Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Autophagy ; 17(5): 1131-1141, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32320309

RESUMEN

During macroautophagy/autophagy, the ULK complex nucleates autophagic precursors, which give rise to autophagosomes. We analyzed, by live imaging and mathematical modeling, the translocation of ATG13 (part of the ULK complex) to the autophagic puncta in starvation-induced autophagy and ivermectin-induced mitophagy. In nonselective autophagy, the intensity and duration of ATG13 translocation approximated a normal distribution, whereas wortmannin reduced this effect and shifted to a log-normal distribution. During mitophagy, multiple translocations of ATG13 with increasing time between peaks were observed. We hypothesized that these multiple translocations arise because the engulfment of mitochondrial fragments required successive nucleation of phagophores on the same target, and a mathematical model based on this idea reproduced the oscillatory behavior. Significantly, model and experimental data were also in agreement that the number of ATG13 translocations is directly proportional to the diameter of the targeted mitochondrial fragments. Thus, our data provide novel insights into the early dynamics of selective and nonselective autophagy.Abbreviations: ATG: autophagy related 13; CFP: cyan fluorescent protein; dsRED: Discosoma red fluorescent protein; GABARAP: GABA type A receptor-associated protein; GFP: green fluorescent protein; IVM: ivermectin; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: PtdIns-3-phosphate; ULK: unc-51 like autophagy activating kinase.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/fisiología , Mitofagia/fisiología , Modelos Teóricos , Autofagosomas/metabolismo , Células HEK293 , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo
2.
Essays Biochem ; 61(3): 369-377, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28698310

RESUMEN

Systems modelling has been successfully used to investigate several key molecular mechanisms of ageing. Modelling frameworks to allow integration of models and methods to enhance confidence in models are now well established. In this article, we discuss these issues and work through the process of building an integrated model for cellular senescence as a single cell and in a simple tissue context.


Asunto(s)
Envejecimiento/fisiología , Biología de Sistemas/métodos , Envejecimiento/genética , Animales , Senescencia Celular/genética , Senescencia Celular/fisiología , Homeostasis/genética , Homeostasis/fisiología , Humanos , Modelos Biológicos
3.
BMC Syst Biol ; 11(1): 46, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28395655

RESUMEN

BACKGROUND: The rapid growth of the number of mathematical models in Systems Biology fostered the development of many tools to simulate and analyse them. The reliability and precision of these tasks often depend on multiple repetitions and they can be optimised if executed as pipelines. In addition, new formal analyses can be performed on these repeat sequences, revealing important insights about the accuracy of model predictions. RESULTS: Here we introduce SBpipe, an open source software tool for automating repetitive tasks in model building and simulation. Using basic YAML configuration files, SBpipe builds a sequence of repeated model simulations or parameter estimations, performs analyses from this generated sequence, and finally generates a LaTeX/PDF report. The parameter estimation pipeline offers analyses of parameter profile likelihood and parameter correlation using samples from the computed estimates. Specific pipelines for scanning of one or two model parameters at the same time are also provided. Pipelines can run on multicore computers, Sun Grid Engine (SGE), or Load Sharing Facility (LSF) clusters, speeding up the processes of model building and simulation. SBpipe can execute models implemented in COPASI, Python or coded in any other programming language using Python as a wrapper module. Future support for other software simulators can be dynamically added without affecting the current implementation. CONCLUSIONS: SBpipe allows users to automatically repeat the tasks of model simulation and parameter estimation, and extract robustness information from these repeat sequences in a solid and consistent manner, facilitating model development and analysis. The source code and documentation of this project are freely available at the web site: https://pdp10.github.io/sbpipe/ .


Asunto(s)
Programas Informáticos , Biología de Sistemas/métodos , Modelos Biológicos
4.
Nat Commun ; 7: 13254, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27869123

