Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38400276

RESUMEN

HyperSpectral Imaging (HSI) plays a pivotal role in various fields, including medical diagnostics, where precise human vein detection is crucial. HyperSpectral (HS) image data are very large and can cause computational complexities. Dimensionality reduction techniques are often employed to streamline HS image data processing. This paper presents a HS image dataset encompassing left- and right-hand images captured from 100 subjects with varying skin tones. The dataset was annotated using anatomical data to represent vein and non-vein areas within the images. This dataset is utilised to explore the effectiveness of dimensionality reduction techniques, namely: Principal Component Analysis (PCA), Folded PCA (FPCA), and Ward's Linkage Strategy using Mutual Information (WaLuMI) for vein detection. To generate experimental results, the HS image dataset was divided into train and test datasets. Optimum performing parameters for each of the dimensionality reduction techniques in conjunction with the Support Vector Machine (SVM) binary classification were determined using the Training dataset. The performance of the three dimensionality reduction-based vein detection methods was then assessed and compared using the test image dataset. Results show that the FPCA-based method outperforms the other two methods in terms of accuracy. For visualization purposes, the classification prediction image for each technique is post-processed using morphological operators, and results show the significant potential of HS imaging in vein detection.


Asunto(s)
Imágenes Hiperespectrales , Procesamiento de Imagen Asistido por Computador , p-Cloroanfetamina/análogos & derivados , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Máquina de Vectores de Soporte , Análisis de Componente Principal
2.
J Biomed Inform ; 145: 104456, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37482171

RESUMEN

Triplet extraction is one of the fundamental tasks in biomedical text mining. Compared with traditional pipeline approaches, joint methods can alleviate the error propagation problem from entity recognition to relation classification. However, existing methods face challenges in detecting overlapping entities and overlapping relations, which are ubiquitous in biomedical texts. In this work, we propose a novel pipeline method of end-to-end biomedical triplet extraction. In particular, a span-based detection strategy is used to detect the overlapping triplets by enumerating possible candidate spans and entity pairs. The strategy is further used to capture different contextualized representations via an entity model and a relation model, respectively. Furthermore, to enhance interrelation between spans, entity information from the output of the entity model is used to construct the input for the relation model without utilizing any external knowledge. Our approach is evaluated on the drug-drug interaction (DDI) and chemical-protein interaction (CHEMPROT) datasets, exhibiting improvement of the absolute F1-score in relation extraction by 3.5%-3.7% compared prior work. The experimental results highlight the importance of overlapping triplet detection using the span-based approach, acquisition of various contextualized representations via different in-domain pre-trained language models, and early fusion of entity information in the relation model.


Asunto(s)
Minería de Datos , Lenguaje , Minería de Datos/métodos , Procesamiento de Lenguaje Natural , Proteínas , Interacciones Farmacológicas
3.
IEEE Trans Neural Netw Learn Syst ; 23(4): 587-95, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24805042

RESUMEN

One of the most critical challenges ahead for diesel engines is to identify new techniques for fuel economy improvement without compromising emissions regulations. One technique is the precise control of air/fuel ratio, which requires the measurement of instantaneous fuel consumption. Measurement accuracy and repeatability for fuel rate is the key to successfully controlling the air/fuel ratio and real-time measurement of fuel consumption. The volumetric and gravimetric measurement principles are well-known methods for measurement of fuel consumption in internal combustion engines. However, the fuel flow rate measured by these methods is not suitable for either real-time control or real-time measurement purposes because of the intermittent nature of the measurements. This paper describes a technique that can be used to find the minimum data [consisting of data from just 2.5% of the non-road transient cycle (NRTC)] to solve the problem concerning discontinuous data of fuel flow rate measured using an AVL 733S fuel meter for a medium or heavy-duty diesel engine using neural networks. Only torque and speed are used as the input parameters for the fuel flow rate prediction. Power density analysis is used to find the minimum amount of the data. The results show that the nonlinear autoregressive model with exogenous inputs could predict the particulate matter successfully with R(2) above 0.96 using 2.5% NRTC data with only torque and speed as inputs.


Asunto(s)
Algoritmos , Transferencia de Energía , Almacenamiento y Recuperación de la Información/métodos , Modelos Estadísticos , Redes Neurales de la Computación , Reconocimiento de Normas Patrones Automatizadas/métodos , Inteligencia Artificial , Simulación por Computador , Fuentes Generadoras de Energía , Retroalimentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA