Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 132(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35229724

RESUMEN

GPIHBP1, an endothelial cell (EC) protein, captures lipoprotein lipase (LPL) within the interstitial spaces (where it is secreted by myocytes and adipocytes) and transports it across ECs to its site of action in the capillary lumen. GPIHBP1's 3-fingered LU domain is required for LPL binding, but the function of its acidic domain (AD) has remained unclear. We created mutant mice lacking the AD and found severe hypertriglyceridemia. As expected, the mutant GPIHBP1 retained the capacity to bind LPL. Unexpectedly, however, most of the GPIHBP1 and LPL in the mutant mice was located on the abluminal surface of ECs (explaining the hypertriglyceridemia). The GPIHBP1-bound LPL was trapped on the abluminal surface of ECs by electrostatic interactions between the large basic patch on the surface of LPL and negatively charged heparan sulfate proteoglycans (HSPGs) on the surface of ECs. GPIHBP1 trafficking across ECs in the mutant mice was normalized by disrupting LPL-HSPG electrostatic interactions with either heparin or an AD peptide. Thus, GPIHBP1's AD plays a crucial function in plasma triglyceride metabolism; it sheathes LPL's basic patch on the abluminal surface of ECs, thereby preventing LPL-HSPG interactions and freeing GPIHBP1-LPL complexes to move across ECs to the capillary lumen.


Asunto(s)
Lipoproteína Lipasa , Receptores de Lipoproteína , Animales , Capilares/metabolismo , Células Endoteliales/metabolismo , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Ratones , Receptores de Lipoproteína/química , Receptores de Lipoproteína/genética , Receptores de Lipoproteína/metabolismo , Electricidad Estática
2.
J Lipid Res ; 61(3): 413-421, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31941672

RESUMEN

Zinc metallopeptidase STE24 (ZMPSTE24) is essential for the conversion of farnesyl-prelamin A to mature lamin A, a key component of the nuclear lamina. In the absence of ZMPSTE24, farnesyl-prelamin A accumulates in the nucleus and exerts toxicity, causing a variety of disease phenotypes. By ∼4 months of age, both male and female Zmpste24-/- mice manifest a near-complete loss of adipose tissue, but it has never been clear whether this phenotype is a direct consequence of farnesyl-prelamin A toxicity in adipocytes. To address this question, we generated a conditional knockout Zmpste24 allele and used it to create adipocyte-specific Zmpste24-knockout mice. To boost farnesyl-prelamin A levels, we bred in the "prelamin A-only" Lmna allele. Gene expression, immunoblotting, and immunohistochemistry experiments revealed that adipose tissue in these mice had decreased Zmpste24 expression along with strikingly increased accumulation of prelamin A. In male mice, Zmpste24 deficiency in adipocytes was accompanied by modest changes in adipose stores (an 11% decrease in body weight, a 23% decrease in body fat mass, and significantly smaller gonadal and inguinal white adipose depots). No changes in adipose stores were detected in female mice, likely because prelamin A expression in adipose tissue is lower in female mice. Zmpste24 deficiency in adipocytes did not alter the number of macrophages in adipose tissue, nor did it alter plasma levels of glucose, triglycerides, or fatty acids. We conclude that ZMPSTE24 deficiency in adipocytes, and the accompanying accumulation of farnesyl-prelamin A, reduces adipose tissue stores, but only modestly and only in male mice.


Asunto(s)
Tejido Adiposo/metabolismo , Lamina Tipo A/metabolismo , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Tejido Adiposo/química , Alelos , Animales , Núcleo Celular/química , Núcleo Celular/metabolismo , Femenino , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Metaloendopeptidasas/deficiencia , Metaloendopeptidasas/genética , Ratones , Ratones Noqueados , Ratones Transgénicos
4.
J Lipid Res ; 58(7): 1453-1461, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28476858

