Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 5(1): 480, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35590096

RESUMEN

Mycobacterium tuberculosis (Mtb) is responsible for approximately 1.5 million deaths each year. Though 10% of patients develop tuberculosis (TB) after infection, 90% of these infections are latent. Further, mice are nearly uniformly susceptible to Mtb but their M1-polarized macrophages (M1-MΦs) can inhibit Mtb in vitro, suggesting that M1-MΦs may be able to regulate anti-TB immunity. We sought to determine whether human MΦ heterogeneity contributes to TB immunity. Here we show that IFN-γ-programmed M1-MΦs degrade Mtb through increased expression of innate immunity regulatory genes (Inregs). In contrast, IL-4-programmed M2-polarized MΦs (M2-MΦs) are permissive for Mtb proliferation and exhibit reduced Inregs expression. M1-MΦs and M2-MΦs express pro- and anti-inflammatory cytokine-chemokines, respectively, and M1-MΦs show nitric oxide and autophagy-dependent degradation of Mtb, leading to increased antigen presentation to T cells through an ATG-RAB7-cathepsin pathway. Despite Mtb infection, M1-MΦs show increased histone acetylation at the ATG5 promoter and pro-autophagy phenotypes, while increased histone deacetylases lead to decreased autophagy in M2-MΦs. Finally, Mtb-infected neonatal macaques express human Inregs in their lymph nodes and macrophages, suggesting that M1 and M2 phenotypes can mediate immunity to TB in both humans and macaques. We conclude that human MФ subsets show unique patterns of gene expression that enable differential control of TB after infection. These genes could serve as targets for diagnosis and immunotherapy of TB.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Citocinas/genética , Citocinas/metabolismo , Humanos , Inmunidad Innata/genética , Macrófagos/metabolismo , Ratones , Tuberculosis/metabolismo
2.
ACS Nano ; 16(3): 4426-4443, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35103463

RESUMEN

The generation of specific humoral and cellular immune responses plays a pivotal role in the development of effective vaccines against tumors. Especially the presence of antigen-specific, cytotoxic T cells influences the outcome of therapeutic cancer vaccinations. Different strategies, ranging from delivering antigen-encoding mRNAs to peptides or full antigens, are accessible but often suffer from insufficient immunogenicity and require immune-boosting adjuvants as well as carrier platforms to ensure stability and adequate retention. Here, we introduce a pH-responsive nanogel platform as a two-component antitumor vaccine that is safe for intravenous application and elicits robust immune responses in vitro and in vivo. The underlying chemical design allows for straightforward covalent attachment of a model antigen (ovalbumin) and an immune adjuvant (imidazoquinoline-type TLR7/8 agonist) onto the same nanocarrier system. In addition to eliciting antigen-specific T and B cell responses that outperform mixtures of individual components, our two-component nanovaccine leads in prophylactic and therapeutic studies to an antigen-specific growth reduction of different tumors expressing ovalbumin intracellularly or on their surface. Regarding the versatile opportunities for functionalization, our nanogels are promising for the development of highly customized and potent nanovaccines.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Receptor Toll-Like 7 , Receptor Toll-Like 8 , Adyuvantes Inmunológicos , Animales , Antígenos , Inmunidad Celular , Ratones , Ratones Endogámicos C57BL , Nanogeles , Neoplasias/terapia , Ovalbúmina , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas
3.
Microbiol Spectr ; 10(1): e0169521, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35171046

RESUMEN

Global control of COVID-19 will require the deployment of vaccines capable of inducing long-term protective immunity against SARS-CoV-2 variants. In this report, we describe an adjuvanted subunit candidate vaccine that affords elevated, sustained, and cross-variant SARS-CoV-2 neutralizing antibodies (NAbs) in multiple animal models. Alhydroxiquim-II is a Toll-Like Receptor (TLR) 7/8 small-molecule agonist chemisorbed on aluminum hydroxide (Alhydrogel). Vaccination with Alhydroxiquim-II combined with a stabilized, trimeric form of the SARS-CoV-2 spike protein (termed CoVac-II) resulted in high-titer NAbs in mice, with no decay in responses over an 8-month period. NAbs from sera of CoVac-II-immunized mice, horses and rabbits were broadly neutralizing against SARS-CoV-2 variants. Boosting long-term CoVac-II-immunized mice with adjuvanted spike protein from the Beta variant markedly increased levels of NAb titers against multiple SARS-CoV-2 variants; notably, high titers against the Delta variant were observed. These data strongly support the clinical assessment of Alhydroxiquim-II-adjuvanted spike proteins to protect against SARS-CoV-2 variants of concern. IMPORTANCE There is an urgent need for next-generation COVID-19 vaccines that are safe, demonstrate high protective efficacy against SARS-CoV-2 variants and can be manufactured at scale. We describe a vaccine candidate (CoVac-II) that is based on stabilized, trimeric spike antigen produced in an optimized, scalable and chemically defined production process. CoVac-II demonstrates strong and persistent immunity after vaccination of mice, and is highly immunogenic in multiple animal models, including rabbits and horses. We further show that prior immunity can be boosted using a recombinant spike antigen from the Beta variant; importantly, plasma from boosted mice effectively neutralize multiple SARS-CoV-2 variants in vitro, including Delta. The strong humoral and Th1-biased immunogenicity of CoVac-II is driven by use of Alhydroxiquim-II (AHQ-II), the first adjuvant in an authorized vaccine that acts through the dual Toll-like receptor (TLR)7 and TLR8 pathways, as part of the Covaxin vaccine. Our data suggest AHQ-II/spike protein combinations could constitute safe, affordable, and mass-manufacturable COVID-19 vaccines for global distribution.


Asunto(s)
Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Linfocitos T CD4-Positivos/inmunología , Caballos , Ratones , Conejos , Linfocitos T/inmunología
4.
Sci Adv ; 7(37): eabh1547, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34516878

RESUMEN

A "universal" platform that can rapidly generate multiplex vaccine candidates is critically needed to control pandemics. Using the severe acute respiratory syndrome coronavirus 2 as a model, we have developed such a platform by CRISPR engineering of bacteriophage T4. A pipeline of vaccine candidates was engineered by incorporating various viral components into appropriate compartments of phage nanoparticle structure. These include expressible spike genes in genome, spike and envelope epitopes as surface decorations, and nucleocapsid proteins in packaged core. Phage decorated with spike trimers was found to be the most potent vaccine candidate in animal models. Without any adjuvant, this vaccine stimulated robust immune responses, both T helper cell 1 (TH1) and TH2 immunoglobulin G subclasses, blocked virus-receptor interactions, neutralized viral infection, and conferred complete protection against viral challenge. This new nanovaccine design framework might allow the rapid deployment of effective adjuvant-free phage-based vaccines against any emerging pathogen in the future.

6.
J Am Chem Soc ; 143(26): 9872-9883, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34166595

RESUMEN

Small-molecular Toll-like receptor 7/8 (TLR7/8) agonists hold promise as immune modulators for a variety of immune therapeutic purposes including cancer therapy or vaccination. However, due to their rapid systemic distribution causing difficult-to-control inflammatory off-target effects, their application is still problematic, in particular systemically. To address this problem, we designed and robustly fabricated pH-responsive nanogels serving as versatile immunodrug nanocarriers for safe delivery of TLR7/8-stimulating imidazoquinolines after intravenous administration. To this aim, a primary amine-reactive methacrylamide monomer bearing a pendant squaric ester amide is introduced, which is polymerized under controlled RAFT polymerization conditions. Corresponding PEG-derived squaric ester amide block copolymers self-assemble into precursor micelles in polar protic solvents. Their cores are amine-reactive and can sequentially be transformed by acid-sensitive cross-linkers, dyes, and imidazoquinolines. Remaining squaric ester amides are hydrophilized affording fully hydrophilic nanogels with profound stability in human plasma but stimuli-responsive degradation upon exposure to endolysosomal pH conditions. The immunomodulatory behavior of the imidazoquinolines alone or conjugated to the nanogels was demonstrated by macrophages in vitro. In vivo, however, we observed a remarkable impact of the nanogel: After intravenous injection, a spatially controlled immunostimulatory activity was evident in the spleen, whereas systemic off-target inflammatory responses triggered by the small-molecular imidazoquinoline analogue were absent. These findings underline the potential of squaric ester-based, pH-degradable nanogels as a promising platform to permit intravenous administration routes of small-molecular TLR7/8 agonists and, thus, the opportunity to explore their adjuvant potency for systemic vaccination or cancer immunotherapy purposes.


