Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Bioengineering (Basel) ; 11(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38790322

RESUMEN

Detection and segmentation of brain metastases (BMs) play a pivotal role in diagnosis, treatment planning, and follow-up evaluations for effective BM management. Given the rising prevalence of BM cases and its predominantly multiple onsets, automated segmentation is becoming necessary in stereotactic radiosurgery. It not only alleviates the clinician's manual workload and improves clinical workflow efficiency but also ensures treatment safety, ultimately improving patient care. Recent strides in machine learning, particularly in deep learning (DL), have revolutionized medical image segmentation, achieving state-of-the-art results. This review aims to analyze auto-segmentation strategies, characterize the utilized data, and assess the performance of cutting-edge BM segmentation methodologies. Additionally, we delve into the challenges confronting BM segmentation and share insights gleaned from our algorithmic and clinical implementation experiences.

2.
Int J Radiat Oncol Biol Phys ; 118(3): 650-661, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717787

RESUMEN

PURPOSE: Preoperative stereotactic radiosurgery (SRS) is a feasible alternative to postoperative SRS for resected brain metastases (BM). Most reported studies of preoperative SRS used single-fraction SRS (SF-SRS). The goal of this study was to compare outcomes and toxicity of preoperative SF-SRS with multifraction (3-5 fractions) SRS (MF-SRS) in a large international multicenter cohort (Preoperative Radiosurgery for Brain Metastases-PROPS-BM). METHODS AND MATERIALS: Patients with BM from solid cancers, of which at least 1 lesion was treated with preoperative SRS followed by planned resection, were included from 8 institutions. SRS to synchronous intact BM was allowed. Exclusion criteria included prior or planned whole brain radiation therapy. Intracranial outcomes were estimated using cumulative incidence with competing risk of death. Propensity score matched (PSM) analyses were performed. RESULTS: The study cohort included 404 patients with 416 resected index lesions, of which SF-SRS and MF-SRS were used for 317 (78.5%) and 87 patients (21.5%), respectively. Median dose was 15 Gy in 1 fraction for SF-SRS and 24 Gy in 3 fractions for MF-SRS. Univariable analysis demonstrated that SF-SRS was associated with higher cavity local recurrence (LR) compared with MF-SRS (2-year: 16.3% vs 2.9%; P = .004), which was also demonstrated in multivariable analysis. PSM yielded 81 matched pairs (n = 162). PSM analysis also demonstrated significantly higher rate of cavity LR with SF-SRS (2-year: 19.8% vs 3.3%; P = .003). There was no difference in adverse radiation effect, meningeal disease, or overall survival between cohorts in either analysis. CONCLUSIONS: Preoperative MF-SRS was associated with significantly reduced risk of cavity LR in both the unmatched and PSM analyses. There was no difference in adverse radiation effect, meningeal disease, or overall survival based on fractionation. MF-SRS may be a preferred option for neoadjuvant radiation therapy of resected BMs. Additional confirmatory studies are needed. A phase 3 randomized trial of single-fraction preoperative versus postoperative SRS (NRG-BN012) is ongoing (NCT05438212).


Asunto(s)
Neoplasias Encefálicas , Traumatismos por Radiación , Radiocirugia , Humanos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Estudios de Cohortes , Fraccionamiento de la Dosis de Radiación , Traumatismos por Radiación/etiología , Radiocirugia/efectos adversos , Radiocirugia/métodos , Estudios Retrospectivos , Resultado del Tratamiento , Ensayos Clínicos Fase III como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
Int J Radiat Oncol Biol Phys ; 118(5): 1172-1180, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38147912

RESUMEN

PURPOSE: Positron emission tomography (PET)-guided radiation therapy is a novel tracked dose delivery modality that uses real-time PET to guide radiation therapy beamlets. The BIOGUIDE-X study was performed with sequential cohorts of participants to (1) identify the fluorodeoxyglucose (FDG) dose for PET-guided therapy and (2) confirm that the emulated dose distribution was consistent with a physician-approved radiation therapy plan. METHODS AND MATERIALS: This prospective study included participants with at least 1 FDG-avid targetable primary or metastatic tumor (2-5 cm) in the lung or bone. For cohort I, a modified 3 + 3 design was used to determine the FDG dose that would result in adequate signal for PET-guided therapy. For cohort II, PET imaging data were collected on the X1 system before the first and last fractions among patients undergoing conventional stereotactic body radiation therapy. PET-guided therapy dose distributions were modeled on the patient's computed tomography anatomy using the collected PET data at each fraction as input to an "emulated delivery" and compared with the physician-approved plan. RESULTS: Cohort I demonstrated adequate FDG activity in 6 of 6 evaluable participants (100.0%) with the first injected dose level of 15 mCi FDG. In cohort II, 4 patients with lung tumors and 5 with bone tumors were enrolled, and evaluable emulated delivery data points were collected for 17 treatment fractions. Sixteen of the 17 emulated deliveries resulted in dose distributions that were accurate with respect to the approved PET-guided therapy plan. The 17th data point was just below the 95% threshold for accuracy (dose-volume histogram score = 94.6%). All emulated fluences were physically deliverable. No toxicities were attributed to multiple FDG administrations. CONCLUSIONS: PET-guided therapy is a novel radiation therapy modality in which a radiolabeled tumor can act as its own fiducial for radiation therapy targeting. Emulated therapy dose distributions calculated from continuously acquired real-time PET data were accurate and machine-deliverable in tumors that were 2 to 5 cm in size with adequate FDG signal characteristics.


Asunto(s)
Fluorodesoxiglucosa F18 , Neoplasias Pulmonares , Humanos , Estudios Prospectivos , Tomografía de Emisión de Positrones , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patología , Tomografía Computarizada por Rayos X/métodos , Radiofármacos
4.
Radiother Oncol ; 188: 109874, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37640162

RESUMEN

BACKGROUND AND PURPOSE: Radiation oncology protocols for single fraction radiosurgery recommend setting dosing criteria based on assumed risk of radionecrosis, which can be predicted by the 12 Gy normal brain volume (V12). In this study, we show that tumor surface area (SA) and a simple power-law model using only preplan variables can estimate and minimize radiosurgical toxicity. MATERIALS AND METHODS: A 245-patient cohort with 1217 brain metastases treated with single or distributed Gamma Knife sessions was reviewed retrospectively. Univariate and multivariable linear regression models and power-law models determined which modeling parameters best predicted V12. The V12 power-law model, represented by a product of normalized Rx dose Rxn, and tumor longest axial dimension LAD (V12 âˆ¼ Rxn1.5*LAD2), was independently validated using a secondary 63-patient cohort with 302 brain metastases. RESULTS: Surface area was the best univariate linear predictor of V12 (adjR2 = 0.770), followed by longest axial dimension (adjR2 = 0.755) and volume (adjR2 = 0.745). The power-law model accounted for 90% variance in V12 for 1217 metastatic lesions (adjR2 = 0.906) and 245 patients (adjR2 = 0.896). The average difference ΔV12 between predicted and measured V12s was (0.28 ± 0.55) cm3 per lesion and (1.0 ± 1.2) cm3 per patient. The power-law predictive capability was validated using a secondary 63-patient dataset (adjR2 = 0.867) with 302 brain metastases (adjR2 = 0.825). CONCLUSION: Surface area was the most accurate univariate predictor of V12 for metastatic lesions. We developed a preplan model for brain metastases that can help better estimate radionecrosis risk, determine prescription doses given a target V12, and provide safe dose escalation strategies without the use of any planning software.