RESUMEN

Mutation of conserved cysteines in proteins of the Ly6 family cause human disease-chylomicronemia in the case of glycosylphosphatidylinositol-anchored HDL binding protein 1 (GPIHBP1) and paroxysmal nocturnal hemoglobinuria in the case of CD59. A mutation in a conserved cysteine in CD59 prevented the protein from reaching the surface of blood cells. In contrast, mutation of conserved cysteines in human GPIHBP1 had little effect on GPIHBP1 trafficking to the surface of cultured CHO cells. The latter findings were somewhat surprising and raised questions about whether CHO cell studies accurately model the fate of mutant GPIHBP1 proteins in vivo. To explore this concern, we created mice harboring a GPIHBP1 cysteine mutation (p.C63Y). The p.C63Y mutation abolished the ability of mouse GPIHBP1 to bind LPL, resulting in severe chylomicronemia. The mutant GPIHBP1 was detectable by immunohistochemistry on the surface of endothelial cells, but the level of expression was ∼70% lower than in WT mice. The mutant GPIHBP1 protein in mouse tissues was predominantly monomeric. We conclude that mutation of a conserved cysteine in GPIHBP1 abolishes the ability of GPIHBP1 to bind LPL, resulting in mislocalization of LPL and severe chylomicronemia. The mutation reduced but did not eliminate GPIHBP1 on the surface of endothelial cells in vivo.


Asunto(s)
Secuencia Conservada , Cisteína , Lipoproteína Lipasa/metabolismo , Mutación , Receptores de Lipoproteína/química , Receptores de Lipoproteína/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Femenino , Humanos , Lipoproteína Lipasa/genética , Ratones , Unión Proteica/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Lipoproteína/genética , Triglicéridos/sangre
5.
Transgenic Res ; 26(2): 263-277, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27905063

RESUMEN

The CRISPR/Cas9 system has rapidly advanced targeted genome editing technologies. However, its efficiency in targeting with constructs in mouse zygotes via homology directed repair (HDR) remains low. Here, we systematically explored optimal parameters for targeting constructs in mouse zygotes via HDR using mouse embryonic stem cells as a model system. We characterized several parameters, including single guide RNA cleavage activity and the length and symmetry of homology arms in the construct, and we compared the targeting efficiency between Cas9, Cas9nickase, and dCas9-FokI. We then applied the optimized conditions to zygotes, delivering Cas9 as either mRNA or protein. We found that Cas9 nucleo-protein complex promotes highly efficient, multiplexed targeting of circular constructs containing reporter genes and floxed exons. This approach allows for a one-step zygote injection procedure targeting multiple genes to generate conditional alleles via homologous recombination, and simultaneous knockout of corresponding genes in non-targeted alleles via non-homologous end joining.


Asunto(s)
Sistemas CRISPR-Cas/genética , Marcación de Gen/métodos , Recombinación Homóloga/genética , Alelos , Animales , Reparación del ADN por Unión de Extremidades/genética , Exones , Ratones , ARN Guía de Kinetoplastida/genética , ARN Mensajero/genética , Cigoto/crecimiento & desarrollo
6.
Sci Rep ; 6: 31455, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27530248

RESUMEN

BAC transgenic mammalian systems offer an important platform for recapitulating human gene expression and disease modeling. While the larger body mass, and greater genetic and physiologic similarity to humans render rats well suited for reproducing human immune diseases and evaluating therapeutic strategies, difficulties of generating BAC transgenic rats have hindered progress. Thus, an efficient method for BAC transgenesis in rats would be valuable. Immunodeficient mice carrying a human SIRPA transgene have previously been shown to support improved human cell hematopoiesis. Here, we have generated for the first time, human SIRPA BAC transgenic rats, for which the gene is faithfully expressed, functionally active, and germline transmissible. To do this, human SIRPA BAC was modified with elements to work in coordination with genome engineering technologies-piggyBac, CRISPR/Cas9 or TALEN. Our findings show that piggyBac transposition is a more efficient approach than the classical BAC transgenesis, resulting in complete BAC integration with predictable end sequences, thereby permitting precise assessment of the integration site. Neither CRISPR/Cas9 nor TALEN increased BAC transgenesis. Therefore, an efficient generation of human SIRPA transgenic rats using piggyBac opens opportunities for expansion of humanized transgenic rat models in the future to advance biomedical research and therapeutic applications.