Asunto(s)
Adyuvantes Inmunológicos/química , Ésteres/química , Nanogeles/química , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Animales , Portadores de Fármacos/química , Liberación de Fármacos , Humanos , Concentración de Iones de Hidrógeno , Inmunoterapia , Ratones Endogámicos BALB C , Micelas , Imagen Óptica , Polimerizacion , Polímeros/química
7.
ACS Appl Mater Interfaces ; 13(5): 6011-6022, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33507728

RESUMEN

Peptide-based subunit vaccines are attractive in view of personalized cancer vaccination with neo-antigens, as well as for the design of the newest generation of vaccines against infectious diseases. Key to mounting robust antigen-specific immunity is delivery of antigen to antigen-presenting (innate immune) cells in lymphoid tissue with concomitant innate immune activation to promote antigen presentation to T cells and to shape the amplitude and nature of the immune response. Nanoparticles that co-deliver both peptide antigen and molecular adjuvants are well suited for this task. However, in the context of peptide-based antigen, an unmet need exists for a generic strategy that allows for co-encapsulation of peptide and molecular adjuvants due to the stark variation in physicochemical properties based on the amino acid sequence of the peptide. These properties also strongly differ from those of many molecular adjuvants. Here, we devise a lipid nanoparticle (LNP) platform that addresses these issues. Key in our concept is poly(l-glutamic acid) (PGA), which serves as a hydrophilic backbone for conjugation of, respectively, peptide antigen (Ag) and an imidazoquinoline (IMDQ) TLR7/8 agonist as a molecular adjuvant. Making use of the PGA's polyanionic nature, we condensate PGA-Ag and PGA-IMDQ into LNP by electrostatic interaction with an ionizable lipid. We show in vitro and in vivo in mouse models that LNP encapsulation favors uptake by innate immune cells in lymphoid tissue and promotes the induction of Ag-specific T cells responses both after subcutaneous and intravenous administration.


Asunto(s)
Lípidos/inmunología , Linfocitos/inmunología , Nanopartículas/química , Ácido Poliglutámico/inmunología , Vacunas/inmunología , Adyuvantes Inmunológicos/química , Animales , Línea Celular , Lípidos/química , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Tamaño de la Partícula , Ácido Poliglutámico/síntesis química , Ácido Poliglutámico/química , Células RAW 264.7 , Propiedades de Superficie , Vacunas/química
8.
bioRxiv ; 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33501450

RESUMEN

A "universal" vaccine design platform that can rapidly generate multiplex vaccine candidates is critically needed to control future pandemics. Here, using SARS-CoV-2 pandemic virus as a model, we have developed such a platform by CRISPR engineering of bacteriophage T4. A pipeline of vaccine candidates were engineered by incorporating various viral components into appropriate compartments of phage nanoparticle structure. These include: expressible spike genes in genome, spike and envelope epitopes as surface decorations, and nucleocapsid proteins in packaged core. Phage decorated with spike trimers is found to be the most potent vaccine candidate in mouse and rabbit models. Without any adjuvant, this vaccine stimulated robust immune responses, both T H 1 and T H 2 IgG subclasses, blocked virus-receptor interactions, neutralized viral infection, and conferred complete protection against viral challenge. This new type of nanovaccine design framework might allow rapid deployment of effective phage-based vaccines against any emerging pathogen in the future.

9.
Angew Chem Int Ed Engl ; 60(17): 9467-9473, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33464672

RESUMEN

The search for vaccines that protect from severe morbidity and mortality because of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19) is a race against the clock and the virus. Here we describe an amphiphilic imidazoquinoline (IMDQ-PEG-CHOL) TLR7/8 adjuvant, consisting of an imidazoquinoline conjugated to the chain end of a cholesterol-poly(ethylene glycol) macromolecular amphiphile. It is water-soluble and exhibits massive translocation to lymph nodes upon local administration through binding to albumin, affording localized innate immune activation and reduction in systemic inflammation. The adjuvanticity of IMDQ-PEG-CHOL was validated in a licensed vaccine setting (quadrivalent influenza vaccine) and an experimental trimeric recombinant SARS-CoV-2 spike protein vaccine, showing robust IgG2a and IgG1 antibody titers in mice that could neutralize viral infection in vitro and in vivo in a mouse model.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Vacunas contra la COVID-19/uso terapéutico , COVID-19/prevención & control , Imidazoles/uso terapéutico , Inmunidad Innata/efectos de los fármacos , Quinolinas/uso terapéutico , Animales , Vacunas contra la COVID-19/inmunología , Colesterol/análogos & derivados , Colesterol/inmunología , Colesterol/uso terapéutico , Femenino , Humanos , Imidazoles/inmunología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/prevención & control , Glicoproteínas de Membrana/agonistas , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Polietilenglicoles/uso terapéutico , Quinolinas/inmunología , Proteínas Recombinantes/inmunología , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/inmunología , Tensoactivos/uso terapéutico , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas
10.
J Am Chem Soc ; 142(28): 12133-12139, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32524819

RESUMEN

Synthetic immune-stimulatory drugs such as agonists of the Toll-like receptors (TLR) 7/8 are potent activators of antigen-presenting cells (APCs), however, they also induce severe side effects due to leakage from the site of injection into systemic circulation. Here, we report on the design and synthesis of an amphiphilic polymer-prodrug conjugate of an imidazoquinoline TLR7/8 agonist that in aqueous medium forms vesicular structures of 200 nm. The conjugate contains an endosomal enzyme-responsive linker enabling degradation of the vesicles and release of the TLR7/8 agonist in native form after endocytosis, which results in high in vitro TLR agonist activity. In a mouse model, locally administered vesicles provoke significantly more potent and long-lasting immune stimulation in terms of interferon expression at the injection site and in draining lymphoid tissue compared to a nonamphiphilic control and the native TLR agonist. Moreover, the vesicles induce robust activation of dendritic cells in the draining lymph node in vivo.


Asunto(s)
Imidazoles/farmacología , Glicoproteínas de Membrana/agonistas , Profármacos/farmacología , Quinolinas/farmacología , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , beta-Galactosidasa/inmunología , Animales , Imidazoles/química , Imidazoles/metabolismo , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Glicoproteínas de Membrana/inmunología , Ratones , Estructura Molecular , Tamaño de la Partícula , Polietilenglicoles/química , Polietilenglicoles/metabolismo , Polietilenglicoles/farmacología , Profármacos/química , Profármacos/metabolismo , Quinolinas/química , Quinolinas/metabolismo , Propiedades de Superficie , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 8/inmunología , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo
11.
Biomacromolecules ; 21(6): 2246-2257, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32255626

RESUMEN

The reactivation of the innate immune system by toll-like receptor (TLR) agonists holds promise for anticancer immunotherapy. Severe side effects caused by unspecific and systemic activation of the immune system upon intravenous injection prevent the use of small-molecule TLR agonists for such purposes. However, a covalent attachment of small-molecule imidazoquinoline (IMDQ) TLR7/8 agonists to pH-degradable polymeric nanogels could be shown to drastically reduce the systemic inflammation but retain the activity to tumoral tissues and their draining lymph nodes. Here, we introduce the synthesis of poly(norbornene)-based, acid-degradable nanogels for the covalent ligation of IMDQs. While the intact nanogels trigger sufficient TLR7/8 receptor stimulation, their degraded version of soluble, IMDQ-conjugated poly(norbornene) chains hardly activates TLR7/8. This renders their clinical safety profile, as degradation products are obtained, which would not only circumvent nanoparticle accumulation in the body but also provide nonactive, polymer-bound IMDQ species. Their immunologically silent behavior guarantees both spatial and temporal control over immune activity and, thus, holds promise for improved clinical applications.