5.
JAMA Oncol ; 9(8): 1066-1073, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37289451

RESUMEN

Importance: Preoperative stereotactic radiosurgery (SRS) has been demonstrated as a feasible alternative to postoperative SRS for resectable brain metastases (BMs) with potential benefits in adverse radiation effects (AREs) and meningeal disease (MD). However, mature large-cohort multicenter data are lacking. Objective: To evaluate preoperative SRS outcomes and prognostic factors from a large international multicenter cohort (Preoperative Radiosurgery for Brain Metastases-PROPS-BM). Design, Setting, and Participants: This multicenter cohort study included patients with BMs from solid cancers, of which at least 1 lesion received preoperative SRS and a planned resection, from 8 institutions. Radiosurgery to synchronous intact BMs was allowed. Exclusion criteria included prior or planned whole-brain radiotherapy and no cranial imaging follow-up. Patients were treated between 2005 and 2021, with most treated between 2017 and 2021. Exposures: Preoperative SRS to a median dose to 15 Gy in 1 fraction or 24 Gy in 3 fractions delivered at a median (IQR) of 2 (1-4) days before resection. Main Outcomes and Measures: The primary end points were cavity local recurrence (LR), MD, ARE, overall survival (OS), and multivariable analysis of prognostic factors associated with these outcomes. Results: The study cohort included 404 patients (214 women [53%]; median [IQR] age, 60.6 [54.0-69.6] years) with 416 resected index lesions. The 2-year cavity LR rate was 13.7%. Systemic disease status, extent of resection, SRS fractionation, type of surgery (piecemeal vs en bloc), and primary tumor type were associated with cavity LR risk. The 2-year MD rate was 5.8%, with extent of resection, primary tumor type, and posterior fossa location being associated with MD risk. The 2-year any-grade ARE rate was 7.4%, with target margin expansion greater than 1 mm and melanoma primary being associated with ARE risk. Median OS was 17.2 months (95% CI, 14.1-21.3 months), with systemic disease status, extent of resection, and primary tumor type being the strongest prognostic factors associated with OS. Conclusions and Relevance: In this cohort study, the rates of cavity LR, ARE, and MD after preoperative SRS were found to be notably low. Several tumor and treatment factors were identified that are associated with risk of cavity LR, ARE, MD, and OS after treatment with preoperative SRS. A phase 3 randomized clinical trial of preoperative vs postoperative SRS (NRG BN012) has began enrolling (NCT05438212).


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Humanos , Femenino , Persona de Mediana Edad , Radiocirugia/métodos , Estudios de Cohortes , Estudios Retrospectivos , Factores de Riesgo , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/secundario
6.
Phys Imaging Radiat Oncol ; 26: 100438, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37342208

RESUMEN

Background and Purpose: A recently developed biology-guided radiotherapy platform, equipped with positron emission tomography (PET) and computed tomography (CT), provides both anatomical and functional image guidance for radiotherapy. This study aimed to characterize performance of the kilovoltage CT (kVCT) system on this platform using standard quality metrics measured on phantom and patient images, using CT simulator images as reference. Materials and Methods: Image quality metrics, including spatial resolution/modular transfer function (MTF), slice sensitivity profile (SSP), noise performance and image uniformity, contrast-noise ratio (CNR) and low-contrast resolution, geometric accuracy, and CT number (HU) accuracy, were evaluated on phantom images. Patient images were evaluated mainly qualitatively. Results: On phantom images the MTF10% is about 0.68 lp/mm for kVCT in PET/CT Linac. The SSP agreed with nominal slice thickness within 0.7 mm. The diameter of the smallest visible target (1% contrast) is about 5 mm using medium dose mode. The image uniformity is within 2.0 HU. The geometric accuracy tests passed within 0.5 mm. Relative to CT simulator images, the noise is generally higher and the CNR is lower in PET/CT Linac kVCT images. The CT number accuracy is comparable between the two systems with maximum deviation from the phantom manufacturer range within 25 HU. On patient images, higher spatial resolution and image noise are observed on PET/CT Linac kVCT images. Conclusions: Major image quality metrics of the PET/CT Linac kVCT were within vendor-recommended tolerances. Better spatial resolution but higher noise and better/comparable low contrast visibility were observed as compared to a CT simulator when images were acquired with clinical protocols.

7.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-982308

RESUMEN

OBJECTIVE@#To evaluate the efficacy and safety of Huashi Baidu Granules (HSBD) in treating patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant.@*METHODS@#A single-center retrospective cohort study was conducted during COVID-19 Omicron epidemic in the Mobile Cabin Hospital of Shanghai New International Expo Center from April 1st to May 23rd, 2022. All COVID-19 patients with asymptomatic or mild infection were assigned to the treatment group (HSBD users) and the control group (non-HSBD users). After propensity score matching in a 1:1 ratio, 496 HSBD users of treatment group were matched by propensity score to 496 non-HSBD users. Patients in the treatment group were administrated HSBD (5 g/bag) orally for 1 bag twice a day for 7 consecutive days. Patients in the control group received standard care and routine treatment. The primary outcomes were the negative conversion time of nucleic acid and negative conversion rate at day 7. Secondary outcomes included the hospitalized days, the time of the first nucleic acid negative conversion, and new-onset symptoms in asymptomatic patients. Adverse events (AEs) that occurred during the study were recorded. Further subgroup analysis was conducted in vaccinated (378 HSBD users and 390 non-HSBD users) and unvaccinated patients (118 HSBD users and 106 non-HSBD users).@*RESULTS@#The median negative conversion time of nucleic acid in the treatment group was significantly shortened than the control group [3 days (IQR: 2-5 days) vs. 5 days (IQR: 4-6 days); P<0.01]. The negative conversion rate of nucleic acid in the treatment group were significantly higher than those in the control group at day 7 (91.73% vs. 86.90%, P=0.014). Compared with the control group, the hospitalized days in the treatment group were significantly reduced [10 days (IQR: 8-11 days) vs. 11 days (IQR: 10.25-12 days); P<0.01]. The time of the first nucleic acid negative conversion had significant differences between the treatment and control groups [3 days (IQR: 2-4 days) vs. 5 days (IQR: 4-6 days); P<0.01]. The incidence of new-onset symptoms including cough, pharyngalgia, expectoration and fever in the treatment group were lower than the control group (P<0.05 or P<0.01). In the vaccinated patients, the median negative conversion time and hospitalized days were significantly shorter than the control group after HSDB treatment [3 days (IQR: 2-5 days) vs. 5 days (IQR: 4-6 days), P<0.01; 10 days (IQR: 8-11 days) vs. 11 days (IQR: 10-12 days), P<0.01]. In the unvaccinated patients, HSBD treatment efficiently shorten the median negative conversion time and hospitalized days [4 days (IQR: 2-6 days) vs. 5 days (IQR: 4-7 days), P<0.01; 10.5 days (IQR: 8.75-11 days) vs. 11.0 days (IQR: 10.75-13 days); P<0.01]. No serious AEs were reported during the study.@*CONCLUSION@#HSBD treatment significantly shortened the negative conversion time of nuclear acid, the length of hospitalization, and the time of the first nucleic acid negative conversion in patients infected with SARS-COV-2 Omicron variant (Trial registry No. ChiCTR2200060472).

8.
Acta Pharmaceutica Sinica ; (12): 3216-3221, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-999098

RESUMEN

Azithromycin dry suspension is one of the most commonly used drugs in pediatric clinic, but its taste masking has been difficult to achieve. 5 representative products of azithromycin dry suspension were chose to compare their tastes both using electronic tongue and human sensory evaluation methods, and there existed the differences of bitterness, later bitterness, graininess, and adhesion among these products. Raman micro-imaging was used to determine the difference in taste mainly due to different prescription ingredients and manufacturing techniques. Through mixing the dry suspensions with alkaline mixing solvent, the bad taste of each product was masked after evenly dispersing in the solvent, and their tastes were all close to the taste of the solvent. In the future, it is planned to investigate the stability and bioavailability of the solvent preparations, and then to give the medication suggestion of solvent preparation after ensuring their efficacy.

9.
Acta Pharmaceutica Sinica ; (12): 3210-3215, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-999097

RESUMEN

Chloral hydrate is a commonly used central sedative drug before pediatric clinical examination, but its clinical safety and medication adherence are needed to focus on normally because of its poor stability and palatability. Under the premise of investigating the stability of different formulations, their palatability were also screened by using both human sensory and electronic tongue evaluation techniques. Human sensory evaluation has been conducted with the informed consent of all participants in accordance with the ethical requirements of the Good Clinical Practice for Drug Trials. The results showed that the addition of sorbitol and sucralose could effectively ensure the stability of the oral solution. Sorbitol is the main taste-masking component, and the ratio of 40% sorbitol and 0.5% sucralose can effectively mask the bitterness, astringency and spicy taste of 10% chloral hydrate oral solution. The results detected by human sensory and electronic tongue have good correlation and complementarity, and the combination of these two methods is more conducive to getting objective and reasonable conclusions.

10.
Acta Pharmaceutica Sinica ; (12): 3165-3172, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-999094

RESUMEN

Electronic tongue is one kind of bionic detection technologies, which can objectively reflect the taste of drugs based on electrochemical principle. In this paper, the development histories of electronic tongue both of potential type and voltammetry type were introduced, including their detection principles and key innovation technologies. In order to comprehensively improve the understanding of electronic tongue, its technological progresses, such as the study of dedicated sensors or biosensors for specific tastes, and the development of miniaturized or hybrid devices, were also discussed in detail. And the challenges and countermeasures in the application of electronic tongue were analyzed to provide some suggestions for its further technology promotion.

