Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38746419

RESUMEN

Background: Cerebral amyloid angiopathy (CAA) is a cerebral small vessel disease in which amyloid-ß accumulates in vessel walls. CAA is a leading cause of symptomatic lobar intracerebral hemorrhage and an important contributor to age-related cognitive decline. Recent work has suggested that vascular dysfunction may precede symptomatic stages of CAA, and that spontaneous slow oscillations in arteriolar diameter (termed vasomotion), important for amyloid-ß clearance, may be impaired in CAA. Methods: To systematically study the progression of vascular dysfunction in CAA, we used the APP23 mouse model of amyloidosis, which is known to develop spontaneous cerebral microbleeds mimicking human CAA. Using in vivo 2-photon microscopy, we longitudinally imaged unanesthetized APP23 transgenic mice and wildtype littermates from 7 to 14 months of age, tracking amyloid-ß accumulation and vasomotion in individual pial arterioles over time. MRI was used in separate groups of 12-, 18-, and 24-month-old APP23 transgenic mice and wildtype littermates to detect microbleeds and to assess cerebral blood flow and cerebrovascular reactivity with pseudo-continuous arterial spin labeling. Results: We observed a significant decline in vasomotion with age in APP23 mice, while vasomotion remained unchanged in wildtype mice with age. This decline corresponded in timing to initial vascular amyloid-ß deposition (∼8-10 months of age), although was more strongly correlated with age than with vascular amyloid-ß burden in individual arterioles. Declines in vasomotion preceded the development of MRI-visible microbleeds and the loss of smooth muscle actin in arterioles, both of which were observed in APP23 mice by 18 months of age. Additionally, evoked cerebrovascular reactivity was intact in APP23 mice at 12 months of age, but significantly lower in APP23 mice by 24 months of age. Conclusions: Our findings suggest that a decline in spontaneous vasomotion is an early, potentially pre-symptomatic, manifestation of CAA and vascular dysfunction, and a possible future treatment target.

2.
Phys Imaging Radiat Oncol ; 27: 100483, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37664798

RESUMEN

Background and Purpose: Deformable image registration (DIR) is a core element of adaptive radiotherapy workflows, integrating daily contour propagation and/or dose accumulation in their design. Propagated contours are usually manually validated and may be edited, thereby locally invalidating the registration result. This means the registration cannot be used for dose accumulation. In this study we proposed and evaluated a novel multi-modal DIR algorithm that incorporated contour information to guide the registration. This integrates operator-validated contours with the estimated deformation vector field and warped dose. Materials and Methods: The proposed algorithm consisted of both a normalized gradient field-based data-fidelity term on the images and an optical flow data-fidelity term on the contours. The Helmholtz-Hodge decomposition was incorporated to ensure anatomically plausible deformations. The algorithm was validated for same- and cross-contrast Magnetic Resonance (MR) image registrations, Computed Tomography (CT) registrations, and CT-to-MR registrations for different anatomies, all based on challenging clinical situations. The contour-correspondence, anatomical fidelity, registration error, and dose warping error were evaluated. Results: The proposed contour-guided algorithm considerably and significantly increased contour overlap, decreasing the mean distance to agreement by a factor of 1.3 to 13.7, compared to the best algorithm without contour-guidance. Importantly, the registration error and dose warping error decreased significantly, by a factor of 1.2 to 2.0. Conclusions: Our contour-guided algorithm ensured that the deformation vector field and warped quantitative information were consistent with the operator-validated contours. This provides a feasible semi-automatic strategy for spatially correct warping of quantitative information even in difficult and artefacted cases.

