Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 44(6): 1265-1282, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602102

RESUMEN

BACKGROUND: Endothelial cells regulate their cell cycle as blood vessels remodel and transition to quiescence downstream of blood flow-induced mechanotransduction. Laminar blood flow leads to quiescence, but how flow-mediated quiescence is established and maintained is poorly understood. METHODS: Primary human endothelial cells were exposed to laminar flow regimens and gene expression manipulations, and quiescence depth was analyzed via time-to-cell cycle reentry after flow cessation. Mouse and zebrafish endothelial expression patterns were examined via scRNA-seq (single-cell RNA sequencing) analysis, and mutant or morphant fish lacking p27 were analyzed for endothelial cell cycle regulation and in vivo cellular behaviors. RESULTS: Arterial flow-exposed endothelial cells had a distinct transcriptome, and they first entered a deep quiescence, then transitioned to shallow quiescence under homeostatic maintenance conditions. In contrast, venous flow-exposed endothelial cells entered deep quiescence early that did not change with homeostasis. The cell cycle inhibitor p27 (CDKN1B) was required to establish endothelial flow-mediated quiescence, and expression levels positively correlated with quiescence depth. p27 loss in vivo led to endothelial cell cycle upregulation and ectopic sprouting, consistent with loss of quiescence. HES1 and ID3, transcriptional repressors of p27 upregulated by arterial flow, were required for quiescence depth changes and the reduced p27 levels associated with shallow quiescence. CONCLUSIONS: Endothelial cell flow-mediated quiescence has unique properties and temporal regulation of quiescence depth that depends on the flow stimulus. These findings are consistent with a model whereby flow-mediated endothelial cell quiescence depth is temporally regulated downstream of p27 transcriptional regulation by HES1 and ID3. The findings are important in understanding endothelial cell quiescence misregulation that leads to vascular dysfunction and disease.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Células Endoteliales , Pez Cebra , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Animales , Humanos , Células Endoteliales/metabolismo , Mecanotransducción Celular , Proteínas Inhibidoras de la Diferenciación/metabolismo , Proteínas Inhibidoras de la Diferenciación/genética , Ciclo Celular , Ratones , Células Cultivadas , Factores de Tiempo , Flujo Sanguíneo Regional , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proliferación Celular , Proteínas de Neoplasias
2.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-37662222

RESUMEN

Background: Endothelial cells regulate their cell cycle as blood vessels remodel and transition to quiescence downstream of blood flow-induced mechanotransduction. Laminar blood flow leads to quiescence, but how flow-mediated quiescence is established and maintained is poorly understood. Methods: Primary human endothelial cells were exposed to laminar flow regimens and gene expression manipulations, and quiescence depth was analyzed via time to cell cycle re-entry after flow cessation. Mouse and zebrafish endothelial expression patterns were examined via scRNA seq analysis, and mutant or morphant fish lacking p27 were analyzed for endothelial cell cycle regulation and in vivo cellular behaviors. Results: Arterial flow-exposed endothelial cells had a distinct transcriptome, and they first entered a deep quiescence, then transitioned to shallow quiescence under homeostatic maintenance conditions. In contrast, venous-flow exposed endothelial cells entered deep quiescence early that did not change with homeostasis. The cell cycle inhibitor p27 (CDKN1B) was required to establish endothelial flow-mediated quiescence, and expression levels positively correlated with quiescence depth. p27 loss in vivo led to endothelial cell cycle upregulation and ectopic sprouting, consistent with loss of quiescence. HES1 and ID3, transcriptional repressors of p27 upregulated by arterial flow, were required for quiescence depth changes and the reduced p27 levels associated with shallow quiescence. Conclusions: Endothelial cell flow-mediated quiescence has unique properties and temporal regulation of quiescence depth that depends on the flow stimulus. These findings are consistent with a model whereby flow-mediated endothelial cell quiescence depth is temporally regulated downstream of p27 transcriptional regulation by HES1 and ID3. The findings are important in understanding endothelial cell quiescence mis-regulation that leads to vascular dysfunction and disease.