Asunto(s)
Antígenos de Diferenciación , Sistemas CRISPR-Cas , Cromosomas Artificiales Bacterianos/genética , Receptores Inmunológicos , Transgenes , Cigoto , Animales , Antígenos de Diferenciación/biosíntesis , Antígenos de Diferenciación/genética , Humanos , Ratones , Ratones Transgénicos , Ratas , Ratas Transgénicas , Receptores Inmunológicos/biosíntesis , Receptores Inmunológicos/genética
7.
Neuron ; 90(3): 535-50, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27112497

RESUMEN

Hexanucleotide expansions in C9ORF72 are the most frequent genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Disease mechanisms were evaluated in mice expressing C9ORF72 RNAs with up to 450 GGGGCC repeats or with one or both C9orf72 alleles inactivated. Chronic 50% reduction of C9ORF72 did not provoke disease, while its absence produced splenomegaly, enlarged lymph nodes, and mild social interaction deficits, but not motor dysfunction. Hexanucleotide expansions caused age-, repeat-length-, and expression-level-dependent accumulation of RNA foci and dipeptide-repeat proteins synthesized by AUG-independent translation, accompanied by loss of hippocampal neurons, increased anxiety, and impaired cognitive function. Single-dose injection of antisense oligonucleotides (ASOs) that target repeat-containing RNAs but preserve levels of mRNAs encoding C9ORF72 produced sustained reductions in RNA foci and dipeptide-repeat proteins, and ameliorated behavioral deficits. These efforts identify gain of toxicity as a central disease mechanism caused by repeat-expanded C9ORF72 and establish the feasibility of ASO-mediated therapy.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Demencia Frontotemporal/tratamiento farmacológico , Factores de Intercambio de Guanina Nucleótido/genética , Oligonucleótidos Antisentido/farmacología , ARN/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Proteína C9orf72 , Expansión de las Repeticiones de ADN/genética , Demencia Frontotemporal/genética , Ratones Transgénicos , Neuronas/metabolismo , Oligonucleótidos Antisentido/efectos adversos , Oligonucleótidos Antisentido/genética
8.
PLoS Genet ; 12(2): e1005691, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26839965

RESUMEN

The unintended consequences of gene targeting in mouse models have not been thoroughly studied and a more systematic analysis is needed to understand the frequency and characteristics of off-target effects. Using RNA-seq, we evaluated targeted and neighboring gene expression in tissues from 44 homozygous mutants compared with C57BL/6N control mice. Two allele types were evaluated: 15 targeted trap mutations (TRAP); and 29 deletion alleles (DEL), usually a deletion between the translational start and the 3' UTR. Both targeting strategies insert a bacterial beta-galactosidase reporter (LacZ) and a neomycin resistance selection cassette. Evaluating transcription of genes in +/- 500 kb of flanking DNA around the targeted gene, we found up-regulated genes more frequently around DEL compared with TRAP alleles, however the frequency of alleles with local down-regulated genes flanking DEL and TRAP targets was similar. Down-regulated genes around both DEL and TRAP targets were found at a higher frequency than expected from a genome-wide survey. However, only around DEL targets were up-regulated genes found with a significantly higher frequency compared with genome-wide sampling. Transcriptome analysis confirms targeting in 97% of DEL alleles, but in only 47% of TRAP alleles probably due to non-functional splice variants, and some splicing around the gene trap. Local effects on gene expression are likely due to a number of factors including compensatory regulation, loss or disruption of intragenic regulatory elements, the exogenous promoter in the neo selection cassette, removal of insulating DNA in the DEL mutants, and local silencing due to disruption of normal chromatin organization or presence of exogenous DNA. An understanding of local position effects is important for understanding and interpreting any phenotype attributed to targeted gene mutations, or to spontaneous indels.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Marcación de Gen , Mutación/genética , Animales , Regulación hacia Abajo/genética , Eliminación de Gen , Biblioteca de Genes , Genoma , Homocigoto , Ratones Endogámicos C57BL , Regulación hacia Arriba/genética
9.
Genome Res ; 25(4): 598-607, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25591789