3.
Radiology ; 308(1): e230052, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37404152

RESUMEN

Background Lung MRI with ultrashort echo times (UTEs) enables high-resolution and radiation-free morphologic imaging; however, its image quality is still lower than that of CT. Purpose To assess the image quality and clinical applicability of synthetic CT images generated from UTE MRI by a generative adversarial network (GAN). Materials and Methods This retrospective study included patients with cystic fibrosis (CF) who underwent both UTE MRI and CT on the same day at one of six institutions between January 2018 and December 2022. The two-dimensional GAN algorithm was trained using paired MRI and CT sections and tested, along with an external data set. Image quality was assessed quantitatively by measuring apparent contrast-to-noise ratio, apparent signal-to-noise ratio, and overall noise and qualitatively by using visual scores for features including artifacts. Two readers evaluated CF-related structural abnormalities and used them to determine clinical Bhalla scores. Results The training, test, and external data sets comprised 82 patients with CF (mean age, 21 years ± 11 [SD]; 42 male), 28 patients (mean age, 18 years ± 11; 16 male), and 46 patients (mean age, 20 years ± 11; 24 male), respectively. In the test data set, the contrast-to-noise ratio of synthetic CT images (median, 303 [IQR, 221-382]) was higher than that of UTE MRI scans (median, 9.3 [IQR, 6.6-35]; P < .001). The median signal-to-noise ratio was similar between synthetic and real CT (88 [IQR, 84-92] vs 88 [IQR, 86-91]; P = .96). Synthetic CT had a lower noise level than real CT (median score, 26 [IQR, 22-30] vs 42 [IQR, 32-50]; P < .001) and the lowest level of artifacts (median score, 0 [IQR, 0-0]; P < .001). The concordance between Bhalla scores for synthetic and real CT images was almost perfect (intraclass correlation coefficient, ≥0.92). Conclusion Synthetic CT images showed almost perfect concordance with real CT images for the depiction of CF-related pulmonary alterations and had better image quality than UTE MRI. Clinical trial registration no. NCT03357562 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Schiebler and Glide-Hurst in this issue.


Asunto(s)
Fibrosis Quística , Adolescente , Adulto , Humanos , Masculino , Adulto Joven , Fibrosis Quística/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Femenino , Niño
4.
Int J Hyperthermia ; 40(1): 2194595, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37080550

RESUMEN

PURPOSE: In presence of respiratory motion, temperature mapping is altered by in-plane and through-plane displacements between successive acquisitions together with periodic phase variations. Fast 2D Echo Planar Imaging (EPI) sequence can accommodate intra-scan motion, but limited volume coverage and inter-scan motion remain a challenge during free-breathing acquisition since position offsets can arise between the different slices. METHOD: To address this limitation, we evaluated a 2D simultaneous multi-slice EPI sequence with multiband (MB) acceleration during radiofrequency ablation on a mobile gel and in the liver of a volunteer (no heating). The sequence was evaluated in terms of resulting inter-scan motion, temperature uncertainty and elevation, potential false-positive heating and repeatability. Lastly, to account for potential through-plane motion, a 3D motion compensation pipeline was implemented and evaluated. RESULTS: In-plane motion was compensated whatever the MB factor and temperature distribution was found in agreement during both the heating and cooling periods. No obvious false-positive temperature was observed under the conditions being investigated. Repeatability of measurements results in a 95% uncertainty below 2 °C for MB1 and MB2. Uncertainty up to 4.5 °C was reported with MB3 together with the presence of aliasing artifacts. Lastly, fast simultaneous multi-slice EPI combined with 3D motion compensation reduce residual out-of-plane motion. CONCLUSION: Volumetric temperature imaging (12 slices/700 ms) could be performed with 2 °C accuracy or less, and offer tradeoffs in acquisition time or volume coverage. Such a strategy is expected to increase procedure safety by monitoring large volumes more rapidly for MR-guided thermotherapy on mobile organs.


Asunto(s)
Imagen Eco-Planar , Termometría , Humanos , Imagen Eco-Planar/métodos , Termometría/métodos , Termografía/métodos , Temperatura , Temperatura Corporal , Encéfalo , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador
5.
Med Phys ; 50(9): 5715-5722, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36932727

RESUMEN

BACKGROUND: Deformable image registration is increasingly used in radiotherapy to adapt the treatment plan and accumulate the delivered dose. Consequently, clinical workflows using deformable image registration require quick and reliable quality assurance to accept registrations. Additionally, for online adaptive radiotherapy, quality assurance without the need for an operator to delineate contours while the patient is on the treatment table is needed. Established quality assurance criteria such as the Dice similarity coefficient or Hausdorff distance lack these qualities and also display a limited sensitivity to registration errors beyond soft tissue boundaries. PURPOSE: The purpose of this study is to investigate the existing intensity-based quality assurance criteria structural similarity and normalized mutual information for their ability to quickly and reliably identify registration errors for (online) adaptive radiotherapy and compare them to contour-based quality assurance criteria. METHODS: All criteria were tested using synthetic and simulated biomechanical deformations of 3D MR images as well as manually annotated 4D CT data. The quality assurance criteria were scored for classification performance, for their ability to predict the registration error, and for their spatial information. RESULTS: We found that besides being fast and operator-independent, the intensity-based criteria have the highest area under the receiver operating characteristic curve and provide the best input for models to predict the registration error on all data sets. Structural similarity furthermore provides spatial information with a higher gamma pass rate of the predicted registration error than commonly used spatial quality assurance criteria. CONCLUSIONS: Intensity-based quality assurance criteria can provide the required confidence in decisions about using mono-modal registrations in clinical workflows. They thereby enable automated quality assurance for deformable image registration in adaptive radiotherapy treatments.


Asunto(s)
Radioterapia Guiada por Imagen , Humanos , Radioterapia Guiada por Imagen/métodos , Algoritmos , Imagenología Tridimensional , Planificación de la Radioterapia Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos
6.
Phys Med Biol ; 67(16)2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35905728

RESUMEN

Objective.To assess the performance and added value of processing complete digital endoscopic video sequences for the automatic recognition of stone morphological features during a standard-of-care intra-operative session.Approach.A computer-aided video classifier was developed to predictin-situthe morphology of stone using an intra-operative digital endoscopic video acquired in a clinical setting. Using dedicated artificial intelligence (AI) networks, the proposed pipeline selects adequate frames in steady sequences of the video, ensures the presence of (potentially fragmented) stones and predicts the stone morphologies on a frame-by-frame basis. The automatic endoscopic stone recognition (A-ESR) is subsequently carried out by mixing all collected morphological observations.Main results.The proposed technique was evaluated on pure (i.e. include one morphology) and mixed (i.e. include at least two morphologies) stones involving 'Ia/Calcium Oxalate Monohydrate' (COM), 'IIb/Calcium Oxalate Dihydrate' (COD) and 'IIIb/Uric Acid' (UA) morphologies. The gold standard ESR was provided by a trained endo-urologist and confirmed by microscopy and infra-red spectroscopy. For the AI-training, 585 static images were collected (349 and 236 observations of stone surface and section, respectively) and used. Using the proposed video classifier, 71 digital endoscopic videos were analyzed: 50 exhibited only one morphological type and 21 displayed two. Taken together, both pure and mixed stone types yielded a mean diagnostic performances as follows: balanced accuracy = [88 ± 6] (min = 81)%, sensitivity = [80 ± 13] (min = 69)%, specificity = [95 ± 2] (min = 92)%, precision = [78 ± 12] (min = 62)% and F1-score = [78 ± 7] (min = 69)%.Significance.These results demonstrate that AI applied on digital endoscopic video sequences is a promising tool for collecting morphological information during the time-course of the stone fragmentation process without resorting to any human intervention for stone delineation or the selection of adequate steady frames.


Asunto(s)
Inteligencia Artificial , Cálculos Renales , Oxalato de Calcio/química , Endoscopía , Humanos , Cálculos Renales/diagnóstico por imagen , Cálculos Renales/cirugía
7.
Eur Respir J ; 59(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34266943

RESUMEN

BACKGROUND: Chest computed tomography (CT) remains the imaging standard for demonstrating cystic fibrosis (CF) airway structural disease in vivo. However, visual scoring systems as an outcome measure are time consuming, require training and lack high reproducibility. Our objective was to validate a fully automated artificial intelligence (AI)-driven scoring system of CF lung disease severity. METHODS: Data were retrospectively collected in three CF reference centres, between 2008 and 2020, in 184 patients aged 4-54 years. An algorithm using three 2D convolutional neural networks was trained with 78 patients' CT scans (23 530 CT slices) for the semantic labelling of bronchiectasis, peribronchial thickening, bronchial mucus, bronchiolar mucus and collapse/consolidation. 36 patients' CT scans (11 435 CT slices) were used for testing versus ground-truth labels. The method's clinical validity was assessed in an independent group of 70 patients with or without lumacaftor/ivacaftor treatment (n=10 and n=60, respectively) with repeat examinations. Similarity and reproducibility were assessed using the Dice coefficient, correlations using the Spearman test, and paired comparisons using the Wilcoxon rank test. RESULTS: The overall pixelwise similarity of AI-driven versus ground-truth labels was good (Dice 0.71). All AI-driven volumetric quantifications had moderate to very good correlations to a visual imaging scoring (p<0.001) and fair to good correlations to forced expiratory volume in 1 s % predicted at pulmonary function tests (p<0.001). Significant decreases in peribronchial thickening (p=0.005), bronchial mucus (p=0.005) and bronchiolar mucus (p=0.007) volumes were measured in patients with lumacaftor/ivacaftor. Conversely, bronchiectasis (p=0.002) and peribronchial thickening (p=0.008) volumes increased in patients without lumacaftor/ivacaftor. The reproducibility was almost perfect (Dice >0.99). CONCLUSION: AI allows fully automated volumetric quantification of CF-related modifications over an entire lung. The novel scoring system could provide a robust disease outcome in the era of effective CF transmembrane conductance regulator modulator therapy.


