humanos , Quinasas Janus/metabolismo , Transducción de Señal/genética , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Citocinas/metabolismo , Cognición
14.
Adv Sci (Weinh) ; 10(16): e2207074, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37013458

RESUMEN

Kynurenine derivative 3-hydroxyanthranilic acid (3-HAA) is known to regulate the immune system and exhibit anti-inflammatory activity by inhibiting T-cell cytokine secretion and influencing macrophage activity. However, the definite role of 3-HAA in the immunomodulation of hepatocellular carcinoma (HCC) is largely unexplored. An orthotopic HCC model and treated with 3-HAA by intraperitoneal injection is developed. Furthermore, cytometry by time-of-flight (CyTOF) and single-cell RNA sequencing (scRNA-seq) analyses are carried out to define the immune landscape of HCC. It is found that 3-HAA treatment can significantly suppress tumor growth in the HCC model and alter the level of various cytokines in plasma. CyTOF data shows that 3-HAA significantly increases the percentage of F4/80hi CX3CR1lo Ki67lo MHCIIhi macrophages and decreases the percentage of F4/80lo CD64+ PD-L1lo macrophages. scRNA-seq analyses demonstrate that 3-HAA treatment is proved to regulate the function of M1 macrophages, M2 macrophages, and proliferating macrophages. Notably, 3-HAA inhibits the proinflammatory factors TNF and IL-6 in multiple cell subsets, including resident macrophages, proliferating macrophages, and pDCs. This study reveals the landscape of immune cell subsets in HCC in response to 3-HAA, indicating that 3-HAA may be a promising therapeutic target for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Análisis de Expresión Génica de una Sola Célula , Macrófagos , Citocinas/farmacología
15.
Cell Rep Med ; 4(1): 100884, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36652905

RESUMEN

It is estimated that in the future, the number of new cancer cases worldwide will exceed the 19.3 million recorded in 2020, and the number of deaths will exceed 10 million. Cancer remains the leading cause of human mortality and lagging socioeconomic development. Intratumoral microbes have been revealed to exist in many cancer types, including pancreatic, colorectal, liver, esophageal, breast, and lung cancers. Intratumoral microorganisms affect not only the host immune system, but also the effectiveness of tumor chemotherapy. This review concentrates on the characteristics and roles of intratumoral microbes in various tumors. In addition, the potential of therapies targeting intratumoral microbes, as well as the main challenges currently delaying these therapies, are explored. Furthermore, we briefly summarize existing technical methods used to characterize intratumoral microbes. We hope to provide ideas for exploring intratumoral microbes as potential biomarkers and targets for tumor diagnosis, treatment, and prognostication.


Asunto(s)
Neoplasias Pulmonares , Microbiota , Humanos
16.
Front Immunol ; 13: 1035950, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389715

RESUMEN

Natural killer T cells (NKTs) are an important part of the immune system. Since their discovery in the 1990s, researchers have gained deeper insights into the physiology and functions of these cells in many liver diseases. NKT cells are divided into two subsets, type I and type II. Type I NKT cells are also named iNKT cells as they express a semi-invariant T cell-receptor (TCR) α chain. As part of the innate immune system, hepatic iNKT cells interact with hepatocytes, macrophages (Kupffer cells), T cells, and dendritic cells through direct cell-to-cell contact and cytokine secretion, bridging the innate and adaptive immune systems. A better understanding of hepatic iNKT cells is necessary for finding new methods of treating liver disease including autoimmune liver diseases, alcoholic liver diseases (ALDs), non-alcoholic fatty liver diseases (NAFLDs), and liver tumors. Here we summarize how iNKT cells are activated, how they interact with other cells, and how they function in the presence of liver disease.