RESUMEN

Expression of the bacterial beta-galactosidase reporter gene (lacZ) in the vector used for the Knockout Mouse Project (KOMP) is driven by the endogenous promoter of the target gene. In tissues from KOMP mice, histochemical staining for LacZ enzyme activity can be used to determine gene expression patterns. With this technique, we have produced a comprehensive resource of gene expression using both whole mount (WM) and frozen section (FS) LacZ staining in 313 unique KOMP mutant mouse lines. Of these, ∼ 80% of mutants showed specific staining in one or more tissues, while ∼ 20% showed no specific staining, ∼ 13% had staining in only one tissue, and ∼ 25% had staining in >6 tissues. The highest frequency of specific staining occurred in the brain (∼ 50%), male gonads (42%), and kidney (39%). The WM method was useful for rapidly identifying whole organ and some substructure staining, while the FS method often revealed substructure and cellular staining specificity. Both staining methods had >90% repeatability in biological replicates. Nonspecific LacZ staining occurs in some tissues due to the presence of bacteria or endogenous enzyme activity. However, this can be effectively distinguished from reporter gene activity by the combination of the WM and FS methods. After careful annotation, LacZ staining patterns in a high percentage of mutants revealed a unique structure-function not previously reported for many of these genes. The validation of methods for LacZ staining, annotation, and expression analysis reported here provides unique insights into the function of genes for which little is currently known.


Asunto(s)
Regulación de la Expresión Génica/genética , Genes Reporteros/genética , Operón Lac/genética , Regiones Promotoras Genéticas/genética , Animales , Atlas como Asunto , Femenino , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Coloración y Etiquetado , Relación Estructura-Actividad
10.
J Clin Invest ; 124(12): 5368-84, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25347472

RESUMEN

Growing evidence supports a link between inflammation and cancer; however, mediators of the transition between inflammation and carcinogenesis remain incompletely understood. Sphingosine-1-phosphate (S1P) lyase (SPL) irreversibly degrades the bioactive sphingolipid S1P and is highly expressed in enterocytes but downregulated in colon cancer. Here, we investigated the role of SPL in colitis-associated cancer (CAC). We generated mice with intestinal epithelium-specific Sgpl1 deletion and chemically induced colitis and tumor formation in these animals. Compared with control animals, mice lacking intestinal SPL exhibited greater disease activity, colon shortening, cytokine levels, S1P accumulation, tumors, STAT3 activation, STAT3-activated microRNAs (miRNAs), and suppression of miR-targeted anti-oncogene products. This phenotype was attenuated by STAT3 inhibition. In fibroblasts, silencing SPL promoted tumorigenic transformation through a pathway involving extracellular transport of S1P through S1P transporter spinster homolog 2 (SPNS2), S1P receptor activation, JAK2/STAT3-dependent miR-181b-1 induction, and silencing of miR-181b-1 target cylindromatosis (CYLD). Colon biopsies from patients with inflammatory bowel disease revealed enhanced S1P and STAT3 signaling. In mice with chemical-induced CAC, oral administration of plant-type sphingolipids called sphingadienes increased colonic SPL levels and reduced S1P levels, STAT3 signaling, cytokine levels, and tumorigenesis, indicating that SPL prevents transformation and carcinogenesis. Together, our results suggest that dietary sphingolipids can augment or prevent colon cancer, depending upon whether they are metabolized to S1P or promote S1P metabolism through the actions of SPL.


Asunto(s)
Aldehído-Liasas/biosíntesis , Transformación Celular Neoplásica/metabolismo , Neoplasias del Colon/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/metabolismo , ARN Neoplásico/metabolismo , Factor de Transcripción STAT3/metabolismo , Aldehído-Liasas/genética , Animales , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Biopsia , Transformación Celular Neoplásica/genética , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Regulación hacia Abajo/genética , Eliminación de Gen , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Lisofosfolípidos/genética , Lisofosfolípidos/metabolismo , Ratones , Ratones Transgénicos , MicroARNs/genética , Proteínas de Neoplasias/genética , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , ARN Neoplásico/genética , Factor de Transcripción STAT3/genética , Transducción de Señal/genética , Esfingosina/análogos & derivados , Esfingosina/genética , Esfingosina/metabolismo
11.
Nature ; 513(7517): 195-201, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25209798

RESUMEN

Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.