Asunto(s)
Inmunoterapia , Receptor Toll-Like 7 , Concentración de Iones de Hidrógeno , Nanogeles , Norbornanos , Receptor Toll-Like 8
12.
ACS Biomater Sci Eng ; 6(9): 4993-5000, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-33455292

RESUMEN

Strategies that can reduce the harmful side effects of potent immunomodulatory drugs are in high demand to facilitate clinical translation of the newest generation of immunotherapy. Indeed, uncontrolled triggering of the immune system can lead to life-threatening cascade reactions, such as e.g. cytokine storm. In particular, drug formulations that combine simplicity and degradability are of formidable relevance. Imidazoquinolines are an excellent example of such small molecule immunomodulatory drugs that exhibit in unformulated form a highly undesirable pharmacokinetic profile. Imidazoquinolines are potent inducers of type I interferons that are of great interest in the context of anticancer and antiviral therapy through triggering of Toll like receptors 7 and 8. In this work we aimed to alter the pharmacokinetic profile of imidazoquinolines using a simple, yet efficient, strategy that holds high potential for clinical translation. Hereto, we conjugated an imidazoquinoline to the backbone of poly(aspartate) and further formulated this into a degradable coacervate through complex coacervation with a nontoxic degradable polycation. The intrinsic TLR activity of the imidazoquinoline was well preserved and our formulation strategy offered spatial control over its biological activity in vivo.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Factores Inmunológicos , Neoplasias/tratamiento farmacológico
13.
Angew Chem Int Ed Engl ; 58(43): 15390-15395, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31397948

RESUMEN

Uncontrolled systemic inflammatory immune triggering has hampered the clinical translation of several classes of small-molecule immunomodulators, such as imidazoquinoline TLR7/8 agonists for vaccine design and cancer immunotherapy. By taking advantage of the inherent serum-protein-binding property of lipid motifs and their tendency to accumulate in lymphoid tissue, we designed amphiphilic lipid-polymer conjugates that suppress systemic inflammation but provoke potent lymph-node immune activation. This work provides a rational basis for the design of lipid-polymer amphiphiles for optimized lymphoid targeting.


Asunto(s)
Inmunidad Innata , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Animales , Colesterol/química , Imidazoles/química , Inmunidad Innata/efectos de los fármacos , Factores Inmunológicos/química , Factores Inmunológicos/metabolismo , Factores Inmunológicos/farmacología , Lípidos/química , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Polímeros/química , Quinolinas/química , Quinolinas/farmacología , Células RAW 264.7 , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 8/metabolismo
14.
ACS Med Chem Lett ; 10(1): 132-136, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30655960

RESUMEN

Using a multiplexed, reporter gene-based, high-throughput screen, we identified 9-fluoro-7-hydroxy-3-methyl-5-oxo-N-(pyridin-3-ylmethyl)-2,3-dihydro-1H,5H-pyrido[3,2,1-ij]quinoline-6-carboxamide as a TLR2 agonist. Preliminary structure-activity relationship studies on the carboxamide moiety led to the identification of analogues that induce chemokines and cytokines in a TLR2-dependent manner. These results represent new leads for the development of vaccine adjuvants.

15.
Cell Rep ; 25(12): 3371-3381.e5, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30566863

RESUMEN

Toll-like receptor 7 (TLR7) is an innate immune receptor for single-stranded RNA (ssRNA) and has important roles in infectious diseases. We previously reported that TLR7 shows synergistic activation in response to two ligands, guanosine and ssRNA. However, the specific ssRNA sequence preference, detailed recognition mode of TLR7 and its ligand, and molecular determinants of TLR7 and TLR8 selectivity remain unknown. Here, we report on TLR7 from a large-scale crystallographic study combined with a multifaceted approach. We reveal that successive uridine-containing ssRNAs fully or moderately bind TLR7, whereas single uridine-containing ssRNAs have reduced affinities. We also reveal the detailed relationships between the chemical structures of ligands and their binding to TLR7. We demonstrate that an engineered TLR8 mutant alters its responsiveness to TLR7-specific ligands. Finally, we identify guanosine 2',3'-cyclic phosphate (2',3'-cGMP) as a possible endogenous ligand for TLR7 with greater affinity than guanosine. The abundant structural information will facilitate future development of treatments targeting TLR7.


Asunto(s)
ARN/metabolismo , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 7/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , GMP Cíclico/metabolismo , Drosophila , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Mutagénesis , Unión Proteica , Quinolinas/farmacología , Relación Estructura-Actividad , Receptor Toll-Like 8/química , Receptor Toll-Like 8/metabolismo
16.
Adv Mater ; 30(45): e1803397, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30276880

RESUMEN

Localized therapeutic modalities that subvert the tumor microenvironment from immune-suppressive to pro-immunogenic can elicit systemic antitumor immune responses that induce regression of directly treated as well as nontreated distal tumors. A key toward generating robust antitumor T cell responses is the activation of dendritic cells (DCs) in the tumor microenvironment. Treatment with agonists triggering various pattern recognition receptors is very efficient to activate DCs, yet suffers from the induction of serious immune-related adverse effects, which is closely linked to their unfavorable PK/PD profile causing systemic immune activation and cytokine release. Here, it is reported that nanoparticle conjugation of a highly potent TLR7/8 agonist restricts immune activation to the tumor bed and its sentinel lymph nodes without hampering therapeutic antitumor efficacy. On a mechanistic level, it is confirmed that localized treatment with a nanoparticle-conjugated TLR7/8 agonist leads to potent activation of DCs in the sentinel lymph nodes and promotes proliferation of tumor antigen-specific CD8 T cells. Furthermore, therapeutic improvement upon combination with anti-PDL1 checkpoint inhibition and Flt3L, a growth factor that expands and mobilizes DCs from the bone marrow, is demonstrated. The findings provide a rational base for localized tumor engineering by nanomedicine strategies that provide spatial control over immune-activation.


Asunto(s)
Inmunoterapia , Nanopartículas/uso terapéutico , Neoplasias/terapia , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Inmunidad Adaptativa , Animales , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer , Línea Celular Tumoral , Células Dendríticas/inmunología , Células Dendríticas/patología , Femenino , Inmunidad Innata , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Neoplasias/diagnóstico por imagen , Neoplasias/inmunología , Neoplasias/patología , Prueba de Estudio Conceptual , Ganglio Linfático Centinela/diagnóstico por imagen , Ganglio Linfático Centinela/inmunología , Ganglio Linfático Centinela/patología
17.
J Am Chem Soc ; 140(43): 14300-14307, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30277761

RESUMEN

Small molecule immuno-modulators such as agonists of Toll-like receptors (TLRs) are attractive compounds to stimulate innate immune cells toward potent antiviral and antitumor responses. However, small molecules rapidly enter the systemic circulation and cause "wasted inflammation". Hence, synthetic strategies to confine their radius of action to lymphoid tissue are of great relevance, to both enhance their efficacy and concomitantly limit toxicity. Here, we demonstrate that covalent conjugation of a small molecule TLR7/8 agonist immunomodulatory to a micelle-forming amphiphilic block copolymer greatly alters the pharmacokinetic profile, resulting in highly efficient lymphatic delivery. Moreover, we designed amphiphilic block copolymers in such a way to form thermodynamically stable micelles through π-π stacking between aromatic moieties, and we engineered the block copolymers to undergo an irreversible amphiphilic to hydrophilic transition in response to the acidic endosomal pH.


Asunto(s)
Ganglios Linfáticos/efectos de los fármacos , Polímeros/farmacología , Tensoactivos/farmacología , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Humanos , Concentración de Iones de Hidrógeno , Ganglios Linfáticos/inmunología , Micelas , Modelos Moleculares , Estructura Molecular , Polímeros/química , Tensoactivos/química , Termodinámica , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 8/inmunología
18.
Bioconjug Chem ; 29(8): 2741-2754, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29969553