Asunto(s)
Inteligencia Artificial , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Adolescente , Adulto , Aminopiridinas/uso terapéutico , Niño , Preescolar , Humanos , Pulmón/diagnóstico por imagen , Persona de Mediana Edad , Reproducibilidad de los Resultados , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Adulto Joven
8.
BJU Int ; 129(2): 234-242, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34133814

RESUMEN

OBJECTIVE: To assess automatic computer-aided in situ recognition of the morphological features of pure and mixed urinary stones using intra-operative digital endoscopic images acquired in a clinical setting. MATERIALS AND METHODS: In this single-centre study, a urologist with 20 years' experience intra-operatively and prospectively examined the surface and section of all kidney stones encountered. Calcium oxalate monohydrate (COM) or Ia, calcium oxalate dihydrate (COD) or IIb, and uric acid (UA) or IIIb morphological criteria were collected and classified to generate annotated datasets. A deep convolutional neural network (CNN) was trained to predict the composition of both pure and mixed stones. To explain the predictions of the deep neural network model, coarse localization heat-maps were plotted to pinpoint key areas identified by the network. RESULTS: This study included 347 and 236 observations of stone surface and stone section, respectively; approximately 80% of all stones exhibited only one morphological type and approximately 20% displayed two. A highest sensitivity of 98% was obtained for the type 'pure IIIb/UA' using surface images. The most frequently encountered morphology was that of the type 'pure Ia/COM'; it was correctly predicted in 91% and 94% of cases using surface and section images, respectively. Of the mixed type 'Ia/COM + IIb/COD', Ia/COM was predicted in 84% of cases using surface images, IIb/COD in 70% of cases, and both in 65% of cases. With regard to mixed Ia/COM + IIIb/UA stones, Ia/COM was predicted in 91% of cases using section images, IIIb/UA in 69% of cases, and both in 74% of cases. CONCLUSIONS: This preliminary study demonstrates that deep CNNs are a promising method by which to identify kidney stone composition from endoscopic images acquired intra-operatively. Both pure and mixed stone composition could be discriminated. Collected in a clinical setting, surface and section images analysed by a deep CNN provide valuable information about stone morphology for computer-aided diagnosis.


Asunto(s)
Cálculos Renales , Cálculos Urinarios , Oxalato de Calcio , Endoscopía , Humanos , Cálculos Renales/diagnóstico por imagen , Cálculos Renales/cirugía , Ácido Úrico , Cálculos Urinarios/diagnóstico por imagen , Cálculos Urinarios/cirugía
9.
Cancers (Basel) ; 13(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34771565

RESUMEN

Physical activity is increasingly recognized as a strategy able to improve cancer patient outcome, and its potential to enhance treatment response is promising, despite being unclear. In our study we used a preclinical model of prostate cancer to investigate whether voluntary wheel running (VWR) could improve tumor perfusion and enhance radiotherapy (RT) efficiency. Nude athymic mice were injected with PC-3 cancer cells and either remained inactive or were housed with running wheels. Apparent microbubble transport was enhanced with VWR, which we hypothesized could improve the RT response. When repeating the experiments and adding RT, however, we observed that VWR did not influence RT efficiency. These findings contrasted with previous results and prompted us to evaluate if the lack of effects observed on tumor growth could be attributable to the physical activity modality used. Using PC-3 and PPC-1 xenografts, we randomized mice to either inactive controls, VWR, or treadmill running (TR). In both models, TR (but not VWR) slowed down tumor growth, suggesting that the anti-cancer effects of physical activity are dependent on its modalities. Providing a better understanding of which activity type should be recommended to cancer patients thus appears essential to improve treatment outcomes.

10.
Elife ; 102021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33577447

RESUMEN

Impaired cerebrovascular function is an early biomarker for cerebral amyloid angiopathy (CAA), a neurovascular disease characterized by amyloid-ß accumulation in the cerebral vasculature, leading to stroke and dementia. The transgenic Swedish Dutch Iowa (Tg-SwDI) mouse model develops cerebral microvascular amyloid-ß deposits, but whether this leads to similar functional impairments is incompletely understood. We assessed cerebrovascular function longitudinally in Tg-SwDI mice with arterial spin labeling (ASL)-magnetic resonance imaging (MRI) and laser Doppler flowmetry (LDF) over the course of amyloid-ß deposition. Unexpectedly, Tg-SwDI mice showed similar baseline perfusion and cerebrovascular reactivity estimates as age-matched wild-type control mice, irrespective of modality (ASL or LDF) or anesthesia (isoflurane or urethane and α-chloralose). Hemodynamic changes were, however, observed as an effect of age and anesthesia. Our findings contradict earlier results obtained in the same model and question to what extent microvascular amyloidosis as seen in Tg-SwDI mice is representative of cerebrovascular dysfunction observed in CAA patients.


Asunto(s)
Angiopatía Amiloide Cerebral/fisiopatología , Circulación Cerebrovascular/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Transgénicos
11.
BJU Int ; 128(3): 319-330, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33263948

RESUMEN

OBJECTIVE: To improve endoscopic recognition of the most frequently encountered urinary stone morphologies for a better aetiological approach in lithiasis by urologists. MATERIALS AND METHODS: An expert urologist intraoperatively and prospectively (between June 2015 and June 2018) examined the surface, the section, and the nucleus of all encountered kidney stones. Fragmented stones were subsequently analysed by a biologist based on both microscopic morphological (i.e. binocular magnifying glass) and infrared (i.e. Fourier transform-infrared spectroscopy) examinations (microscopists were blinded to the endoscopic data). Morphological criteria were collected and classified for the endoscopic and microscopic studies. The Wilcoxon-Mann-Whitney test was used to detect differences between the endoscopic and microscopic diagnoses. A diagnosis for a given urinary stone was considered 'confirmed' for a non-statistically significant difference. RESULTS: A total of 399 urinary stones were included in this study: 51.4% of the stones had only one morphological type, while 48.6% were mixed stones (41% had at least two morphologies and 7.6% had three morphologies). The overall matching rate was 81.6%. Diagnostics were confirmed for the following morphologies: whewellite (Ia or Ib), weddellite (IIa or IIb), uric acid (IIIa or IIIb), carbapatite-struvite association (IVb), and brushite (IVd). CONCLUSIONS: Our preliminary study demonstrates the feasibility of using endoscopic morphology for the most frequently encountered urinary stones and didactic boards of confirmed endoscopic images are provided. The present study constitutes the first step toward endoscopic stone recognition, which is essential in lithiasis. We provide didactic boards of confirmed endoscopic images that pave the way for automatic computer-aided in situ recognition.


Asunto(s)
Cálculos Renales/química , Cálculos Renales/patología , Ureteroscopía , Humanos , Microscopía , Estudios Retrospectivos , Espectroscopía Infrarroja por Transformada de Fourier
12.
Phys Med Biol ; 65(22): 225022, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-32906089

RESUMEN

Affine registration of one or several brain image(s) onto a common reference space is a necessary prerequisite for many image processing tasks, such as brain segmentation or functional analysis. Manual assessment of registration quality is a tedious and time-consuming task, especially in studies comprising a large amount of data. Automated and reliable quality control (QC) becomes mandatory. Moreover, the computation time of the QC must be also compatible with the processing of massive datasets. Therefore, automated deep neural network approaches have emerged as a method of choice to automatically assess registration quality. In the current study, a compact 3D convolutional neural network, referred to as RegQCNET, is introduced to quantitatively predict the amplitude of an affine registration mismatch between a registered image and a reference template. This quantitative estimation of registration error is expressed using the metric unit system. Therefore, a meaningful task-specific threshold can be manually or automatically defined in order to distinguish between usable and non-usable images. The robustness of the proposed RegQCNET is first analyzed on lifespan brain images undergoing various simulated spatial transformations and intensity variations between training and testing. Secondly, the potential of RegQCNET to classify images as usable or non-usable is evaluated using both manual and automatic thresholds. During our experiments, automatic thresholds are estimated using several computer-assisted classification models (logistic regression, support vector machine, Naive Bayes and random forest) through cross-validation. To this end we use an expert's visual QC estimated on a lifespan cohort of 3953 brains. Finally, the RegQCNET accuracy is compared to usual image features such as image correlation coefficient and mutual information. The results show that the proposed deep learning QC is robust, fast and accurate at estimating affine registration error in the processing pipeline.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Teorema de Bayes , Humanos , Redes Neurales de la Computación , Control de Calidad , Máquina de Vectores de Soporte
13.
Neuroimage ; 219: 117026, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32522665