Asunto(s)
Genoma/genética , Hylobates/clasificación , Hylobates/genética , Cariotipo , Filogenia , Animales , Evolución Molecular , Hominidae/clasificación , Hominidae/genética , Humanos , Datos de Secuencia Molecular , Retroelementos/genética , Selección Genética , Terminación de la Transcripción Genética
12.
Genetics ; 196(3): 875-90, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24653210

RESUMEN

Conifers are the predominant gymnosperm. The size and complexity of their genomes has presented formidable technical challenges for whole-genome shotgun sequencing and assembly. We employed novel strategies that allowed us to determine the loblolly pine (Pinus taeda) reference genome sequence, the largest genome assembled to date. Most of the sequence data were derived from whole-genome shotgun sequencing of a single megagametophyte, the haploid tissue of a single pine seed. Although that constrained the quantity of available DNA, the resulting haploid sequence data were well-suited for assembly. The haploid sequence was augmented with multiple linking long-fragment mate pair libraries from the parental diploid DNA. For the longest fragments, we used novel fosmid DiTag libraries. Sequences from the linking libraries that did not match the megagametophyte were identified and removed. Assembly of the sequence data were aided by condensing the enormous number of paired-end reads into a much smaller set of longer "super-reads," rendering subsequent assembly with an overlap-based assembly algorithm computationally feasible. To further improve the contiguity and biological utility of the genome sequence, additional scaffolding methods utilizing independent genome and transcriptome assemblies were implemented. The combination of these strategies resulted in a draft genome sequence of 20.15 billion bases, with an N50 scaffold size of 66.9 kbp.


Asunto(s)
Genoma de Planta , Óvulo Vegetal/genética , Pinus taeda/genética , Genómica , Haploidia , Análisis de Secuencia de ADN , Transcriptoma
13.
Mol Biol Cell ; 25(10): 1666-75, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24672053

RESUMEN

Lamins B1 and B2 (B-type lamins) have very similar sequences and are expressed ubiquitously. In addition, both Lmnb1- and Lmnb2-deficient mice die soon after birth with neuronal layering abnormalities in the cerebral cortex, a consequence of defective neuronal migration. The similarities in amino acid sequences, expression patterns, and knockout phenotypes raise the question of whether the two proteins have redundant functions. To investigate this topic, we generated "reciprocal knock-in mice"-mice that make lamin B2 from the Lmnb1 locus (Lmnb1(B2/B2)) and mice that make lamin B1 from the Lmnb2 locus (Lmnb2(B1/B1)). Lmnb1(B2/B2) mice produced increased amounts of lamin B2 but no lamin B1; they died soon after birth with neuronal layering abnormalities in the cerebral cortex. However, the defects in Lmnb1(B2/B2) mice were less severe than those in Lmnb1-knockout mice, indicating that increased amounts of lamin B2 partially ameliorate the abnormalities associated with lamin B1 deficiency. Similarly, increased amounts of lamin B1 in Lmnb2(B1/B1) mice did not prevent the neurodevelopmental defects elicited by lamin B2 deficiency. We conclude that lamins B1 and B2 have unique roles in the developing brain and that increased production of one B-type lamin does not fully complement loss of the other.


Asunto(s)
Corteza Cerebral/anomalías , Lamina Tipo B/genética , Neurogénesis/genética , Secuencia de Aminoácidos , Animales , Corteza Cerebral/embriología , Técnicas de Sustitución del Gen , Lamina Tipo B/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Defectos del Tubo Neural/genética , Lámina Nuclear/metabolismo , Análisis de Secuencia de ADN
14.
Elife ; 2: e01323, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24252873

RESUMEN

microRNA-1 (miR-1) is an evolutionarily conserved, striated muscle-enriched miRNA. Most mammalian genomes contain two copies of miR-1, and in mice, deletion of a single locus, miR-1-2, causes incompletely penetrant lethality and subtle cardiac defects. Here, we report that deletion of miR-1-1 resulted in a phenotype similar to that of the miR-1-2 mutant. Compound miR-1 knockout mice died uniformly before weaning due to severe cardiac dysfunction. miR-1-null cardiomyocytes had abnormal sarcomere organization and decreased phosphorylation of the regulatory myosin light chain-2 (MLC2), a critical cytoskeletal regulator. The smooth muscle-restricted inhibitor of MLC2 phosphorylation, Telokin, was ectopically expressed in the myocardium, along with other smooth muscle genes. miR-1 repressed Telokin expression through direct targeting and by repressing its transcriptional regulator, Myocardin. Our results reveal that miR-1 is required for postnatal cardiac function and reinforces the striated muscle phenotype by regulating both transcriptional and effector nodes of the smooth muscle gene expression network. DOI: http://dx.doi.org/10.7554/eLife.01323.001.


Asunto(s)
Expresión Génica , MicroARNs/fisiología , Músculo Liso/metabolismo , Miocardio/metabolismo , Sarcómeros , Animales , Ratones , Ratones Noqueados , MicroARNs/genética , Fosforilación
15.
Proc Natl Acad Sci U S A ; 110(21): E1923-32, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23650370

RESUMEN

The role of protein farnesylation in lamin A biogenesis and the pathogenesis of progeria has been studied in considerable detail, but the importance of farnesylation for the B-type lamins, lamin B1 and lamin B2, has received little attention. Lamins B1 and B2 are expressed in nearly every cell type from the earliest stages of development, and they have been implicated in a variety of functions within the cell nucleus. To assess the importance of protein farnesylation for B-type lamins, we created knock-in mice expressing nonfarnesylated versions of lamin B1 and lamin B2. Mice expressing nonfarnesylated lamin B2 developed normally and were free of disease. In contrast, mice expressing nonfarnesylated lamin B1 died soon after birth, with severe neurodevelopmental defects and striking nuclear abnormalities in neurons. The nuclear lamina in migrating neurons was pulled away from the chromatin so that the chromatin was left "naked" (free from the nuclear lamina). Thus, farnesylation of lamin B1--but not lamin B2--is crucial for brain development and for retaining chromatin within the bounds of the nuclear lamina during neuronal migration.


Asunto(s)
Encéfalo/embriología , Movimiento Celular/fisiología , Cromatina/metabolismo , Lamina Tipo B/metabolismo , Lámina Nuclear/metabolismo , Prenilación de Proteína/fisiología , Animales , Cromatina/genética , Lamina Tipo B/genética , Ratones , Ratones Transgénicos , Lámina Nuclear/genética
16.
Nat Genet ; 45(4): 415-21, 421e1-2, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23435085

RESUMEN

Lampreys are representatives of an ancient vertebrate lineage that diverged from our own ∼500 million years ago. By virtue of this deeply shared ancestry, the sea lamprey (P. marinus) genome is uniquely poised to provide insight into the ancestry of vertebrate genomes and the underlying principles of vertebrate biology. Here, we present the first lamprey whole-genome sequence and assembly. We note challenges faced owing to its high content of repetitive elements and GC bases, as well as the absence of broad-scale sequence information from closely related species. Analyses of the assembly indicate that two whole-genome duplications likely occurred before the divergence of ancestral lamprey and gnathostome lineages. Moreover, the results help define key evolutionary events within vertebrate lineages, including the origin of myelin-associated proteins and the development of appendages. The lamprey genome provides an important resource for reconstructing vertebrate origins and the evolutionary events that have shaped the genomes of extant organisms.


Asunto(s)
Mapeo Cromosómico , Evolución Molecular , Genoma , Petromyzon/genética , Vertebrados/genética , Animales , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN
17.
PLoS One ; 8(1): e53682, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23341974

RESUMEN

We sequenced reduced representation libraries by means of Illumina technology to generate over 1.5 Mb of orthologous sequence from a representative of each of the four extant gibbon genera (Nomascus, Hylobates, Symphalangus, and Hoolock). We used these data to assess the evolutionary relationships between the genera by evaluating the likelihoods of all possible bifurcating trees involving the four taxa. Our analyses provide weak support for a tree with Nomascus and Hylobates as sister taxa and with Hoolock and Symphalangus as sister taxa, though bootstrap resampling suggests that other phylogenetic scenarios are also possible. This uncertainty is due to short internal branch lengths and extensive incomplete lineage sorting across taxa. The true phylogenetic relationships among gibbon genera will likely require a more extensive whole-genome sequence analysis.


Asunto(s)
Evolución Molecular , Hylobates/genética , Filogenia , Animales , Extinción Biológica , Femenino , Genómica , Humanos , Masculino , Pan troglodytes/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
18.
PLoS One ; 7(10): e46623, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056373

RESUMEN

The Chelonid fibropapilloma-associated herpesvirus (CFPHV; ChHV5) is believed to be the causative agent of fibropapillomatosis (FP), a neoplastic disease of marine turtles. While clinical signs and pathology of FP are well known, research on ChHV5 has been impeded because no cell culture system for its propagation exists. We have cloned a BAC containing ChHV5 in pTARBAC2.1 and determined its nucleotide sequence. Accordingly, ChHV5 has a type D genome and its predominant gene order is typical for the varicellovirus genus within the alphaherpesvirinae. However, at least four genes that are atypical for an alphaherpesvirus genome were also detected, i.e. two members of the C-type lectin-like domain superfamily (F-lec1, F-lec2), an orthologue to the mouse cytomegalovirus M04 (F-M04) and a viral sialyltransferase (F-sial). Four lines of evidence suggest that these atypical genes are truly part of the ChHV5 genome: (1) the pTARBAC insertion interrupted the UL52 ORF, leaving parts of the gene to either side of the insertion and suggesting that an intact molecule had been cloned. (2) Using FP-associated UL52 (F-UL52) as an anchor and the BAC-derived sequences as a means to generate primers, overlapping PCR was performed with tumor-derived DNA as template, which confirmed the presence of the same stretch of "atypical" DNA in independent FP cases. (3) Pyrosequencing of DNA from independent tumors did not reveal previously undetected viral sequences, suggesting that no apparent loss of viral sequence had happened due to the cloning strategy. (4) The simultaneous presence of previously known ChHV5 sequences and F-sial as well as F-M04 sequences was also confirmed in geographically distinct Australian cases of FP. Finally, transcripts of F-sial and F-M04 but not transcripts of lytic viral genes were detected in tumors from Hawaiian FP-cases. Therefore, we suggest that F-sial and F-M04 may play a role in FP pathogenesis.


Asunto(s)
Genoma Viral/genética , Herpesviridae/genética , Animales , Cromosomas Artificiales Bacterianos/genética , Reacción en Cadena de la Polimerasa , Tortugas
19.
Mamm Genome ; 23(9-10): 580-6, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22968824

RESUMEN

In 2007, the International Knockout Mouse Consortium (IKMC) made the ambitious promise to generate mutations in virtually every protein-coding gene of the mouse genome in a concerted worldwide action. Now, 5 years later, the IKMC members have developed high-throughput gene trapping and, in particular, gene-targeting pipelines and generated more than 17,400 mutant murine embryonic stem (ES) cell clones and more than 1,700 mutant mouse strains, most of them conditional. A common IKMC web portal (www.knockoutmouse.org) has been established, allowing easy access to this unparalleled biological resource. The IKMC materials considerably enhance functional gene annotation of the mammalian genome and will have a major impact on future biomedical research.


Asunto(s)
Ratones Noqueados/genética , Animales , Internacionalidad , Internet , Ratones
20.
Genome Res ; 22(12): 2520-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22892276

RESUMEN

Chromosome rearrangements in small apes are up to 20 times more frequent than in most mammals. Because of their complexity, the full extent of chromosome evolution in these hominoids is not yet fully documented. However, previous work with array painting, BAC-FISH, and selective sequencing in two of the four karyomorphs has shown that high-resolution methods can precisely define chromosome breakpoints and map the complex flow of evolutionary chromosome rearrangements. Here we use these tools to precisely define the rearrangements that have occurred in the remaining two karyomorphs, genera Symphalangus (2n = 50) and Hoolock (2n = 38). This research provides the most comprehensive insight into the evolutionary origins of chromosome rearrangements involved in transforming small apes genome. Bioinformatics analyses of the human-gibbon synteny breakpoints revealed association with transposable elements and segmental duplications, providing some insight into the mechanisms that might have promoted rearrangements in small apes. In the near future, the comparison of gibbon genome sequences will provide novel insights to test hypotheses concerning the mechanisms of chromosome evolution. The precise definition of synteny block boundaries and orientation, chromosomal fusions, and centromere repositioning events presented here will facilitate genome sequence assembly for these close relatives of humans.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas/genética , Análisis Citogenético/métodos , Reordenamiento Génico , Hylobates/genética , Animales , Centrómero/química , Centrómero/genética , Elementos Transponibles de ADN , Bases de Datos Genéticas , Evolución Molecular , Femenino , Humanos , Hibridación Fluorescente in Situ , Cariotipo , Mutación , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...