Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Intervalo de año de publicación
1.
Opt Express ; 31(17): 28112-28121, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710873

RESUMEN

Optical phased array (OPA) beam scanners for light detection and ranging (LiDAR) are proposed by integrating polymer waveguides with superior thermo-optic effect and silicon nitride (SiN) waveguides exhibiting strong modal confinement along with high optical power capacity. A low connection loss of only 0.15 dB between the polymer and SiN waveguides was achieved in this work, enabling a low-loss OPA device. The polymer-SiN monolithic OPA demonstrates not only high optical throughput but also efficient beamforming and stable beam scanning. This novel integrative approach highlights the potential of leveraging heterogeneous photonic materials to develop advanced photonic integrated circuits with superior performance.

2.
J Med Chem ; 66(17): 11701-11717, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37596939

RESUMEN

Remdesivir 1 is an phosphoramidate prodrug that releases the monophosphate of nucleoside GS-441524 (2) into lung cells, thereby forming the bioactive triphosphate 2-NTP. 2-NTP, an analog of ATP, inhibits the SARS-CoV-2 RNA-dependent RNA polymerase replication and transcription of viral RNA. Strong clinical results for 1 have prompted interest in oral approaches to generate 2-NTP. Here, we describe the discovery of a 5'-isobutyryl ester prodrug of 2 (GS-5245, Obeldesivir, 3) that has low cellular cytotoxicity and 3-7-fold improved oral delivery of 2 in monkeys. Prodrug 3 is cleaved presystemically to provide high systemic exposures of 2 that overcome its less efficient metabolism to 2-NTP, leading to strong SARS-CoV-2 antiviral efficacy in an African green monkey infection model. Exposure-based SARS-CoV-2 efficacy relationships resulted in an estimated clinical dose of 350-400 mg twice daily. Importantly, all SARS-CoV-2 variants remain susceptible to 2, which supports development of 3 as a promising COVID-19 treatment.


Asunto(s)
COVID-19 , Profármacos , Chlorocebus aethiops , Humanos , Animales , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19 , Nucleósidos , Profármacos/farmacología , Profármacos/uso terapéutico , ARN Viral , Antivirales/farmacología , Antivirales/uso terapéutico , Furanos
3.
Sci Rep ; 13(1): 11326, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443187

RESUMEN

We have developed a new analytical peak separation analysis for superposed [Formula: see text]-ray peaks on [Formula: see text]Cu and [Formula: see text]Ga to measure the [Formula: see text]Zn(p,2p)[Formula: see text]Cu and [Formula: see text]Zn(p,2n)[Formula: see text]Ga reactions, unlike in most previous works that were employing a radiochemical separation to measure them. Based on the nuclear data such as the [Formula: see text]-ray intensity and the half-life for each nuclide, we may develop a new analytical method that enables us to estimate the respective counts arising from each nuclide, thereby obtaining the nuclear reactions. The newly developed analytical method can universally be applied to separate the superposed [Formula: see text]-ray spectra of any two nuclides, especially superior in separating the nuclides with different half-lives. In comparison with the data in the literature, the two reactions in the present work are in good agreement with those of some previous works. In addition, we compared the present [Formula: see text]Zn(p,2n)[Formula: see text]Ga reaction without the peak separation to the data in the literature without the chemical separation, and find that a good agreement is evident, enhancing the reliability of the [Formula: see text]Zn(p,x)[Formula: see text]Zn and [Formula: see text]Zn(p,3n)[Formula: see text]Ga reactions, which are further measured in the present work.


Asunto(s)
Zinc , Reproducibilidad de los Resultados
4.
Opt Express ; 31(3): 4760-4769, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785435

RESUMEN

Polymer waveguide phase modulators (PMs) demonstrate high thermal confinement with outstanding thermo-optic properties and can provide stable low-power phase modulation in optical phased arrays (OPA). On the other hand, silicon nitride (SiN) waveguides produce stronger optical confinement with smaller waveguide core sizes than polymer waveguides and can handle high optical power without nonlinear effects. In this work, a high-performance PM was achieved by monolithic integration of a polymer waveguide and tapered SiN input and output waveguides. The integration of heterogeneous waveguide materials on a single substrate will enable the fabrication of efficient OPAs for advanced imaging, display, sensing, and communications applications.

5.
Polymers (Basel) ; 14(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35683859

RESUMEN

Polymer waveguide phase modulators exhibit stable low-power phase modulation owing to their exceptional thermal confinement and high thermo-optic effect, and thus, have the merit of thermal isolation between channels, which is crucial for an optical phased array (OPA) beam scanner device. In this work, a waveguide phase modulator was designed and fabricated based on a high-refractive-index fluorinated polyimide. The propagation loss of the polyimide waveguide and the temporal response of the phase modulator were characterized. Moreover, the transfer function of the phase modulator including multiple poles and zeros was obtained from the measured frequency response. The polyimide waveguide modulator device demonstrated a fast response time of 117 µs for 1 kHz input signal, however, for 1 mHz step-function input, it exhibited an additional 5% phase change in 5 s.

6.
Sci Transl Med ; 14(643): eabm3410, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35315683

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic remains uncontrolled despite the rapid rollout of safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. In addition, the emergence of SARS-CoV-2 variants of concern, with their potential to escape neutralization by therapeutic monoclonal antibodies, emphasizes the need to develop second-generation oral antivirals targeting highly conserved viral proteins that can be rapidly deployed to outpatients. Here, we demonstrate the in vitro antiviral activity and in vivo therapeutic efficacy of GS-621763, an orally bioavailable prodrug of GS-441524, the parent nucleoside of remdesivir, which targets the highly conserved virus RNA-dependent RNA polymerase. GS-621763 exhibited antiviral activity against SARS-CoV-2 in lung cell lines and two different human primary lung cell culture systems. GS-621763 was also potently antiviral against a genetically unrelated emerging coronavirus, Middle East respiratory syndrome CoV (MERS-CoV). The dose-proportional pharmacokinetic profile observed after oral administration of GS-621763 translated to dose-dependent antiviral activity in mice infected with SARS-CoV-2. Therapeutic GS-621763 administration reduced viral load and lung pathology; treatment also improved pulmonary function in COVID-19 mouse model. A direct comparison of GS-621763 with molnupiravir, an oral nucleoside analog antiviral that has recently received EUA approval, proved both drugs to be similarly efficacious in mice. These data support the exploration of GS-441524 oral prodrugs for the treatment of COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Infecciones por Coronavirus , Profármacos , Adenosina/análogos & derivados , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Infecciones por Coronavirus/tratamiento farmacológico , Humanos , Ratones , Nucleósidos , Padres , Profármacos/farmacología , Profármacos/uso terapéutico , SARS-CoV-2
7.
Opt Express ; 30(2): 768-779, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209260

RESUMEN

The phase error imposed in optical phased arrays (OPAs) for beam scanning LiDAR is unavoidable due to minute dimensional fluctuations that occur during the waveguide manufacturing process. To compensate for the phase error, in this study, a fast-running beamforming algorithm is developed based on the rotating element vector method. The proposed algorithm is highly suitable for OPA devices comprised of polymer waveguides, where thermal crosstalk between phase modulators is suppressed effectively, allowing for each phase modulator to be controlled independently. The beamforming speed is determined by the number of phase adjustments. Hence, by using the least square approximation for a 32-channel polymer waveguide OPA device the number of phase adjustments needed to complete beamforming was reduced and the beamforming time was shortened to 16 seconds.

8.
Nat Commun ; 12(1): 6415, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34741049

RESUMEN

Remdesivir is an antiviral approved for COVID-19 treatment, but its wider use is limited by intravenous delivery. An orally bioavailable remdesivir analog may boost therapeutic benefit by facilitating early administration to non-hospitalized patients. This study characterizes the anti-SARS-CoV-2 efficacy of GS-621763, an oral prodrug of remdesivir parent nucleoside GS-441524. Both GS-621763 and GS-441524 inhibit SARS-CoV-2, including variants of concern (VOC) in cell culture and human airway epithelium organoids. Oral GS-621763 is efficiently converted to plasma metabolite GS-441524, and in lungs to the triphosphate metabolite identical to that generated by remdesivir, demonstrating a consistent mechanism of activity. Twice-daily oral administration of 10 mg/kg GS-621763 reduces SARS-CoV-2 burden to near-undetectable levels in ferrets. When dosed therapeutically against VOC P.1 gamma γ, oral GS-621763 blocks virus replication and prevents transmission to untreated contact animals. These results demonstrate therapeutic efficacy of a much-needed orally bioavailable analog of remdesivir in a relevant animal model of SARS-CoV-2 infection.