11.
Discov Oncol ; 13(1): 126, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36380219

RESUMEN

PURPOSE: Poor outcomes in IDH wild-type (IDHwt) glioblastomas indicate the need to determine which genetic alterations can indicate poor survival and guidance of patient specific treatment options. We sought to identify the genetic alterations in these patients that predict for survival when adjusting particularly for treatments and other genetic alterations. METHODS: A cohort of 167 patients with pathologically confirmed IDHwt glioblastomas treated at our institution was retrospectively reviewed. Next generation sequencing was performed for each patient to determine tumor genetic alterations. Multivariable cox proportional hazards analysis for overall survival (OS) was performed to control for patient variables. RESULTS: CDKN2A, CDKN2B, and MTAP deletion predict for worse OS independently of other genetic alterations and patient characteristics (hazard ratio [HR] 2.192, p = 0.0017). Patients with CDKN2A copy loss (HR 2.963, p = 0.0037) or TERT mutated (HR 2.815, p = 0.0008) glioblastomas exhibited significant associations between radiation dose and OS, while CDKN2A and TERT wild type patients did not. CDKN2A deleted patients with NF1 mutations had worse OS (HR 1.990, p = 0.0540), while CDKN2A wild type patients had improved OS (HR 0.229, p = 0.0723). Patients with TERT mutated glioblastomas who were treated with radiation doses < 45 Gy (HR 3.019, p = 0.0010) but not those treated with ≥ 45 Gy exhibited worse OS compared to those without TERT mutations. CONCLUSION: In IDHwt glioblastomas, CDKN2A, CDKN2B, and MTAP predict for poor prognosis. TERT and CDKN2A mutations are associated with worse survival only when treated with lower radiation doses, thus potentially providing a genetic marker that can inform clinicians on proper dose-fractionation schemes.

12.
Phys Med Biol ; 67(24)2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36384039

RESUMEN

Objective: Gliomas are the most common primary brain tumors. Approximately 70% of the glioma patients diagnosed with glioblastoma have an averaged overall survival (OS) of only ∼16 months. Early survival prediction is essential for treatment decision-making in glioma patients. Here we proposed an ensemble learning approach to predict the post-operative OS of glioma patients using only pre-operative MRIs.Approach: Our dataset was from the Medical Image Computing and Computer Assisted Intervention Brain Tumor Segmentation challenge 2020, which consists of multimodal pre-operative MRI scans of 235 glioma patients with survival days recorded. The backbone of our approach was a Siamese network consisting of twinned ResNet-based feature extractors followed by a 3-layer classifier. During training, the feature extractors explored traits of intra and inter-class by minimizing contrastive loss of randomly paired 2D pre-operative MRIs, and the classifier utilized the extracted features to generate labels with cost defined by cross-entropy loss. During testing, the extracted features were also utilized to define distance between the test sample and the reference composed of training data, to generate an additional predictor via K-NN classification. The final label was the ensemble classification from both the Siamese model and the K-NN model.Main results: Our approach classifies the glioma patients into 3 OS classes: long-survivors (>15 months), mid-survivors (between 10 and 15 months) and short-survivors (<10 months). The performance is assessed by the accuracy (ACC) and the area under the curve (AUC) of 3-class classification. The final result achieved an ACC of 65.22% and AUC of 0.81.Significance: Our Siamese network based ensemble learning approach demonstrated promising ability in mining discriminative features with minimal manual processing and generalization requirement. This prediction strategy can be potentially applied to assist timely clinical decision-making.


Asunto(s)
Aprendizaje Automático , Humanos
13.
Front Neurol ; 13: 1024138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438954

RESUMEN

Introduction: Poor outcomes in glioblastoma patients, despite advancing treatment paradigms, indicate a need to determine non-physiologic prognostic indicators of patient outcome. The impact of specific socioeconomic and demographic patient factors on outcomes is unclear. We sought to identify socioeconomic and demographic patient characteristics associated with patient survival and tumor progression, and to characterize treatment options and healthcare utilization. Methods: A cohort of 169 patients with pathologically confirmed glioblastomas treated at our institution was retrospectively reviewed. Multivariable cox proportional hazards analysis for overall survival (OS) and cumulative incidence of progression was performed. Differences in treatment regimen, patient characteristics, and neuro-oncology office use between different age and depressive disorder history patient subgroups were calculated two-sample t-tests, Fisher's exact tests, or linear regression analysis. Results: The median age of all patients at the time of initiation of radiation therapy was 60.5 years. The median OS of the cohort was 13.1 months. Multivariable analysis identified age (Hazard Ratio 1.02, 95% CI 1.00-1.04) and total resection (Hazard Ratio 0.52, 95% CI 0.33-0.82) as significant predictors of OS. Increased number of radiation fractions (Hazard Ratio 0.90, 95% CI 0.82-0.98), depressive disorder history (Hazard Ratio 0.59, 95% CI 0.37-0.95), and total resection (Hazard Ratio 0.52, 95% CI 0.31-0.88) were associated with decreased incidence of progression. Notably, patients with depressive disorder history were observed to have more neuro-oncology physician office visits over time (median 12 vs. 16 visits, p = 0.0121). Patients older than 60 years and those with Medicare (vs. private) insurance were less likely to receive as many radiation fractions (p = 0.0014) or receive temozolomide concurrently with radiation (Odds Ratio 0.46, p = 0.0139). Conclusion: Older glioblastoma patients were less likely to receive as diverse of a treatment regimen as their younger counterparts, which may be partially driven by insurance type. Patients with depressive disorder history exhibited reduced incidence of progression, which may be due to more frequent health care contact during neuro-oncology physician office visits.

14.
Front Oncol ; 12: 1000280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36158642

RESUMEN

Introduction: Poor outcomes in glioma patients indicate a need to determine prognostic indicators of survival to better guide patient specific treatment options. While preoperative neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR) have been suggested as prognostic systemic inflammation markers, the impact of post-radiation changes in these cell types is unclear. We sought to identify which hematologic cell measurements before, during, or after radiation predicted for patient survival. Methods: A cohort of 182 patients with pathologically confirmed gliomas treated at our institution was retrospectively reviewed. Patient blood samples were collected within one month before, during, or within 3 months after radiation for quantification of hematologic cell counts, for which failure patterns were evaluated. Multivariable cox proportional hazards analysis for overall survival (OS) and progression-free survival (PFS) was performed to control for patient variables. Results: Multivariable analysis identified pre-radiation NLR > 4.0 (Hazard ratio = 1.847, p = 0.0039) and neutrophilia prior to (Hazard ratio = 1.706, p = 0.0185), during (Hazard ratio = 1.641, p = 0.0277), or after (Hazard ratio = 1.517, p = 0.0879) radiation as significant predictors of worse OS, with similar results for PFS. Post-radiation PLR > 200 (Hazard ratio = 0.587, p = 0.0062) and a percent increase in platelets after radiation (Hazard ratio = 0.387, p = 0.0077) were also associated with improved OS. Patients receiving more than 15 fractions of radiation exhibited greater post-radiation decreases in neutrophil and platelet counts than those receiving fewer. Patients receiving dexamethasone during radiation exhibited greater increases in neutrophil counts than those not receiving steroids. Lymphopenia, changes in lymphocyte counts, monocytosis, MLR, and changes in monocyte counts did not impact patient survival. Conclusion: Neutrophilia at any time interval surrounding radiotherapy, pre-radiation NLR, and post-radiation thrombocytopenia, but not lymphocytes or monocytes, are predictors of poor patient survival in glioma patients.