RESUMEN

Immunogens carried in lymphatic fluid drain via afferent vessels into regional lymph nodes and facilitate the efficient induction of appropriate immune responses. The lymphatic system possesses receptors recognizing hyaluronic acid (HA). Covalent conjugates of small-molecule TLR7/8 agonists with HA are entirely devoid of immunostimulatory activity in vitro. In murine models of immunization, however, such conjugates traffic to lymph nodes, where they are "unmasked", releasing the small molecule TLR7/8 agonist from the carrier polysaccharide. The resulting focal immunostimulation is manifested in potent adjuvantic effects with negligible systemic exposure. The efficient delivery of immunogens has been a major challenge in the development of subunit vaccines, and enhancing targeted delivery of immunogens to secondary lymphoid organs might be a promising approach for improving vaccine efficacy, as well as safety.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Ácido Hialurónico/química , Inmunoconjugados/farmacología , Ganglios Linfáticos/efectos de los fármacos , Glicoproteínas de Membrana/agonistas , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Adyuvantes Inmunológicos/administración & dosificación , Animales , Citocinas/biosíntesis , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoconjugados/metabolismo , Mediadores de Inflamación/metabolismo , Ratones , Prueba de Estudio Conceptual , Vacunas/administración & dosificación
19.
Hum Vaccin Immunother ; 14(7): 1686-1696, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29852079

RESUMEN

An important component of vaccine development is the identification of safe and effective adjuvants. We sought to identify transcriptomal signatures of innate immune stimulating molecules using next-generation RNA sequencing with the goal of being able to utilize such signatures in identifying novel immunostimulatory compounds with adjuvant activity. The CC family of chemokines, particularly CC chemokines 1, 2, 3, 4, 7, 8, 17, 18, 20, and 23, were broadly upregulated by most Toll-like receptor (TLR) and nucleotide-binding domain and leucine-rich repeat-containing receptors (NLR) stimuli. Extracellular receptors such as TLR2, TLR4 and TLR5 induced the transcription of CXC chemokines including CXCL5, CXCL6 and CXCL8, whereas intracellular receptors such as TLR7 and TLR8 upregulated CXC chemokines 11 and 12. Both TLR1/2 and TLR2/6 agonists induced strong chemokine production in human peripheral blood mononuclear cells. Human skeletal muscle cells and fibroblasts respond with chemokine production only to TLR2/6 agonists, but not TLR1/2 agonists, consistent with strong expression of TLR2 and TLR6, but not of TLR1, in fibroblasts. TLR2/6 stimulated fibroblasts demonstrated functional chemotactic responses to human T cell and natural killer cells subsets. The activation of non-hematopoietic, adventitial cells such as fibroblasts and myocytes may contribute.


Asunto(s)
Adyuvantes Inmunológicos/genética , Quimiocinas/genética , Inmunidad Innata , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 6/agonistas , Transcriptoma , Quimiocinas/inmunología , Quimiotaxis , Fibroblastos/efectos de los fármacos , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Análisis de Secuencia de ARN , Transducción de Señal , Regulación hacia Arriba
20.
Biomaterials ; 178: 643-651, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29573820

RESUMEN

Improving the immunogenicity of subunit vaccines, in particular skewing of the immune response towards Th1 type immunity, is crucial for the development of effective vaccines against intracellular infections and for the development of anti-cancer vaccines. Small molecule TLR7/8 agonist hold high potential for this purpose, but suffer from an undesirable pharmacokinetic profile, resulting in systemic inflammatory responses. An effective solution to this problem is covalent ligation to a larger carrier. Here, a degradable nanogel carrier containing a covalently linked imidazoquinoline (IMDQ) TLR7/8 agonist is explored as adjuvant for vaccination against the respiratory syncytial virus (RSV). In vitro and in vivo experiments in mice provide a solid rational base for preferring nanogels over soluble polymers as IMDQ carrier in terms of cellular uptake and lymph node accumulation.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Antivirales/farmacología , Imidazoles/farmacología , Polietilenglicoles/química , Polietileneimina/química , Quinolinas/farmacología , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Vacunas Virales/inmunología , Animales , Femenino , Concentración de Iones de Hidrógeno , Imidazoles/química , Ratones Endogámicos BALB C , Nanogeles , Quinolinas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Receptor Toll-Like 7/química , Receptor Toll-Like 8/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...