RESUMEN

Amino acids (aa) are not only building blocks for proteins, but also signalling molecules, with the mammalian target of rapamycin complex 1 (mTORC1) acting as a key mediator. However, little is known about whether aa, independently of mTORC1, activate other kinases of the mTOR signalling network. To delineate aa-stimulated mTOR network dynamics, we here combine a computational-experimental approach with text mining-enhanced quantitative proteomics. We report that AMP-activated protein kinase (AMPK), phosphatidylinositide 3-kinase (PI3K) and mTOR complex 2 (mTORC2) are acutely activated by aa-readdition in an mTORC1-independent manner. AMPK activation by aa is mediated by Ca2+/calmodulin-dependent protein kinase kinase ß (CaMKKß). In response, AMPK impinges on the autophagy regulators Unc-51-like kinase-1 (ULK1) and c-Jun. AMPK is widely recognized as an mTORC1 antagonist that is activated by starvation. We find that aa acutely activate AMPK concurrently with mTOR. We show that AMPK under aa sufficiency acts to sustain autophagy. This may be required to maintain protein homoeostasis and deliver metabolite intermediates for biosynthetic processes.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Aminoácidos/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Modelos Biológicos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/genética
5.
BMC Bioinformatics ; 17: 154, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27044654

RESUMEN

BACKGROUND: Interoperability between formats is a recurring problem in systems biology research. Many tools have been developed to convert computational models from one format to another. However, they have been developed independently, resulting in redundancy of efforts and lack of synergy. RESULTS: Here we present the System Biology Format Converter (SBFC), which provide a generic framework to potentially convert any format into another. The framework currently includes several converters translating between the following formats: SBML, BioPAX, SBGN-ML, Matlab, Octave, XPP, GPML, Dot, MDL and APM. This software is written in Java and can be used as a standalone executable or web service. CONCLUSIONS: The SBFC framework is an evolving software project. Existing converters can be used and improved, and new converters can be easily added, making SBFC useful to both modellers and developers. The source code and documentation of the framework are freely available from the project web site.


Asunto(s)
Interfaz Usuario-Computador , Bases de Datos Factuales , Internet , Biología de Sistemas
6.
Free Radic Biol Med ; 95: 333-48, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26944189

RESUMEN

Reactive oxygen species, such as H2O2, can damage cells but also promote fundamental processes, including growth, differentiation and migration. The mechanisms allowing cells to differentially respond to toxic or signaling H2O2 levels are poorly defined. Here we reveal that increasing external H2O2 produces a bi-phasic response in intracellular H2O2. Peroxiredoxins (Prx) are abundant peroxidases which protect against genome instability, ageing and cancer. We have developed a dynamic model simulating in vivo changes in Prx oxidation. Remarkably, we show that the thioredoxin peroxidase activity of Prx does not provide any significant protection against external rises in H2O2. Instead, our model and experimental data are consistent with low levels of extracellular H2O2 being efficiently buffered by other thioredoxin-dependent activities, including H2O2-reactive cysteines in the thiol-proteome. We show that when extracellular H2O2 levels overwhelm this buffering capacity, the consequent rise in intracellular H2O2 triggers hyperoxidation of Prx to thioredoxin-resistant, peroxidase-inactive form/s. Accordingly, Prx hyperoxidation signals that H2O2 defenses are breached, diverting thioredoxin to repair damage.


Asunto(s)
Peróxido de Hidrógeno/química , Oxidación-Reducción , Peroxirredoxinas/química , Tiorredoxinas/química , Citoplasma/química , Citoplasma/metabolismo , Peróxido de Hidrógeno/metabolismo , Modelos Químicos , Peroxirredoxinas/genética , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Tiorredoxinas/metabolismo
7.
PLoS Comput Biol ; 10(8): e1003728, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25166345

RESUMEN

Cellular senescence, a state of irreversible cell cycle arrest, is thought to help protect an organism from cancer, yet also contributes to ageing. The changes which occur in senescence are controlled by networks of multiple signalling and feedback pathways at the cellular level, and the interplay between these is difficult to predict and understand. To unravel the intrinsic challenges of understanding such a highly networked system, we have taken a systems biology approach to cellular senescence. We report a detailed analysis of senescence signalling via DNA damage, insulin-TOR, FoxO3a transcription factors, oxidative stress response, mitochondrial regulation and mitophagy. We show in silico and in vitro that inhibition of reactive oxygen species can prevent loss of mitochondrial membrane potential, whilst inhibition of mTOR shows a partial rescue of mitochondrial mass changes during establishment of senescence. Dual inhibition of ROS and mTOR in vitro confirmed computational model predictions that it was possible to further reduce senescence-induced mitochondrial dysfunction and DNA double-strand breaks. However, these interventions were unable to abrogate the senescence-induced mitochondrial dysfunction completely, and we identified decreased mitochondrial fission as the potential driving force for increased mitochondrial mass via prevention of mitophagy. Dynamic sensitivity analysis of the model showed the network stabilised at a new late state of cellular senescence. This was characterised by poor network sensitivity, high signalling noise, low cellular energy, high inflammation and permanent cell cycle arrest suggesting an unsatisfactory outcome for treatments aiming to delay or reverse cellular senescence at late time points. Combinatorial targeted interventions are therefore possible for intervening in the cellular pathway to senescence, but in the cases identified here, are only capable of delaying senescence onset.


Asunto(s)
Senescencia Celular/fisiología , Modelos Biológicos , Transducción de Señal/fisiología , Línea Celular , Simulación por Computador , Daño del ADN/fisiología , Humanos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Biología de Sistemas , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo
8.
Sci Signal ; 5(217): ra25, 2012 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-22457331

RESUMEN

The kinase mammalian target of rapamycin (mTOR) exists in two multiprotein complexes (mTORC1 and mTORC2) and is a central regulator of growth and metabolism. Insulin activation of mTORC1, mediated by phosphoinositide 3-kinase (PI3K), Akt, and the inhibitory tuberous sclerosis complex 1/2 (TSC1-TSC2), initiates a negative feedback loop that ultimately inhibits PI3K. We present a data-driven dynamic insulin-mTOR network model that integrates the entire core network and used this model to investigate the less well understood mechanisms by which insulin regulates mTORC2. By analyzing the effects of perturbations targeting several levels within the network in silico and experimentally, we found that, in contrast to current hypotheses, the TSC1-TSC2 complex was not a direct or indirect (acting through the negative feedback loop) regulator of mTORC2. Although mTORC2 activation required active PI3K, this was not affected by the negative feedback loop. Therefore, we propose an mTORC2 activation pathway through a PI3K variant that is insensitive to the negative feedback loop that regulates mTORC1. This putative pathway predicts that mTORC2 would be refractory to Akt, which inhibits TSC1-TSC2, and, indeed, we found that mTORC2 was insensitive to constitutive Akt activation in several cell types. Our results suggest that a previously unknown network structure connects mTORC2 to its upstream cues and clarifies which molecular connectors contribute to mTORC2 activation.


Asunto(s)
Modelos Biológicos , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Simulación por Computador , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Immunoblotting , Inmunoprecipitación , Insulina/metabolismo , Insulina/farmacología , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica , Proteína Asociada al mTOR Insensible a la Rapamicina , Proteína Reguladora Asociada a mTOR , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Programas Informáticos , Serina-Treonina Quinasas TOR/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
9.
FEBS J ; 279(18): 3314-28, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22452783

RESUMEN

Mammalian target of rapamycin (mTOR) kinase responds to growth factors, nutrients and cellular energy status and is a central controller of cellular growth. mTOR exists in two multiprotein complexes that are embedded into a complex signalling network. Adenosine monophosphate-dependent kinase (AMPK) is activated by energy deprivation and shuts off adenosine 5'-triphosphate (ATP)-consuming anabolic processes, in part via the inactivation of mTORC1. Surprisingly, we observed that AMPK not only responds to energy deprivation but can also be activated by insulin, and is further induced in mTORC1-deficient cells. We have recently modelled the mTOR network, covering both mTOR complexes and their insulin and nutrient inputs. In the present study we extended the network by an AMPK module to generate the to date most comprehensive data-driven dynamic AMPK-mTOR network model. In order to define the intersection via which AMPK is activated by the insulin network, we compared simulations for six different hypothetical model structures to our observed AMPK dynamics. Hypotheses ranking suggested that the most probable intersection between insulin and AMPK was the insulin receptor substrate (IRS) and that the effects of canonical IRS downstream cues on AMPK would be mediated via an mTORC1-driven negative-feedback loop. We tested these predictions experimentally in multiple set-ups, where we inhibited or induced players along the insulin-mTORC1 signalling axis and observed AMPK induction or inhibition. We confirmed the identified model and therefore report a novel connection within the insulin-mTOR-AMPK network: we conclude that AMPK is positively regulated by IRS and can be inhibited via the negative-feedback loop.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Insulina/fisiología , Aminoácidos/farmacología , Simulación por Computador , Células HeLa , Humanos , Insulina/farmacología , Cinética , Diana Mecanicista del Complejo 1 de la Rapamicina , Modelos Biológicos , Complejos Multiproteicos , Proteínas , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...