Asunto(s)
Células T Asesinas Naturales , Enfermedad del Hígado Graso no Alcohólico , Humanos , Receptores de Antígenos de Linfocitos T
17.
J Transl Int Med ; 10(2): 83-85, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35959453
18.
Front Cell Dev Biol ; 10: 830702, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35465315

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a class of metabolic-associated liver diseases. Aberrant lipid consumption plays an important role in NAFLD pathogenesis. It has been shown CD1d can bind to multiple different lysophospholipids and associated with NAFLD progression. However, the mechanism of CD1d regulation in NAFLD is not completely understood. In this study, we established a NAFLD mouse model by feeding C57/BL6J mice a high-fat diet (HFD) for 24 weeks. Subsequently, we performed integrated transcriptomics and metabolomics analyses to thoroughly probe the role of CD1d in NAFLD progression. In the present study, we demonstrate that CD1d expression was significantly decreased in our murine model of NAFLD. Additionally, we show CD1d knockdown (CD1d KO) in HFD-fed wild-type (WT) mice induced NAFLD, which resulted in weight gain, exaggerated liver injury, and hepatic steatosis. We uncover the crucial roles of CD1d deficiency results in accumulated lipid accumulation. We further explored the CD1d deficiency in NAFLD regarding the transcriptional landscapes, microbiota environment, metabolomics change, and transcriptomics differences. In conclusion, our data demonstrate CD1d plays an important role in NAFLD pathogenesis and may represent a potential therapeutic target for the further therapy.

19.
Signal Transduct Target Ther ; 7(1): 142, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484099

RESUMEN

Cancer is one of the major diseases threatening human life and health worldwide. Epigenetic modification refers to heritable changes in the genetic material without any changes in the nucleic acid sequence and results in heritable phenotypic changes. Epigenetic modifications regulate many biological processes, such as growth, aging, and various diseases, including cancer. With the advancement of next-generation sequencing technology, the role of RNA modifications in cancer progression has become increasingly prominent and is a hot spot in scientific research. This review studied several common RNA modifications, such as N6-methyladenosine, 5-methylcytosine, and pseudouridine. The deposition and roles of these modifications in coding and noncoding RNAs are summarized in detail. Based on the RNA modification background, this review summarized the expression, function, and underlying molecular mechanism of these modifications and their regulators in cancer and further discussed the role of some existing small-molecule inhibitors. More in-depth studies on RNA modification and cancer are needed to broaden the understanding of epigenetics and cancer diagnosis, treatment, and prognosis.


Asunto(s)
Neoplasias , Seudouridina , 5-Metilcitosina/metabolismo , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Humanos , Neoplasias/genética , Seudouridina/genética , Seudouridina/metabolismo , Procesamiento Postranscripcional del ARN/genética , ARN no Traducido
20.
Front Cell Dev Biol ; 10: 834859, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356289

RESUMEN

Hepatocellular carcinoma (HCC) is a common primary liver cancer with ∼750,000 annual incidence rates globally. PGE2, usually known as a pro-inflammatory cytokine, is over-expressed in various human malignancies including HCC. PGE2 binds to EP receptors in HCC cells to influence tumorigenesis or enhance tumor progression through multiple pathways such as EP1-PKC-MAPK, EP2-PKA-GSK3ß, and EP4-PKA-CREB. In the progression of hepatocellular carcinoma, PGE2 can promote the proliferation and migration of liver cancer cells by affecting hepatocytes directly and the tumor microenvironment (TME) through ERK/COX-2/PGE2 signal pathway in hepatic stellate cells (HSC). For the treatment of hepatocellular carcinoma, there are drugs such as T7 peptide and EP1 antagonist ONO-8711 targeting Cox-2/PGE2 axis to inhibit tumor progression. In conclusion, PGE2 has been shown to be a traditional target with pleiotropic effects in tumorigenesis and progression of HCC that could be used to develop a new potential clinical impact. For the treatment study focusing on the COX-PGE2 axis, the exclusive usage of non-steroidal anti-inflammatory agents (NSAIDs) or COX-2-inhibitors may be replaced by a combination of selective EP antagonists and traditional anti-tumoral drugs to alleviate severe side effects and achieve better outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA