Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 42(1): 225-241, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36349954

RESUMEN

Arsenic (As) and mercury (Hg) were examined in the Yellowstone Lake food chain, focusing on two lake locations separated by approximately 20 km and differing in lake floor hydrothermal vent activity. Sampling spanned from femtoplankton to the main fish species, Yellowstone cutthroat trout and the apex predator lake trout. Mercury bioaccumulated in muscle and liver of both trout species, biomagnifying with age, whereas As decreased in older fish, which indicates differential exposure routes for these metal(loid)s. Mercury and As concentrations were higher in all food chain filter fractions (0.1-, 0.8-, and 3.0-µm filters) at the vent-associated Inflated Plain site, illustrating the impact of localized hydrothermal inputs. Femtoplankton and picoplankton size biomass (0.1- and 0.8-µm filters) accounted for 30%-70% of total Hg or As at both locations. By contrast, only approximately 4% of As and <1% of Hg were found in the 0.1-µm filtrate, indicating that comparatively little As or Hg actually exists as an ionic form or intercalated with humic compounds, a frequent assumption in freshwaters and marine waters. Ribosomal RNA (18S) gene sequencing of DNA derived from the 0.1-, 0.8-, and 3.0-µm filters showed significant eukaryote biomass in these fractions, providing a novel view of the femtoplankton and picoplankton size biomass, which assists in explaining why these fractions may contain such significant Hg and As. These results infer that femtoplankton and picoplankton metal(loid) loads represent aquatic food chain entry points that need to be accounted for and that are important for better understanding Hg and As biochemistry in aquatic systems. Environ Toxicol Chem 2023;42:225-241. © 2022 SETAC.


Asunto(s)
Arsénico , Mercurio , Contaminantes Químicos del Agua , Animales , Mercurio/análisis , Cadena Alimentaria , Contaminantes Químicos del Agua/análisis , Peces , Lagos/química , Trucha , Monitoreo del Ambiente/métodos
2.
ISME J ; 13(9): 2150-2161, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31024152

RESUMEN

Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread in marine and terrestrial habitats, playing a major role in the global nitrogen cycle. However, their evolutionary history remains unexplored, which limits our understanding of their adaptation mechanisms. Here, our comprehensive phylogenomic tree of Thaumarchaeota supports three sequential events: origin of AOA from terrestrial non-AOA ancestors, colonization of the shallow ocean, and expansion to the deep ocean. Careful molecular dating suggests that these events coincided with the Great Oxygenation Event around 2300 million years ago (Mya), and oxygenation of the shallow and deep ocean around 800 and 635-560 Mya, respectively. The first transition was likely enabled by the gain of an aerobic pathway for energy production by ammonia oxidation and biosynthetic pathways for cobalamin and biotin that act as cofactors in aerobic metabolism. The first transition was also accompanied by the loss of dissimilatory nitrate and sulfate reduction, loss of oxygen-sensitive pyruvate oxidoreductase, which reduces pyruvate to acetyl-CoA, and loss of the Wood-Ljungdahl pathway for anaerobic carbon fixation. The second transition involved gain of a K+ transporter and of the biosynthetic pathway for ectoine, which may function as an osmoprotectant. The third transition was accompanied by the loss of the uvr system for repairing ultraviolet light-induced DNA lesions. We conclude that oxygen availability drove the terrestrial origin of AOA and their expansion to the photic and dark oceans, and that the stressors encountered during these events were partially overcome by gene acquisitions from Euryarchaeota and Bacteria, among other sources.


Asunto(s)
Archaea/metabolismo , Evolución Molecular , Oxígeno/metabolismo , Filogenia , Amoníaco/metabolismo , Archaea/clasificación , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/metabolismo , Ciclo del Carbono , Ecosistema , Euryarchaeota/metabolismo , Ciclo del Nitrógeno , Océanos y Mares , Agua de Mar/microbiología
3.
Nat Genet ; 50(1): 138-150, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29255260

RESUMEN

Plants intimately associate with diverse bacteria. Plant-associated bacteria have ostensibly evolved genes that enable them to adapt to plant environments. However, the identities of such genes are mostly unknown, and their functions are poorly characterized. We sequenced 484 genomes of bacterial isolates from roots of Brassicaceae, poplar, and maize. We then compared 3,837 bacterial genomes to identify thousands of plant-associated gene clusters. Genomes of plant-associated bacteria encode more carbohydrate metabolism functions and fewer mobile elements than related non-plant-associated genomes do. We experimentally validated candidates from two sets of plant-associated genes: one involved in plant colonization, and the other serving in microbe-microbe competition between plant-associated bacteria. We also identified 64 plant-associated protein domains that potentially mimic plant domains; some are shared with plant-associated fungi and oomycetes. This work expands the genome-based understanding of plant-microbe interactions and provides potential leads for efficient and sustainable agriculture through microbiome engineering.


Asunto(s)
Adaptación Fisiológica , Bacterias/genética , Genoma Bacteriano , Genómica , Interacciones Huésped-Patógeno/genética , Plantas/microbiología , Bacterias/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Simbiosis
4.
Front Microbiol ; 7: 210, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26973602

RESUMEN

Yellowstone Lake, the largest subalpine lake in the United States, harbors great novelty and diversity of Bacteria and Archaea. Size-fractionated water samples (0.1-0.8, 0.8-3.0, and 3.0-20 µm) were collected from surface photic zone, deep mixing zone, and vent fluids at different locations in the lake by using a remotely operated vehicle (ROV). Quantification with real-time PCR indicated that Bacteria dominated free-living microorganisms with Bacteria/Archaea ratios ranging from 4037:1 (surface water) to 25:1 (vent water). Microbial population structures (both Bacteria and Archaea) were assessed using 454-FLX sequencing with a total of 662,302 pyrosequencing reads for V1 and V2 regions of 16S rRNA genes. Non-metric multidimensional scaling (NMDS) analyses indicated that strong spatial distribution patterns existed from surface to deep vents for free-living Archaea and Bacteria in the lake. Along with pH, major vent-associated geochemical constituents including CH4, CO2, H2, DIC (dissolved inorganic carbon), DOC (dissolved organic carbon), SO4 (2-), O2 and metals were likely the major drivers for microbial population structures, however, mixing events occurring in the lake also impacted the distribution patterns. Distinct Bacteria and Archaea were present among size fractions, and bigger size fractions included particle-associated microbes (> 3 µm) and contained higher predicted operational taxonomic unit richness and microbial diversities (genus level) than free-living ones (<0.8 µm). Our study represents the first attempt at addressing the spatial distribution of Bacteria and Archaea in Yellowstone Lake, and our results highlight the variable contribution of Archaea and Bacteria to the hydrogeochemical-relevant metabolism of hydrogen, carbon, nitrogen, and sulfur.

5.
New Phytol ; 209(2): 798-811, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26467257

RESUMEN

Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves, through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A. tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions.


Asunto(s)
Agave/microbiología , Microbiota , Biodiversidad , América Central , América del Norte , Filogenia , Filogeografía , Hojas de la Planta , Raíces de Plantas/microbiología , Rizosfera , Microbiología del Suelo , Simbiosis
6.
ISME J ; 10(1): 269-72, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26057843

RESUMEN

Single amplified genomes and genomes assembled from metagenomes have enabled the exploration of uncultured microorganisms at an unprecedented scale. However, both these types of products are plagued by contamination. Since these genomes are now being generated in a high-throughput manner and sequences from them are propagating into public databases to drive novel scientific discoveries, rigorous quality controls and decontamination protocols are urgently needed. Here, we present ProDeGe (Protocol for fully automated Decontamination of Genomes), the first computational protocol for fully automated decontamination of draft genomes. ProDeGe classifies sequences into two classes--clean and contaminant--using a combination of homology and feature-based methodologies. On average, 84% of sequence from the non-target organism is removed from the data set (specificity) and 84% of the sequence from the target organism is retained (sensitivity). The procedure operates successfully at a rate of ~0.30 CPU core hours per megabase of sequence and can be applied to any type of genome sequence.