Asunto(s)
Adenosina/análogos & derivados , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Profármacos/farmacología , SARS-CoV-2/efectos de los fármacos , Adenosina/farmacología , Animales , COVID-19/metabolismo , COVID-19/virología , Línea Celular , Chlorocebus aethiops , Cricetinae , Modelos Animales de Enfermedad , Femenino , Hurones , Humanos , SARS-CoV-2/aislamiento & purificación
9.
bioRxiv ; 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34545367

RESUMEN

The COVID-19 pandemic remains uncontrolled despite the rapid rollout of safe and effective SARS-CoV-2 vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. Additionally, the emergence of SARS-CoV-2 variants of concern with their potential to escape therapeutic monoclonal antibodies emphasizes the need to develop second-generation oral antivirals targeting highly conserved viral proteins that can be rapidly deployed to outpatients. Here, we demonstrate the in vitro antiviral activity and in vivo therapeutic efficacy of GS-621763, an orally bioavailable prodrug of GS-441524, the parental nucleoside of remdesivir, which targets the highly conserved RNA-dependent RNA polymerase. GS-621763 exhibited significant antiviral activity in lung cell lines and two different human primary lung cell culture systems. The dose-proportional pharmacokinetic profile observed after oral administration of GS-621763 translated to dose-dependent antiviral activity in mice infected with SARS-CoV-2. Therapeutic GS-621763 significantly reduced viral load, lung pathology, and improved pulmonary function in COVID-19 mouse model. A direct comparison of GS-621763 with molnupiravir, an oral nucleoside analog antiviral currently in human clinical trial, proved both drugs to be similarly efficacious. These data demonstrate that therapy with oral prodrugs of remdesivir can significantly improve outcomes in SARS-CoV-2 infected mice. Thus, GS-621763 supports the exploration of GS-441524 oral prodrugs for the treatment of COVID-19 in humans.

10.
Sci Rep ; 11(1): 10576, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34012058

RESUMEN

Optical phased array (OPA) devices are being actively investigated to develop compact solid-state beam scanners, which are essential in fields such as LiDAR, free-space optical links, biophotonics, etc. Based on the unique nature of perfluorinated polymers, we propose a polymer waveguide OPA with the advantages of low driving power and high optical throughput. Unlike silicon photonic OPAs, the polymer OPAs enable sustainable phase distribution control during beam scanning, which reduces the burden of beamforming. Moreover, by incorporating a tunable wavelength laser comprising a polymer waveguide Bragg reflector, two-dimensional beam scanning is demonstrated, which facilitates the development of laser-integrated polymeric OPA beam scanners.

11.
J Med Chem ; 64(8): 5001-5017, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33835812

RESUMEN

A discovery program targeting respiratory syncytial virus (RSV) identified C-nucleoside 4 (RSV A2 EC50 = 530 nM) as a phenotypic screening lead targeting the RSV RNA-dependent RNA polymerase (RdRp). Prodrug exploration resulted in the discovery of remdesivir (1, GS-5734) that is >30-fold more potent than 4 against RSV in HEp-2 and NHBE cells. Metabolism studies in vitro confirmed the rapid formation of the active triphosphate metabolite, 1-NTP, and in vivo studies in cynomolgus and African Green monkeys demonstrated a >10-fold higher lung tissue concentration of 1-NTP following molar normalized IV dosing of 1 compared to that of 4. A once daily 10 mg/kg IV administration of 1 in an African Green monkey RSV model demonstrated a >2-log10 reduction in the peak lung viral load. These early data following the discovery of 1 supported its potential as a novel treatment for RSV prior to its development for Ebola and approval for COVID-19 treatment.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Profármacos/farmacología , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Adenosina Monofosfato/farmacología , Alanina/farmacología , Animales , Antivirales/química , Antivirales/farmacocinética , Células CACO-2 , Células Cultivadas , Chlorocebus aethiops , Modelos Animales de Enfermedad , Perros , Evaluación Preclínica de Medicamentos/métodos , Células Epiteliales/virología , Humanos , Macaca fascicularis , Masculino , Profármacos/química , Profármacos/farmacocinética , Ratas Sprague-Dawley , Infecciones por Virus Sincitial Respiratorio/virología , Relación Estructura-Actividad , Distribución Tisular , Tubercidina/análogos & derivados , Tubercidina/química , Carga Viral
12.
Laboratory Animal Research ; : 223-232, 2021.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-894961

RESUMEN

Background@#As a laboratory animal resource, the ICR mouse is commonly used in a variety of research fields. However, information on differences in exercise-related characteristics in ICR mice derived from different lineages and the underlying mechanisms remains to be elucidated. In this study, we investigated the intrinsic exercise capacity and a magnitude of response to acute exercise, and sought to identify mechanisms contributing to difference in Korl:ICR (a novel ICR lineage recently established by the National Institute of Food and Drug Safety Evaluation, Korea) and two commercialized ICR lineages derived from different origins (viz., A:ICR mouse from Orient Bio Com, the United States, and B:ICR mouse from Japan SLC Inc., Japan). @*Results@#Results showed that despite no significant difference in body weight and weight-proportioned tissue mass of heart and skeletal muscles among groups, the relatively low intrinsic exercise capacity and exaggerated response to acute exercise were identified in B:ICR comparted with Korl:ICR and A:ICR, as reflected by total work and lactate threshold (LT). Also, the mitochondrial efficiency expressed as the complex 1 and complex 1 + 2 respiratory control ratio (RCR) values for cardiac mitochondrial O 2 consumption in B:ICR was significantly lower than that in Korl:ICR with higher level of state 2 respiration by glutamate/malate and UCP3 expression in cardiac muscle. @*Conclusions@#Taken together, these results indicate that the intrinsic exercise capacity of ICR mouse varies according to lineages, suggesting the role of cardiac mitochondrial coupling efficiency as a possible mechanism that might contribute to differences in the intrinsic exercise capacity and magnitude of response to exercise.

13.
Laboratory Animal Research ; : 223-232, 2021.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-902665

RESUMEN

Background@#As a laboratory animal resource, the ICR mouse is commonly used in a variety of research fields. However, information on differences in exercise-related characteristics in ICR mice derived from different lineages and the underlying mechanisms remains to be elucidated. In this study, we investigated the intrinsic exercise capacity and a magnitude of response to acute exercise, and sought to identify mechanisms contributing to difference in Korl:ICR (a novel ICR lineage recently established by the National Institute of Food and Drug Safety Evaluation, Korea) and two commercialized ICR lineages derived from different origins (viz., A:ICR mouse from Orient Bio Com, the United States, and B:ICR mouse from Japan SLC Inc., Japan). @*Results@#Results showed that despite no significant difference in body weight and weight-proportioned tissue mass of heart and skeletal muscles among groups, the relatively low intrinsic exercise capacity and exaggerated response to acute exercise were identified in B:ICR comparted with Korl:ICR and A:ICR, as reflected by total work and lactate threshold (LT). Also, the mitochondrial efficiency expressed as the complex 1 and complex 1 + 2 respiratory control ratio (RCR) values for cardiac mitochondrial O 2 consumption in B:ICR was significantly lower than that in Korl:ICR with higher level of state 2 respiration by glutamate/malate and UCP3 expression in cardiac muscle. @*Conclusions@#Taken together, these results indicate that the intrinsic exercise capacity of ICR mouse varies according to lineages, suggesting the role of cardiac mitochondrial coupling efficiency as a possible mechanism that might contribute to differences in the intrinsic exercise capacity and magnitude of response to exercise.

14.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-875435

RESUMEN

Background/Aims@#This study was conducted to investigate the inhibitory effect of irsogladine maleate (IM) on gastric ulcers induced by ethanol and hydrochloric acid (HCl). @*Methods@#Mice were pretreated with IM for 1 hours before ulcer induction. Gastric ulcers were induced by oral administration of an ethanol/HCl mixture. To clarify the action mechanism of IM, the roles of 3ʹ5ʹ-cyclic adenosine monophosphate (cAMP), nitric oxide (NO), adenosine triphosphate-sensitive potassium (KATP ) channels, prostaglandins and transient receptor potential cation channel subfamily V member 1 (TRPV1) were investigated, and lipid peroxidation in the stomach of IM-treated and -untreated animals was also measured. @*Results@#IM significantly reduced the extent of ethanol/HCl mixture-induced gastric ulceration. It exhibited dose-related gastroprotection against the ethanol/ HCl-induced lesions, while pretreatment with glibenclamide but not N(ω)-nitro-L-arginine methyl ester, reversed this action. While pretreatment with the TRPV1 antagonist capsazepine failed to effectively block the gastroprotective effect of IM, the non-selective cyclooxygenase inhibitor indomethacin almost abolished it. IM also decreased the level of thiobarbituric acid reactive substances. @*Conclusions@#We concluded that IM exhibited significant gastroprotective effects in an ethanol/HCl-induced ulcer model, which appear to be mediated, at least in part, by NO, cAMP, endogenous prostaglandins, KATP channel opening, activation of TRPV1 channels, and antioxidant properties.

15.
Laboratory Animal Research ; : 239-247, 2020.
Artículo | WPRIM (Pacífico Occidental) | ID: wpr-836904

RESUMEN

C57BL/6NKorl mice are a novel mouse stock recently developed by the National Institute of Food and Drug Safety Evaluation in Korea. Extensive research into the nature of C57BL/6NKorl mice is being conducted. However, there is no scientific evidence for the phenotypic response to restraint stress (RST), a stress paradigm for modeling depressive disorders, in rodents. In this study, we investigated the repeated RST-induced depressive-like phenotypes in C57BL/6 N mouse substrains (viz., C57BL/6NKorl mice from Korea, C57BL/6NA mice from the United States, and C57BL/6NB mice from Japan) obtained from different sources. The results showed that C57BL/6 N mice derived from various sources exposed to repeated RST resulted in depressive-like phenotypes reflected by a similar degree of behavioral modification and susceptibility to oxidative stress in a duration-dependent manner, except for the distinctive features (increased body weight (BW) and tolerance to the suppression of BW gain by exposure to repeated RST) in C57BL/6NKorl mice. Taken together, the duration-dependent alteration in depressive-like phenotypes by repeated exposure to RST observed in this study may provide valuable insights into the nature of C57BL/6NKorl mice as an alternative animal resource for better understanding of the etiology of depressive disorders and the mechanisms of antidepressant actions.

16.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-918397

RESUMEN

MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine is commonly used to induce nigrostriatal defects to induce parkinsonism and/or parkinsonian syndrome, to replicate the lesions seen in Parkinson's disease (PD), with use in numerous PD models in mice. It has been suggested that various biological characteristics including strain could result in differing mortality rates, sensitivity to MPTP administration, and reproducibility of lesions in mice, but there is no evidence on the sensitivity of C57BL/6 mice from different origins to MPTP and its associated pathological lesions. In this study, we investigated the magnitude of the dose-dependent response to acute MPTP administration in C57BL/6NKorl mice and two commercialized C57BL/6 stocks derived from the United States and Japan. We measured biological features (body weight, temperature, and composition), nigrostriatal neurotoxic responses (dopamine levels, tyrosine hydroxylase enzymes, and protein carbonylation) and motor function. In results, the three different C57BL/6 stocks exhibited similar overall neurotoxic response and locomotor impairment which increased in a dose-dependent manner with acute MPTP administration (10 mg/kg, 20 mg/kg, and 30 mg/kg, all with external heat support), although some of these differences were not significant. In conclusion, this study provides scientific evidence that C57BL/6NKorl mice can be used as an alternative animal model for practical and targeted PD research.

17.
J Med Chem ; 60(5): 1648-1661, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28124907

RESUMEN

The recent Ebola virus (EBOV) outbreak in West Africa was the largest recorded in history with over 28,000 cases, resulting in >11,000 deaths including >500 healthcare workers. A focused screening and lead optimization effort identified 4b (GS-5734) with anti-EBOV EC50 = 86 nM in macrophages as the clinical candidate. Structure activity relationships established that the 1'-CN group and C-linked nucleobase were critical for optimal anti-EBOV potency and selectivity against host polymerases. A robust diastereoselective synthesis provided sufficient quantities of 4b to enable preclinical efficacy in a non-human-primate EBOV challenge model. Once-daily 10 mg/kg iv treatment on days 3-14 postinfection had a significant effect on viremia and mortality, resulting in 100% survival of infected treated animals [ Nature 2016 , 531 , 381 - 385 ]. A phase 2 study (PREVAIL IV) is currently enrolling and will evaluate the effect of 4b on viral shedding from sanctuary sites in EBOV survivors.


Asunto(s)
Alanina/análogos & derivados , Amidas/química , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Ácidos Fosfóricos/química , Profármacos/química , Profármacos/farmacología , Ribonucleótidos/química , Virosis/tratamiento farmacológico , Adenosina Monofosfato/análogos & derivados , Alanina/química , Línea Celular , Descubrimiento de Drogas , Humanos , Pruebas de Sensibilidad Microbiana , Profármacos/síntesis química , Relación Estructura-Actividad
18.
Nature ; 531(7594): 381-5, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26934220

RESUMEN

The most recent Ebola virus outbreak in West Africa, which was unprecedented in the number of cases and fatalities, geographic distribution, and number of nations affected, highlights the need for safe, effective, and readily available antiviral agents for treatment and prevention of acute Ebola virus (EBOV) disease (EVD) or sequelae. No antiviral therapeutics have yet received regulatory approval or demonstrated clinical efficacy. Here we report the discovery of a novel small molecule GS-5734, a monophosphoramidate prodrug of an adenosine analogue, with antiviral activity against EBOV. GS-5734 exhibits antiviral activity against multiple variants of EBOV and other filoviruses in cell-based assays. The pharmacologically active nucleoside triphosphate (NTP) is efficiently formed in multiple human cell types incubated with GS-5734 in vitro, and the NTP acts as an alternative substrate and RNA-chain terminator in primer-extension assays using a surrogate respiratory syncytial virus RNA polymerase. Intravenous administration of GS-5734 to nonhuman primates resulted in persistent NTP levels in peripheral blood mononuclear cells (half-life, 14 h) and distribution to sanctuary sites for viral replication including testes, eyes, and brain. In a rhesus monkey model of EVD, once-daily intravenous administration of 10 mg kg(-1) GS-5734 for 12 days resulted in profound suppression of EBOV replication and protected 100% of EBOV-infected animals against lethal disease, ameliorating clinical disease signs and pathophysiological markers, even when treatments were initiated three days after virus exposure when systemic viral RNA was detected in two out of six treated animals. These results show the first substantive post-exposure protection by a small-molecule antiviral compound against EBOV in nonhuman primates. The broad-spectrum antiviral activity of GS-5734 in vitro against other pathogenic RNA viruses, including filoviruses, arenaviruses, and coronaviruses, suggests the potential for wider medical use. GS-5734 is amenable to large-scale manufacturing, and clinical studies investigating the drug safety and pharmacokinetics are ongoing.


Asunto(s)
Alanina/análogos & derivados , Antivirales/uso terapéutico , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Macaca mulatta/virología , Ribonucleótidos/uso terapéutico , Adenosina Monofosfato/análogos & derivados , Alanina/farmacocinética , Alanina/farmacología , Alanina/uso terapéutico , Secuencia de Aminoácidos , Animales , Antivirales/farmacocinética , Antivirales/farmacología , Línea Celular Tumoral , Ebolavirus/efectos de los fármacos , Femenino , Células HeLa , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Masculino , Datos de Secuencia Molecular , Especificidad de Órganos , Profármacos/farmacocinética , Profármacos/farmacología , Profármacos/uso terapéutico , Ribonucleótidos/farmacocinética , Ribonucleótidos/farmacología
19.
The Korean Journal of Pain ; : 229-238, 2016.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-130327

RESUMEN

BACKGROUND: The goal of this in vitro study was to investigate the effect of lipid emulsion on vasodilation caused by toxic doses of bupivacaine and mepivacaine during contraction induced by a protein kinase C (PKC) activator, phorbol 12,13-dibutyrate (PDBu), in an isolated endothelium-denuded rat aorta. METHODS: The effects of lipid emulsion on the dose-response curves induced by bupivacaine or mepivacaine in an isolated aorta precontracted with PDBu were assessed. In addition, the effects of bupivacaine on the increased intracellular calcium concentration ([Ca²⁺]ᵢ) and contraction induced by PDBu were investigated using fura-2 loaded aortic strips. Further, the effects of bupivacaine, the PKC inhibitor GF109203X and lipid emulsion, alone or in combination, on PDBu-induced PKC and phosphorylation-dependent inhibitory protein of myosin phosphatase (CPI-17) phosphorylation in rat aortic vascular smooth muscle cells (VSMCs) was examined by western blotting. RESULTS: Lipid emulsion attenuated the vasodilation induced by bupivacaine, whereas it had no effect on that induced by mepivacaine. Lipid emulsion had no effect on PDBu-induced contraction. The magnitude of bupivacaine-induced vasodilation was higher than that of the bupivacaine-induced decrease in [Ca²⁺]ᵢ. PDBu promoted PKC and CPI-17 phosphorylation in aortic VSMCs. Bupivacaine and GF109203X attenuated PDBu-induced PKC and CPI-17 phosphorylation, whereas lipid emulsion attenuated bupivacaine-mediated inhibition of PDBu-induced PKC and CPI-17 phosphorylation. CONCLUSIONS: These results suggest that lipid emulsion attenuates the vasodilation induced by a toxic dose of bupivacaine via inhibition of bupivacaine-induced PKC and CPI-17 dephosphorylation. This lipid emulsion-mediated inhibition of vasodilation may be partly associated with the lipid solubility of local anesthetics.


Asunto(s)
Animales , Ratas , Anestésicos Locales , Aorta , Western Blotting , Bupivacaína , Calcio , Fura-2 , Técnicas In Vitro , Mepivacaína , Músculo Liso Vascular , Fosfatasa de Miosina de Cadena Ligera , Forbol 12,13-Dibutirato , Fosforilación , Proteína Quinasa C , Solubilidad , Vasodilatación
20.
The Korean Journal of Pain ; : 229-238, 2016.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-130314

RESUMEN

BACKGROUND: The goal of this in vitro study was to investigate the effect of lipid emulsion on vasodilation caused by toxic doses of bupivacaine and mepivacaine during contraction induced by a protein kinase C (PKC) activator, phorbol 12,13-dibutyrate (PDBu), in an isolated endothelium-denuded rat aorta. METHODS: The effects of lipid emulsion on the dose-response curves induced by bupivacaine or mepivacaine in an isolated aorta precontracted with PDBu were assessed. In addition, the effects of bupivacaine on the increased intracellular calcium concentration ([Ca²⁺]ᵢ) and contraction induced by PDBu were investigated using fura-2 loaded aortic strips. Further, the effects of bupivacaine, the PKC inhibitor GF109203X and lipid emulsion, alone or in combination, on PDBu-induced PKC and phosphorylation-dependent inhibitory protein of myosin phosphatase (CPI-17) phosphorylation in rat aortic vascular smooth muscle cells (VSMCs) was examined by western blotting. RESULTS: Lipid emulsion attenuated the vasodilation induced by bupivacaine, whereas it had no effect on that induced by mepivacaine. Lipid emulsion had no effect on PDBu-induced contraction. The magnitude of bupivacaine-induced vasodilation was higher than that of the bupivacaine-induced decrease in [Ca²⁺]ᵢ. PDBu promoted PKC and CPI-17 phosphorylation in aortic VSMCs. Bupivacaine and GF109203X attenuated PDBu-induced PKC and CPI-17 phosphorylation, whereas lipid emulsion attenuated bupivacaine-mediated inhibition of PDBu-induced PKC and CPI-17 phosphorylation. CONCLUSIONS: These results suggest that lipid emulsion attenuates the vasodilation induced by a toxic dose of bupivacaine via inhibition of bupivacaine-induced PKC and CPI-17 dephosphorylation. This lipid emulsion-mediated inhibition of vasodilation may be partly associated with the lipid solubility of local anesthetics.


Asunto(s)
Animales , Ratas , Anestésicos Locales , Aorta , Western Blotting , Bupivacaína , Calcio , Fura-2 , Técnicas In Vitro , Mepivacaína , Músculo Liso Vascular , Fosfatasa de Miosina de Cadena Ligera , Forbol 12,13-Dibutirato , Fosforilación , Proteína Quinasa C , Solubilidad , Vasodilatación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...