3.
bioRxiv ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37986787

RESUMEN

Regulated cell cycle progression ensures homeostasis and prevents cancer. In proliferating cells, premature S phase entry is avoided by the E3 ubiquitin ligase APC/C (anaphase promoting complex/cyclosome), although the APC/C substrates whose degradation restrains G1-S progression are not fully known. The APC/C is also active in arrested cells that exited the cell cycle, but it is not clear if APC/C maintains all types of arrest. Here by expressing the APC/C inhibitor, EMI1, we show that APC/C activity is essential to prevent S phase entry in cells arrested by pharmacological CDK4/6 inhibition (Palbociclib). Thus, active protein degradation is required for arrest alongside repressed cell cycle gene expression. The mechanism of rapid and robust arrest bypass from inhibiting APC/C involves cyclin-dependent kinases acting in an atypical order to inactivate RB-mediated E2F repression. Inactivating APC/C first causes mitotic cyclin B accumulation which then promotes cyclin A expression. We propose that cyclin A is the key substrate for maintaining arrest because APC/C-resistant cyclin A, but not cyclin B, is sufficient to induce S phase entry. Cells bypassing arrest from CDK4/6 inhibition initiate DNA replication with severely reduced origin licensing. The simultaneous accumulation of S phase licensing inhibitors, such as cyclin A and geminin, with G1 licensing activators disrupts the normal order of G1-S progression. As a result, DNA synthesis and cell proliferation are profoundly impaired. Our findings predict that cancers with elevated EMI1 expression will tend to escape CDK4/6 inhibition into a premature, underlicensed S phase and suffer enhanced genome instability.

4.
Cell Chem Biol ; 30(12): 1525-1541.e7, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37858336

RESUMEN

We report a novel translation-regulatory function of G9a, a histone methyltransferase and well-understood transcriptional repressor, in promoting hyperinflammation and lymphopenia; two hallmarks of endotoxin tolerance (ET)-associated chronic inflammatory complications. Using multiple approaches, we demonstrate that G9a interacts with multiple translation regulators during ET, particularly the N6-methyladenosine (m6A) RNA methyltransferase METTL3, to co-upregulate expression of certain m6A-modified mRNAs that encode immune-checkpoint and anti-inflammatory proteins. Mechanistically, G9a promotes m6A methyltransferase activity of METTL3 at translational/post-translational level by regulating its expression, its methylation, and its cytosolic localization during ET. Additionally, from a broader view extended from the G9a-METTL3-m6A translation regulatory axis, our translatome proteomics approach identified numerous "G9a-translated" proteins that unite the networks associated with inflammation dysregulation, T cell dysfunction, and systemic cytokine response. In sum, we identified a previously unrecognized function of G9a in protein-specific translation that can be leveraged to treat ET-related chronic inflammatory diseases.


Asunto(s)
Antígenos de Histocompatibilidad , N-Metiltransferasa de Histona-Lisina , Inflamación , Humanos , Histona Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Inflamación/genética , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/metabolismo
5.
Cancers (Basel) ; 15(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37760529

RESUMEN

G1 cell cycle phase dynamics are regulated by intricate networks involving cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors, which control G1 progression and ensure proper cell cycle transitions. Moreover, adequate origin licensing in G1 phase, the first committed step of DNA replication in the subsequent S phase, is essential to maintain genome integrity. In this review, we highlight the intriguing parallels and disparities in G1 dynamics between stem cells and cancer cells, focusing on their regulatory mechanisms and functional outcomes. Notably, SOX2, OCT4, KLF4, and the pluripotency reprogramming facilitator c-MYC, known for their role in establishing and maintaining stem cell pluripotency, are also aberrantly expressed in certain cancer cells. In this review, we discuss recent advances in understanding the regulatory role of these pluripotency factors in G1 dynamics in the context of stem cells and cancer cells, which may offer new insights into the interconnections between pluripotency and tumorigenesis.

6.
Fac Rev ; 12: 5, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923701

RESUMEN

Cell proliferation control is essential during development and for maintaining adult tissues. Loss of that control promotes not only oncogenesis when cells proliferate inappropriately but also developmental abnormalities or degeneration when cells fail to proliferate when and where needed. To ensure that cells are produced at the right place and time, an intricate balance of pro-proliferative and anti-proliferative signals impacts the probability that cells undergo cell cycle exit to quiescence, or G0 phase. This brief review describes recent advances in our understanding of how and when quiescence is initiated and maintained in mammalian cells. We highlight the growing appreciation for quiescence as a collection of context-dependent distinct states.

7.
Adv Sci (Weinh) ; 10(3): e2203718, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36445063

RESUMEN

STING is an innate immune sensor for immune surveillance of viral/bacterial infection and maintenance of an immune-friendly microenvironment to prevent tumorigenesis. However, if and how STING exerts innate immunity-independent function remains elusive. Here, the authors report that STING expression is increased in renal cell carcinoma (RCC) patients and governs tumor growth through non-canonical innate immune signaling involving mitochondrial ROS maintenance and calcium homeostasis. Mitochondrial voltage-dependent anion channel VDAC2 is identified as a new STING binding partner. STING depletion potentiates VDAC2/GRP75-mediated MERC (mitochondria-ER contact) formation to increase mitochondrial ROS/calcium levels, impairs mitochondria function, and suppresses mTORC1/S6K signaling leading to RCC growth retardation. STING interaction with VDAC2 occurs through STING-C88/C91 palmitoylation and inhibiting STING palmitoyl-transferases ZDHHCs by 2-BP significantly impedes RCC cell growth alone or in combination with sorafenib. Together, these studies reveal an innate immunity-independent function of STING in regulating mitochondrial function and growth in RCC, providing a rationale to target the STING/VDAC2 interaction in treating RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/metabolismo , Calcio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Inmunidad Innata , Microambiente Tumoral , Canal Aniónico 2 Dependiente del Voltaje/metabolismo
8.
Elife ; 112022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36066348

RESUMEN

Concerns about the mental health of students, trainees and staff at universities and medical schools have been growing for many years. Recently, these have been exacerbated by the COVID-19 pandemic and a period of heightened reckoning and protests about systemic racism in the United States in 2020. To better understand the mental health of medical students and biomedical doctoral students at the University of North Carolina at Chapel Hill during this challenging period, we performed a cross-sectional study (n=957) using institutional annual survey data on measures of depression, anxiety, hazardous alcohol use, problems related to substance use, and suicidal ideation. These data were collected in 2019 and 2020, and were analyzed by type of training program, race/ethnicity, gender, sexual orientation, and survey year. Results indicated significant differences for rates of depression, anxiety, and suicidal ideation, with biomedical doctoral students showing greater incidence than medical students, and historically excluded students (e.g., people of color, women, LGBQ+ trainees) showing greater incidence compared to their peers. Of note, mental health remained poor for biomedical doctoral students in 2020 and declined for those belonging to historically excluded populations. The high rates of depression, anxiety, and suicidal ideation reported suggest that training environments need to be improved and support for mental health increased.


Asunto(s)
COVID-19 , Estudiantes de Medicina , Ansiedad/psicología , COVID-19/epidemiología , Estudios Transversales , Depresión/epidemiología , Femenino , Humanos , Masculino , Salud Mental , Pandemias , Estudiantes de Medicina/psicología , Estados Unidos/epidemiología , Universidades
9.
Mol Syst Biol ; 18(9): e11087, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36161508

RESUMEN

The cellular decision governing the transition between proliferative and arrested states is crucial to the development and function of every tissue. While the molecular mechanisms that regulate the proliferative cell cycle are well established, we know comparatively little about what happens to cells as they diverge into cell cycle arrest. We performed hyperplexed imaging of 47 cell cycle effectors to obtain a map of the molecular architecture that governs cell cycle exit and progression into reversible ("quiescent") and irreversible ("senescent") arrest states. Using this map, we found multiple points of divergence from the proliferative cell cycle; identified stress-specific states of arrest; and resolved the molecular mechanisms governing these fate decisions, which we validated by single-cell, time-lapse imaging. Notably, we found that cells can exit into senescence from either G1 or G2; however, both subpopulations converge onto a single senescent state with a G1-like molecular signature. Cells can escape from this "irreversible" arrest state through the upregulation of G1 cyclins. This map provides a more comprehensive understanding of the overall organization of cell proliferation and arrest.


Asunto(s)
Ciclinas , Ciclo Celular , Puntos de Control del Ciclo Celular , División Celular , Proliferación Celular , Ciclinas/genética , Ciclinas/metabolismo
10.
BMC Genomics ; 23(1): 337, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35501690

RESUMEN

BACKGROUND: The cohesin complex is essential for proper chromosome structure and gene expression. Defects in cohesin subunits and regulators cause changes in cohesin complex dynamics and thereby alter three-dimensional genome organization. However, the molecular mechanisms that drive cohesin localization and function remain poorly understood. RESULTS: In this study, we observe that loss of WIZ causes changes to cohesin localization that are distinct from loss of the known WIZ binding partner G9a. Whereas loss of WIZ uniformly increases cohesin levels on chromatin at known binding sites and leads to new, ectopic cohesin binding sites, loss of G9a does not. Ectopic cohesin binding on chromatin after the loss of WIZ occurs at regions that are enriched for activating histone modifications and transcription factors motifs. Furthermore, loss of WIZ causes changes in cohesin localization that are distinct from those observed by loss of WAPL, the canonical cohesin unloading factor. CONCLUSIONS: The evidence presented here suggests that WIZ can function independently from its previously identified role with G9a and GLP in heterochromatin formation. Furthermore, while WIZ limits the levels and localization pattern of cohesin across the genome, it appears to function independently of WAPL-mediated cohesin unloading.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Factores de Transcripción/metabolismo , Cohesinas
11.
Life Sci Alliance ; 5(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35173014

RESUMEN

Cyclin E/CDK2 drives cell cycle progression from G1 to S phase. Despite the toxicity of cyclin E overproduction in mammalian cells, the cyclin E gene is overexpressed in some cancers. To further understand how cells can tolerate high cyclin E, we characterized non-transformed epithelial cells subjected to chronic cyclin E overproduction. Cells overproducing cyclin E, but not cyclins D or A, briefly experienced truncated G1 phases followed by a transient period of DNA replication origin underlicensing, replication stress, and impaired proliferation. Individual cells displayed substantial intercellular heterogeneity in cell cycle dynamics and CDK activity. Each phenotype improved rapidly despite high cyclin E-associated activity. Transcriptome analysis revealed adapted cells down-regulated a cohort of G1-regulated genes. Withdrawing cyclin E from adapted cells only partially reversed underlicensing indicating that adaptation is at least partly non-genetic. This study provides evidence that mammalian cyclin E/CDK inhibits origin licensing indirectly through premature S phase onset and provides mechanistic insight into the relationship between CDKs and licensing. It serves as an example of oncogene adaptation that may recapitulate molecular changes during tumorigenesis.


Asunto(s)
Ciclina E/genética , Ciclina E/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Animales , Ciclo Celular , División Celular , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Replicación del ADN , Fase G1 , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Humanos , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Fase S
12.
Nucleic Acids Res ; 50(17): 9601-9620, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-35079814

RESUMEN

Eukaryotic chromosomes contain regions of varying accessibility, yet DNA replication factors must access all regions. The first replication step is loading MCM complexes to license replication origins during the G1 cell cycle phase. It is not yet known how mammalian MCM complexes are adequately distributed to both accessible euchromatin regions and less accessible heterochromatin regions. To address this question, we combined time-lapse live-cell imaging with immunofluorescence imaging of single human cells to quantify the relative rates of MCM loading in euchromatin and heterochromatin throughout G1. We report here that MCM loading in euchromatin is faster than that in heterochromatin in early G1, but surprisingly, heterochromatin loading accelerates relative to euchromatin loading in middle and late G1. This differential acceleration allows both chromatin types to begin S phase with similar concentrations of loaded MCM. The different loading dynamics require ORCA-dependent differences in origin recognition complex distribution. A consequence of heterochromatin licensing dynamics is that cells experiencing a truncated G1 phase from premature cyclin E expression enter S phase with underlicensed heterochromatin, and DNA damage accumulates preferentially in heterochromatin in the subsequent S/G2 phase. Thus, G1 length is critical for sufficient MCM loading, particularly in heterochromatin, to ensure complete genome duplication and to maintain genome stability.


In this study the authors have, for the first time, quantified DNA replication origin licensing dynamics and distribution in single cells at subnuclear resolution. The cell cycle and DNA replication fields have long appreciated that origin licensing is both absolutely essential for replication and that licensing is strictly confined to G1 phase. The biochemical process of origin licensing- which is the DNA loading of MCM complexes- is known in considerable detail. What has never been explored in any system, is the dynamics of origin licensing itself. Here the authors define the dynamics of human MCM loading at different times within G1 in both euchromatin and heterochromatin, and explore the consequences of those dynamics for genome stability.


Asunto(s)
Cromatina , Replicación del ADN , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Animales , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Eucromatina , Células Eucariotas , Heterocromatina , Humanos , Complejo de Reconocimiento del Origen/metabolismo , Origen de Réplica
13.
Biomolecules ; 11(10)2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34680077

RESUMEN

Protein signaling networks are formed from diverse and inter-connected cell signaling pathways converging into webs of function and regulation. These signaling pathways both receive and conduct molecular messages, often by a series of post-translation modifications such as phosphorylation or through protein-protein interactions via intrinsic motifs. The mitogen activated protein kinases (MAPKs) are components of kinase cascades that transmit signals through phosphorylation. There are several MAPK subfamilies, and one subfamily is the stress-activated protein kinases, which in mammals is the p38 family. The p38 enzymes mediate a variety of cellular outcomes including DNA repair, cell survival/cell fate decisions, and cell cycle arrest. The cell cycle is itself a signaling system that precisely controls DNA replication, chromosome segregation, and cellular division. Another indispensable cell function influenced by the p38 stress response is programmed cell death (apoptosis). As the regulators of cell survival, the BCL2 family of proteins and their dynamics are exquisitely sensitive to cell stress. The BCL2 family forms a protein-protein interaction network divided into anti-apoptotic and pro-apoptotic members, and the balance of binding between these two sides determines cell survival. Here, we discuss the intersections among the p38 MAPK, cell cycle, and apoptosis signaling pathways.


Asunto(s)
Apoptosis/genética , Ciclo Celular/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Puntos de Control del Ciclo Celular/genética , Reparación del ADN/genética , Humanos , Fosforilación/genética , Mapas de Interacción de Proteínas/genética , Procesamiento Proteico-Postraduccional/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Transducción de Señal/genética
14.
Biochem Soc Trans ; 49(5): 2133-2141, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34545932

RESUMEN

The cell division cycle must be strictly regulated during both development and adult maintenance, and efficient and well-controlled DNA replication is a key event in the cell cycle. DNA replication origins are prepared in G1 phase of the cell cycle in a process known as origin licensing which is essential for DNA replication initiation in the subsequent S phase. Appropriate origin licensing includes: (1) Licensing enough origins at adequate origin licensing speed to complete licensing before G1 phase ends; (2) Licensing origins such that they are well-distributed on all chromosomes. Both aspects of licensing are critical for replication efficiency and accuracy. In this minireview, we will discuss recent advances in defining how origin licensing speed and distribution are critical to ensure DNA replication completion and genome stability.


Asunto(s)
Replicación del ADN/genética , ADN/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Origen de Réplica , Animales , División Celular/genética , Cromosomas/genética , Cromosomas/metabolismo , ADN/genética , Inestabilidad Genómica/genética , Humanos , Unión Proteica
15.
Nat Commun ; 12(1): 1626, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712616

RESUMEN

Minichromosome maintenance protein 10 (MCM10) is essential for eukaryotic DNA replication. Here, we describe compound heterozygous MCM10 variants in patients with distinctive, but overlapping, clinical phenotypes: natural killer (NK) cell deficiency (NKD) and restrictive cardiomyopathy (RCM) with hypoplasia of the spleen and thymus. To understand the mechanism of MCM10-associated disease, we modeled these variants in human cell lines. MCM10 deficiency causes chronic replication stress that reduces cell viability due to increased genomic instability and telomere erosion. Our data suggest that loss of MCM10 function constrains telomerase activity by accumulating abnormal replication fork structures enriched with single-stranded DNA. Terminally-arrested replication forks in MCM10-deficient cells require endonucleolytic processing by MUS81, as MCM10:MUS81 double mutants display decreased viability and accelerated telomere shortening. We propose that these bi-allelic variants in MCM10 predispose specific cardiac and immune cell lineages to prematurely arrest during differentiation, causing the clinical phenotypes observed in both NKD and RCM patients.


Asunto(s)
Alelos , Cardiomiopatías/genética , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/inmunología , Acortamiento del Telómero , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Humanos , Células Asesinas Naturales
16.
Mol Cell Biol ; 41(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33168699

RESUMEN

The ubiquitin-proteasome system is essential for cell cycle progression. Cyclin F is a cell cycle-regulated substrate adapter F-box protein for the Skp1, CUL1, and F-box protein (SCF) family of E3 ubiquitin ligases. Despite its importance in cell cycle progression, identifying cyclin F-bound SCF complex (SCFCyclin F) substrates has remained challenging. Since cyclin F overexpression rescues a yeast mutant in the cdc4 gene, we considered the possibility that other genes that genetically modify cdc4 mutant lethality could also encode cyclin F substrates. We identified the mitochondrial and cytosolic deacylating enzyme sirtuin 5 (SIRT5) as a novel cyclin F substrate. SIRT5 has been implicated in metabolic processes, but its connection to the cell cycle is not known. We show that cyclin F interacts with and controls the ubiquitination, abundance, and stability of SIRT5. We show SIRT5 knockout results in a diminished G1 population and a subsequent increase in both S and G2/M. Global proteomic analyses reveal cyclin-dependent kinase (CDK) signaling changes congruent with the cell cycle changes in SIRT5 knockout cells. Together, these data demonstrate that SIRT5 is regulated by cyclin F and suggest a connection between SIRT5, cell cycle regulation, and metabolism.


Asunto(s)
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Proteínas F-Box/genética , Regulación Fúngica de la Expresión Génica , Procesamiento Proteico-Postraduccional , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sirtuinas/genética , Ubiquitina-Proteína Ligasas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Perfilación de la Expresión Génica , Genes Letales , Células HEK293 , Células HeLa , Humanos , Mutación , Proteínas Ligasas SKP Cullina F-box/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Sirtuinas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
17.
bioRxiv ; 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33236014