16.
Transplant Cell Ther ; 28(2): 113.e1-113.e8, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34775145

RESUMEN

Total body irradiation is an important part of the conditioning regimens frequently used to prepare patients for allogeneic hematopoietic stem cell transplantation (SCT). Volumetric-modulated arc therapy enabled total body irradiation (VMAT-TBI), an alternative to conventional TBI (cTBI), is a novel radiotherapy treatment technique that has been implemented and investigated in our institution. The purpose of this study is to (1) report our six-year clinical experience in terms of treatment planning strategy and delivery time and (2) evaluate the clinical outcomes and toxicities in our cohort of patients treated with VMAT-TBI. This is a retrospective single center study. Forty-four patients at our institution received VMAT-TBI and chemotherapy conditioning followed by allogeneic SCT between 2014 and 2020. Thirty-two patients (73%) received standard-dose TBI (12-13.2 Gy in 6-8 fractions twice daily), whereas 12 (27%) received low-dose TBI (2-4 Gy in one fraction). Treatment planning, delivery, and treatment outcome data including overall survival (OS), relapse-free survival (RFS), and toxicities were analyzed. The developed VMAT-TBI planning strategy consistently generated plans satisfying our dose constraints, with planning target volume coverage >90%, mean lung dose ∼50% to 75% of prescription dose, and minimal hotspots in critical organs. Most of the treatment deliveries were <100 minutes (range 33-147, mean 72). The median follow-up was 26 months. At the last follow-up, 34 of 44 (77%) of patients were alive, with 1- and 2-year OS of 90% and 79% and RFS of 88% and 71%, respectively. The most common grade 3+ toxicities observed were mucositis (31 patients [71%]) and nephrotoxicity (6 patients [13%]), both of which were deemed multifactorial in cause. Four patients (9%) in standard-dose cohort developed grade 3+ pneumonitis, with 3 cases in the setting of documented respiratory infection and only 1 (2%) deemed likely related to radiation alone. VMAT-TBI provides a safe alternative to cTBI. The dose modulation capability of VMAT-TBI may lead to new treatment strategies, such as simultaneous boost and further critical organ sparing, for better malignant cell eradication, immune suppression, and lower toxicities.


Asunto(s)
Radioterapia de Intensidad Modulada , Humanos , Órganos en Riesgo/efectos de la radiación , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/efectos adversos , Estudios Retrospectivos , Resultado del Tratamiento , Irradiación Corporal Total
17.
Phys Med Biol ; 67(2)2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34952535

RESUMEN

Stereotactic radiosurgery (SRS) is now the standard of care for brain metastases (BMs) patients. The SRS treatment planning process requires precise target delineation, which in clinical workflow for patients with multiple (>4) BMs (mBMs) could become a pronounced time bottleneck. Our group has developed an automated BMs segmentation platform to assist in this process. The accuracy of the auto-segmentation, however, is influenced by the presence of false-positive segmentations, mainly caused by the injected contrast during MRI acquisition. To address this problem and further improve the segmentation performance, a deep-learning and radiomics ensemble classifier was developed to reduce the false-positive rate in segmentations. The proposed model consists of a Siamese network and a radiomic-based support vector machine (SVM) classifier. The 2D-based Siamese network contains a pair of parallel feature extractors with shared weights followed by a single classifier. This architecture is designed to identify the inter-class difference. On the other hand, the SVM model takes the radiomic features extracted from 3D segmentation volumes as the input for twofold classification, either a false-positive segmentation or a true BM. Lastly, the outputs from both models create an ensemble to generate the final label. The performance of the proposed model in the segmented mBMs testing dataset reached the accuracy (ACC), sensitivity (SEN), specificity (SPE) and area under the curve of 0.91, 0.96, 0.90 and 0.93, respectively. After integrating the proposed model into the original segmentation platform, the average segmentation false negative rate (FNR) and the false positive over the union (FPoU) were 0.13 and 0.09, respectively, which preserved the initial FNR (0.07) and significantly improved the FPoU (0.55). The proposed method effectively reduced the false-positive rate in the BMs raw segmentations indicating that the integration of the proposed ensemble classifier into the BMs segmentation platform provides a beneficial tool for mBMs SRS management.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Radiocirugia , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/secundario , Humanos , Imagen por Resonancia Magnética/métodos , Máquina de Vectores de Soporte
18.
Int J Radiat Oncol Biol Phys ; 111(3): 764-772, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34058254

RESUMEN

PURPOSE: Preoperative radiosurgery (SRS) is a feasible alternative to postoperative SRS, with potential benefits in adverse radiation effect (ARE) and leptomeningeal disease (LMD) relapse. However, previous studies are limited by small patient numbers and single-institution designs. Our aim was to evaluate preoperative SRS outcomes and prognostic factors from a large multicenter cohort (Preoperative Radiosurgery for Brain Metastases [PROPS-BM]). METHODS AND MATERIALS: Patients with brain metastases (BM) from solid cancers who had at least 1 lesion treated with preoperative SRS and underwent a planned resection were included from 5 institutions. SRS to synchronous intact BM was allowed. Radiographic meningeal disease (MD) was categorized as either nodular or classical "sugarcoating" (cLMD). RESULTS: The cohort included 242 patients with 253 index lesions. Most patients (62.4%) had a single BM, 93.7% underwent gross total resection, and 98.8% were treated with a single fraction to a median dose of 15 Gray to a median gross tumor volume of 9.9 cc. Cavity local recurrence (LR) rates at 1 and 2 years were 15% and 17.9%, respectively. Subtotal resection (STR) was a strong independent predictor of LR (hazard ratio, 9.1; P < .001). One and 2-year rates of MD were 6.1% and 7.6% and of any grade ARE were 4.7% and 6.8% , respectively. The median overall survival (OS) duration was 16.9 months and the 2-year OS rate was 38.4%. The majority of MD was cLMD (13 of 19 patients with MD; 68.4%). Of 242 patients, 10 (4.1%) experienced grade ≥3 postoperative surgical complications. CONCLUSIONS: To our knowledge, this multicenter study represents the largest cohort treated with preoperative SRS. The favorable outcomes previously demonstrated in single-institution studies, particularly the low rates of MD and ARE, are confirmed in this expanded multicenter analysis, without evidence of an excessive postoperative surgical complication risk. STR, though infrequent, is associated with significantly worse cavity LR. A randomized trial between preoperative and postoperative SRS is warranted and is currently being designed.


Asunto(s)
Neoplasias Encefálicas , Traumatismos por Radiación , Radiocirugia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Estudios de Cohortes , Humanos , Recurrencia Local de Neoplasia , Complicaciones Posoperatorias , Radiocirugia/efectos adversos , Estudios Retrospectivos , Resultado del Tratamiento
19.
Cureus ; 13(2): e13354, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33747655

RESUMEN

Background The COVID-19 pandemic challenges our ability to safely treat breast cancer patients and requires revisiting current techniques to evaluate optimal strategies. Potential long-term sequelae of breast radiation have been addressed by deep inspiration breath-hold (DIBH), prone positioning, and four-dimensional computed tomography (4DCT) average intensity projection (AveIP)-based planning techniques. Dosimetric comparisons to determine the optimal technique to minimize the normal tissue dose for left-sided breast cancers have not been performed. Methods Ten patients with left-sided, early-stage breast cancer undergoing whole breast radiation were simulated in the prone position, supine with DIBH, and with a free-breathing 4DCT scan. The target and organs at risk (OAR) contours were delineated in all scans. Target volume coverage and OAR doses were assessed. One-way analysis of variance (ANOVA) and Kruskal-Wallis one-way ANOVA were used to detect differences in dosimetric parameters among the different treatment plans. Significance was set as p < 0.05. Results We demonstrate differences in heart and lung dose by the simulation technique. The mean heart doses in the prone, DIBH, and AveIP plans were 129 cGy, 154 cGy, and 262 cGy, respectively (p=0.02). The lung V20 in the prone, DIBH, and AveIP groups was 0.5%, 10.3% and 9.5%, respectively (p <0.001). Regardless of technique, lumpectomy planning target volume (PTV) coverage did not differ between the three plans with 95% of the lumpectomy PTV volume covered by 100.4% in prone plans, 98.5% in AveIP plans, and 99.3% in DIBH plans (p=0.7). Conclusions Prone positioning provides dosimetric advantages as compared to DIBH. When infection risks are considered as in the current coronavirus disease 2019 (COVID-19) pandemic, prone plans have advantages in reducing the risk of disease transmission. In instances where prone positioning is not feasible, obtaining an AveIP simulation may be useful in more accurately assessing heart and lung toxicity and informing a risk/benefit discussion of DIBH vs free breath-hold techniques.

20.
Cureus ; 13(3): e13998, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33758727

RESUMEN

The indications and techniques for the treatment of intracranial lesions continue to evolve with the advent of novel technologies. The Gamma Knife Icon™ (GK Icon™) is the most recent model available from Elekta, providing a frameless solution for stereotactic radiosurgery. At our institution, 382 patients with 3,213 separate intracranial lesions have been treated with frameless stereotactic radiotherapy using the GK Icon. The wide range of diagnoses include brain metastases, meningiomas, arteriovenous malformations, acoustic neuromas, pituitary adenomas, and several other histologies. The ability to perform both frame and frameless treatments on the GK Icon has significantly increased our daily volume by almost 50% on a single machine. Although the frameless approach allows one to take advantage of the precision in radiosurgery, the intricacies regarding treatment with this frameless system are not well established. Our initial experience will help to serve as a guide to those wishing to implement this novel technology in their practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...