Asunto(s)
Biología Computacional/métodos , Genoma , Secuencia de Bases , Biología Computacional/instrumentación , Metagenoma , Datos de Secuencia Molecular , Homología de Secuencia de Ácido Nucleico
7.
Front Microbiol ; 6: 1044, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26579074

RESUMEN

Yellowstone Lake (Yellowstone National Park, WY, USA) is a large high-altitude (2200 m), fresh-water lake, which straddles an extensive caldera and is the center of significant geothermal activity. The primary goal of this interdisciplinary study was to evaluate the microbial populations inhabiting thermal vent communities in Yellowstone Lake using 16S rRNA gene and random metagenome sequencing, and to determine how geochemical attributes of vent waters influence the distribution of specific microorganisms and their metabolic potential. Thermal vent waters and associated microbial biomass were sampled during two field seasons (2007-2008) using a remotely operated vehicle (ROV). Sublacustrine thermal vent waters (circa 50-90°C) contained elevated concentrations of numerous constituents associated with geothermal activity including dissolved hydrogen, sulfide, methane and carbon dioxide. Microorganisms associated with sulfur-rich filamentous "streamer" communities of Inflated Plain and West Thumb (pH range 5-6) were dominated by bacteria from the Aquificales, but also contained thermophilic archaea from the Crenarchaeota and Euryarchaeota. Novel groups of methanogens and members of the Korarchaeota were observed in vents from West Thumb and Elliot's Crater (pH 5-6). Conversely, metagenome sequence from Mary Bay vent sediments did not yield large assemblies, and contained diverse thermophilic and nonthermophilic bacterial relatives. Analysis of functional genes associated with the major vent populations indicated a direct linkage to high concentrations of carbon dioxide, reduced sulfur (sulfide and/or elemental S), hydrogen and methane in the deep thermal ecosystems. Our observations show that sublacustrine thermal vents in Yellowstone Lake support novel thermophilic communities, which contain microorganisms with functional attributes not found to date in terrestrial geothermal systems of YNP.

8.
ISME J ; 8(12): 2546-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24926860

RESUMEN

Single-cell genomics is a powerful tool for accessing genetic information from uncultivated microorganisms. Methods of handling samples before single-cell genomic amplification may affect the quality of the genomes obtained. Using three bacterial strains we show that, compared to cryopreservation, lower-quality single-cell genomes are recovered when the sample is preserved in ethanol or if the sample undergoes fluorescence in situ hybridization, while sample preservation in paraformaldehyde renders it completely unsuitable for sequencing.


Asunto(s)
Genoma Bacteriano , Genómica/métodos , Criopreservación , Hibridación Fluorescente in Situ , Análisis de la Célula Individual
9.
Front Microbiol ; 5: 771, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25620966

RESUMEN

As the vast majority of microorganisms have yet to be cultivated in a laboratory setting, access to their genetic makeup has largely been limited to cultivation-independent methods. These methods, namely metagenomics and more recently single-cell genomics, have become cornerstones for microbial ecology and environmental microbiology. One ultimate goal is the recovery of genome sequences from each cell within an environment to move toward a better understanding of community metabolic potential and to provide substrate for experimental work. As single-cell sequencing has the ability to decipher all sequence information contained in an individual cell, this method holds great promise in tackling such challenge. Methodological limitations and inherent biases however do exist, which will be discussed here based on environmental and benchmark data, to assess how far we are from reaching this goal.

10.
J Comput Biol ; 20(10): 714-37, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24093227

RESUMEN

Recent advances in single-cell genomics provide an alternative to largely gene-centric metagenomics studies, enabling whole-genome sequencing of uncultivated bacteria. However, single-cell assembly projects are challenging due to (i) the highly nonuniform read coverage and (ii) a greatly elevated number of chimeric reads and read pairs. While recently developed single-cell assemblers have addressed the former challenge, methods for assembling highly chimeric reads remain poorly explored. We present algorithms for identifying chimeric edges and resolving complex bulges in de Bruijn graphs, which significantly improve single-cell assemblies. We further describe applications of the single-cell assembler SPAdes to a new approach for capturing and sequencing "microbial dark matter" that forms small pools of randomly selected single cells (called a mini-metagenome) and further sequences all genomes from the mini-metagenome at once. On single-cell bacterial datasets, SPAdes improves on the recently developed E+V-SC and IDBA-UD assemblers specifically designed for single-cell sequencing. For standard (cultivated monostrain) datasets, SPAdes also improves on A5, ABySS, CLC, EULER-SR, Ray, SOAPdenovo, and Velvet. Thus, recently developed single-cell assemblers not only enable single-cell sequencing, but also improve on conventional assemblers on their own turf. SPAdes is available for free online download under a GPLv2 license.


Asunto(s)
Mapeo Contig/métodos , ADN Bacteriano/genética , ADN Concatenado/genética , Algoritmos , Composición de Base , Biología Computacional , Escherichia coli/genética , Biblioteca de Genes , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Técnicas de Amplificación de Ácido Nucleico , Pedobacter/genética , Prochlorococcus/genética , Análisis de Secuencia de ADN , Análisis de la Célula Individual
11.
Front Microbiol ; 4: 274, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24062731

RESUMEN

Considerable Nanoarchaeota novelty and diversity were encountered in Yellowstone Lake, Yellowstone National Park (YNP), where sampling targeted lake floor hydrothermal vent fluids, streamers and sediments associated with these vents, and in planktonic photic zones in three different regions of the lake. Significant homonucleotide repeats (HR) were observed in pyrosequence reads and in near full-length Sanger sequences, averaging 112 HR per 1349 bp clone and could confound diversity estimates derived from pyrosequencing, resulting in false nucleotide insertions or deletions (indels). However, Sanger sequencing of two different sets of PCR clones (110 bp, 1349 bp) demonstrated that at least some of these indels are real. The majority of the Nanoarchaeota PCR amplicons were vent associated; however, curiously, one relatively small Nanoarchaeota OTU (71 pyrosequencing reads) was only found in photic zone water samples obtained from a region of the lake furthest removed from the hydrothermal regions of the lake. Extensive pyrosequencing failed to demonstrate the presence of an Ignicoccus lineage in this lake, suggesting the Nanoarchaeota in this environment are associated with novel Archaea hosts. Defined phylogroups based on near full-length PCR clones document the significant Nanoarchaeota 16S rRNA gene diversity in this lake and firmly establish a terrestrial clade distinct from the marine Nanoarcheota as well as from other geographical locations.

12.
Front Microbiol ; 3: 63, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22363335

RESUMEN

One difficulty in using bioremediation at a contaminated site is demonstrating that biodegradation is actually occurring in situ. The stable isotope composition of contaminants may help with this, since they can serve as an indicator of biological activity. To use this approach it is necessary to establish how a particular biodegradation pathway affects the isotopic composition of a contaminant. This study examined bacterial strains expressing three aerobic enzymes for their effect on the (13)C/(12)C ratio when degrading both trichloroethene (TCE) and cis-1,2-dichloroethene (c-DCE): toluene 3-monoxygenase, toluene 4-monooxygenase, and toluene 2,3-dioxygenase. We found no significant differences in fractionation among the three enzymes for either compound. Aerobic degradation of c-DCE occurred with low fractionation producing δ(13)C enrichment factors of -0.9 ± 0.5 to -1.2 ± 0.5, in contrast to reported anaerobic degradation δ(13)C enrichment factors of -14.1 to -20.4‰. Aerobic degradation of TCE resulted in δ(13)C enrichment factors of -11.6 ± 4.1 to -14.7 ± 3.0‰ which overlap reported δ(13)C enrichment factors for anaerobic TCE degradation of -2.5 to -13.8‰. The data from this study suggest that stable isotopes could serve as a diagnostic for detecting aerobic biodegradation of TCE by toluene oxygenases at contaminated sites.

13.
PLoS One ; 6(10): e26161, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22028825

RESUMEN

Single cell genomics is a powerful and increasingly popular tool for studying the genetic make-up of uncultured microbes. A key challenge for successful single cell sequencing and analysis is the removal of exogenous DNA from whole genome amplification reagents. We found that UV irradiation of the multiple displacement amplification (MDA) reagents, including the Phi29 polymerase and random hexamer primers, effectively eliminates the amplification of contaminating DNA. The methodology is quick, simple, and highly effective, thus significantly improving whole genome amplification from single cells.