RESUMEN

Hyperinflammation and lymphopenia provoked by SARS-CoV-2-activated macrophages contribute to the high mortality of Coronavirus Disease 2019 (COVID-19) patients. Thus, defining host pathways aberrantly activated in patient macrophages is critical for developing effective therapeutics. We discovered that G9a, a histone methyltransferase that is overexpressed in COVID-19 patients with high viral load, activates translation of specific genes that induce hyperinflammation and impairment of T cell function or lymphopenia. This noncanonical, pro-translation activity of G9a contrasts with its canonical epigenetic function. In endotoxin-tolerant (ET) macrophages that mimic conditions which render patients with pre-existing chronic inflammatory diseases vulnerable to severe symptoms, our chemoproteomic approach with a biotinylated inhibitor of G9a identified multiple G9a-associated translation regulatory pathways that were upregulated by SARS-CoV-2 infection. Further, quantitative translatome analysis of ET macrophages treated progressively with the G9a inhibitor profiled G9a-translated proteins that unite the networks associated with viral replication and the SARS-CoV-2-induced host response in severe patients. Accordingly, inhibition of G9a-associated pathways produced multifaceted, systematic effects, namely, restoration of T cell function, mitigation of hyperinflammation, and suppression of viral replication. Importantly, as a host-directed mechanism, this G9a-targeted, combined therapeutics is refractory to emerging antiviral-resistant mutants of SARS-CoV-2, or any virus, that hijacks host responses.

18.
J Cell Biol ; 219(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32858750

RESUMEN

Pluripotent stem cells differentiate with varying efficiencies depending on the method of reprogramming that created them. In this issue, Paniza et al. (2020. J. Cell Biol.https://doi.org/10.1083/jcb.201909163) demonstrate that cells with lower differentiation potential retain some features of somatic DNA replication origin utilization and suffer more frequent DNA damage.


Asunto(s)
Replicación del ADN , Células Madre Pluripotentes , Diferenciación Celular , División Celular
19.
PLoS Genet ; 16(8): e1008988, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32841231

RESUMEN

Achieving complete and precise genome duplication requires that each genomic segment be replicated only once per cell division cycle. Protecting large eukaryotic genomes from re-replication requires an overlapping set of molecular mechanisms that prevent the first DNA replication step, the DNA loading of MCM helicase complexes to license replication origins, after S phase begins. Previous reports have defined many such origin licensing inhibition mechanisms, but the temporal relationships among them are not clear, particularly with respect to preventing re-replication in G2 and M phases. Using a combination of mutagenesis, biochemistry, and single cell analyses in human cells, we define a new mechanism that prevents re-replication through hyperphosphorylation of the essential MCM loading protein, Cdt1. We demonstrate that Cyclin A/CDK1 can hyperphosphorylate Cdt1 to inhibit MCM re-loading in G2 phase. The mechanism of inhibition is to block Cdt1 binding to MCM independently of other known Cdt1 inactivation mechanisms such as Cdt1 degradation during S phase or Geminin binding. Moreover, our findings suggest that Cdt1 dephosphorylation at the mitosis-to-G1 phase transition re-activates Cdt1. We propose that multiple distinct, non-redundant licensing inhibition mechanisms act in a series of sequential relays through each cell cycle phase to ensure precise genome duplication.


Asunto(s)
Replicación del ADN/genética , Genoma Humano/genética , Origen de Réplica/genética , Duplicaciones Segmentarias en el Genoma/genética , Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/genética , Ciclina A/genética , Fase G2/genética , Geminina/genética , Genes Duplicados/genética , Células HEK293 , Humanos , Proteínas de Mantenimiento de Minicromosoma/genética , Fosforilación/genética , Fase S/genética
20.
ACS Med Chem Lett ; 11(3): 340-345, 2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32184967

RESUMEN

Inhibitors based on a 3-acylaminoindazole scaffold were synthesized to yield potent dual AAK1/BMP2K inhibitors. Optimization furnished a small molecule chemical probe (SGC-AAK1-1, 25) that is potent and selective for AAK1/BMP2K over other NAK family members, demonstrates narrow activity in a kinome-wide screen, and is functionally active in cells. This inhibitor represents one of the best available small molecule tools to study the functions of AAK1 and BMP2K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...