Asunto(s)
Artefactos , Contaminación de ADN , Genómica/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Análisis de la Célula Individual/métodos , Rayos Ultravioleta , Fagos de Bacillus/enzimología , Cartilla de ADN/genética , Cartilla de ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Relación Dosis-Respuesta en la Radiación , Escherichia coli K12/citología , Escherichia coli K12/genética , Indicadores y Reactivos/metabolismo , Análisis de Secuencia de ADN , Factores de Tiempo
14.
ISME J ; 5(11): 1784-95, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21544103

RESUMEN

The Yellowstone geothermal complex has yielded foundational discoveries that have significantly enhanced our understanding of the Archaea. This study continues on this theme, examining Yellowstone Lake and its lake floor hydrothermal vents. Significant Archaea novelty and diversity were found associated with two near-surface photic zone environments and two vents that varied in their depth, temperature and geochemical profile. Phylogenetic diversity was assessed using 454-FLX sequencing (~51,000 pyrosequencing reads; V1 and V2 regions) and Sanger sequencing of 200 near-full-length polymerase chain reaction (PCR) clones. Automated classifiers (Ribosomal Database Project (RDP) and Greengenes) were problematic for the 454-FLX reads (wrong domain or phylum), although BLAST analysis of the 454-FLX reads against the phylogenetically placed full-length Sanger sequenced PCR clones proved reliable. Most of the archaeal diversity was associated with vents, and as expected there were differences between the vents and the near-surface photic zone samples. Thaumarchaeota dominated all samples: vent-associated organisms corresponded to the largely uncharacterized Marine Group I, and in surface waters, ~69-84% of the 454-FLX reads matched archaeal clones representing organisms that are Nitrosopumilus maritimus-like (96-97% identity). Importance of the lake nitrogen cycling was also suggested by >5% of the alkaline vent phylotypes being closely related to the nitrifier Candidatus Nitrosocaldus yellowstonii. The Euryarchaeota were primarily related to the uncharacterized environmental clones that make up the Deep Sea Euryarchaeal Group or Deep Sea Hydrothermal Vent Group-6. The phylogenetic parallels of Yellowstone Lake archaea to marine microorganisms provide opportunities to examine interesting evolutionary tracks between freshwater and marine lineages.


Asunto(s)
Archaea/clasificación , Lagos/microbiología , Archaea/genética , ADN de Archaea/análisis , ADN de Archaea/genética , Respiraderos Hidrotermales , Noroeste de Estados Unidos , Filogenia , Reacción en Cadena de la Polimerasa
15.
Environ Microbiol ; 13(8): 2172-85, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21450005

RESUMEN

Yellowstone Lake is central to the balanced functioning of the Yellowstone ecosystem, yet little is known about the microbial component of its food chain. A remotely operated vehicle provided video documentation (http://www.tbi.montana.edu/media/videos/) and allowed sampling of dilute surface zone waters and enriched lake floor hydrothermal vent fluids. Vent emissions contained substantial H(2)S, CH(4), CO(2) and H(2), although CH(4) and H(2) levels were also significant throughout the lake. Pyrosequencing and near full-length sequencing of Bacteria 16S rRNA gene diversity associated with two vents and two surface water environments demonstrated that this lake contains significant bacterial diversity. Biomass was size-fractionated by sequentially filtering through 20-µm-, 3.0-µm-, 0.8-µm- and 0.1-µm-pore-size filters, with the >0.1 to <0.8 µm size class being the focus of this study. Major phyla included Acidobacteria, Actinobacteria, Bacteroidetes, α- and ß-Proteobacteria and Cyanobacteria, with 21 other phyla represented at varying levels. Surface waters were dominated by two phylotypes: the Actinobacteria freshwater acI group and an α-Proteobacteria clade tightly linked with freshwater SAR11-like organisms. We also obtained evidence of novel thermophiles and recovered Prochlorococcus phylotypes (97-100% identity) in one near surface photic zone region of the lake. The combined geochemical and microbial analyses suggest that the foundation of this lake's food chain is not simple. Phototrophy presumably is an important driver of primary productivity in photic zone waters; however, chemosynthetic hydrogenotrophy and methanotrophy are likely important components of the lake's food chain.


Asunto(s)
Bacterias/clasificación , Biodiversidad , Lagos/microbiología , Bacterias/genética , Ecosistema , Respiraderos Hidrotermales/química , Respiraderos Hidrotermales/microbiología , Lagos/química , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética
16.
Appl Environ Microbiol ; 75(10): 3362-5, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19304831

RESUMEN

Novel arsenite [As(III)] oxidase structural genes (aoxAB) were cloned from Hydrogenobaculum bacteria isolated from an acidic geothermal spring. Reverse transcriptase PCR demonstrated expression throughout the outflow channel, and the aoxB cDNA clones exhibited distribution patterns relative to the physicochemical gradients in the spring. Microelectrode analyses provided evidence of quantitative As(III) transformation within the microbial mat.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Manantiales de Aguas Termales/microbiología , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Bacterias/aislamiento & purificación , Clonación Molecular , ADN Bacteriano/química , ADN Bacteriano/genética , Perfilación de la Expresión Génica , Microelectrodos , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia
17.
Environ Pollut ; 153(1): 238-46, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-17904715

RESUMEN

A variety of naturally occurring bacteria produce enzymes that cometabolically degrade trichloroethene (TCE), including organisms with aerobic oxygenases. Groundwater contaminated with TCE was collected from the aerobic region of the Test Area North site of the Idaho National Laboratory. Samples were evaluated with enzyme activity probes, and resulted in measurable detection of toluene oxygenase activity (6-79% of the total microbial cells). Wells from both inside and outside contaminated plume showed activity. Toluene oxygenase-specific PCR primers determined that toluene-degrading genes were present in all groundwater samples evaluated. In addition, bacterial isolates were obtained and possessed toluene oxygenase enzymes, demonstrated activity, and were dominated by the phylotype Pseudomonas. This study demonstrated, through the use of enzymatic probes and oxygenase gene identification, that indigenous microorganisms at a contaminated site were cometabolically active. Documentation such as this can be used to substantiate observations of natural attenuation of TCE-contaminated groundwater plumes.


Asunto(s)
Bacterias/enzimología , Oxigenasas/metabolismo , Tricloroetileno/metabolismo , Contaminantes Químicos del Agua/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Biodegradación Ambiental , Cartilla de ADN , Ecología/métodos , Agua Dulce , Genes Bacterianos , Idaho , Oxigenasas/análisis , Oxigenasas/genética , Reacción en Cadena de la Polimerasa/métodos , Pseudomonas/enzimología , Pseudomonas/genética , Pseudomonas/aislamiento & purificación
18.
J Microbiol Methods ; 60(1): 41-6, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15567223

RESUMEN

3-Ethynylbenzoate (3EB) functions as a novel, activity-dependent, fluorogenic, and chromogenic probe for bacterial strains expressing the TOL pathway, which degrade toluene via conversion to benzoate, followed by meta ring fission of the intermediate catechol. This direct physiological analysis allows the fluorescent labeling of cells whose toluene-degrading enzymes have been induced by an aromatic substrate.


Asunto(s)
Benzoatos/metabolismo , Colorantes Fluorescentes/metabolismo , Pseudomonas putida/metabolismo , Tolueno/metabolismo , Microscopía Fluorescente , Oxigenasas/metabolismo , Pseudomonas putida/enzimología
19.
J Microbiol Methods ; 55(3): 801-5, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14607424

RESUMEN

3-hydroxyphenylacetylene (3-HPA) served as a novel, activity-dependent, fluorogenic and chromogenic probe for bacterial enzymes known to degrade toluene via meta ring fission of the intermediate, 3-methylcatechol. By this direct physiological analysis, cells grown with an aromatic substrate to induce the synthesis of toluene-degrading enzymes were fluorescently labeled.


Asunto(s)
Acetileno/análogos & derivados , Burkholderia cepacia/metabolismo , Catecoles/metabolismo , Colorantes Fluorescentes/metabolismo , Pseudomonas/metabolismo , Ralstonia/metabolismo , Tolueno/metabolismo , Acetileno/metabolismo , Burkholderia cepacia/enzimología , Microscopía Fluorescente , Pseudomonas/enzimología , Ralstonia/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...