RESUMEN

Whole brain segmentation of fine-grained structures using deep learning (DL) is a very challenging task since the number of anatomical labels is very high compared to the number of available training images. To address this problem, previous DL methods proposed to use a single convolution neural network (CNN) or few independent CNNs. In this paper, we present a novel ensemble method based on a large number of CNNs processing different overlapping brain areas. Inspired by parliamentary decision-making systems, we propose a framework called AssemblyNet, made of two "assemblies" of U-Nets. Such a parliamentary system is capable of dealing with complex decisions, unseen problem and reaching a relevant consensus. AssemblyNet introduces sharing of knowledge among neighboring U-Nets, an "amendment" procedure made by the second assembly at higher-resolution to refine the decision taken by the first one, and a final decision obtained by majority voting. During our validation, AssemblyNet showed competitive performance compared to state-of-the-art methods such as U-Net, Joint label fusion and SLANT. Moreover, we investigated the scan-rescan consistency and the robustness to disease effects of our method. These experiences demonstrated the reliability of AssemblyNet. Finally, we showed the interest of using semi-supervised learning to improve the performance of our method.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Aprendizaje Profundo , Humanos , Programas Informáticos
14.
Eur Radiol ; 30(5): 2995-3003, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32002637

RESUMEN

OBJECTIVE: A new computer tool is proposed to distinguish between focal nodular hyperplasia (FNH) and an inflammatory hepatocellular adenoma (I-HCA) using contrast-enhanced ultrasound (CEUS). The new method was compared with the usual qualitative analysis. METHODS: The proposed tool embeds an "optical flow" algorithm, designed to mimic the human visual perception of object transport in image series, to quantitatively analyse apparent microbubble transport parameters visible on CEUS. Qualitative (visual) and quantitative (computer-assisted) CEUS data were compared in a cohort of adult patients with either FNH or I-HCA based on pathological and radiological results. For quantitative analysis, several computer-assisted classification models were tested and subjected to cross-validation. The accuracies, area under the receiver-operating characteristic curve (AUROC), sensitivity and specificity, positive predictive values (PPVs), negative predictive values (NPVs), false predictive rate (FPRs) and false negative rate (FNRs) were recorded. RESULTS: Forty-six patients with FNH (n = 29) or I-HCA (n = 17) with 47 tumours (one patient with 2 I-HCA) were analysed. The qualitative diagnostic parameters were accuracy = 93.6%, AUROC = 0.94, sensitivity = 94.4%, specificity = 93.1%, PPV = 89.5%, NPV = 96.4%, FPR = 6.9% and FNR = 5.6%. The quantitative diagnostic parameters were accuracy = 95.9%, AUROC = 0.97, sensitivity = 93.4%, specificity = 97.6%, PPV = 95.3%, NPV = 96.7%, FPR = 2.4% and FNR = 6.6%. CONCLUSIONS: Microbubble transport patterns evident on CEUS are valuable diagnostic indicators. Machine-learning algorithms analysing such data facilitate the diagnosis of FNH and I-HCA tumours. KEY POINTS: • Distinguishing between focal nodular hyperplasia and an inflammatory hepatocellular adenoma using dynamic contrast-enhanced ultrasound is sometimes difficult. • Microbubble transport patterns evident on contrast-enhanced sonography are valuable diagnostic indicators. • Machine-learning algorithms analysing microbubble transport patterns facilitate the diagnosis of FNH and I-HCA.


Asunto(s)
Adenoma de Células Hepáticas/diagnóstico por imagen , Carcinoma Hepatocelular/diagnóstico por imagen , Medios de Contraste , Diagnóstico por Computador/métodos , Hiperplasia Nodular Focal/diagnóstico por imagen , Aumento de la Imagen/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Microburbujas , Ultrasonografía/métodos , Adulto , Anciano , Exactitud de los Datos , Diagnóstico Diferencial , Femenino , Estudios de Seguimiento , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Sensibilidad y Especificidad , Adulto Joven
15.
NMR Biomed ; 32(8): e4105, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31172591

RESUMEN

Arterial spin labeling (ASL)-MRI can noninvasively map cerebral blood flow (CBF) and cerebrovascular reactivity (CVR), potential biomarkers of cognitive impairment and dementia. Mouse models of disease are frequently used in translational MRI studies, which are commonly performed under anesthesia. Understanding the influence of the specific anesthesia protocol used on the measured parameters is important for accurate interpretation of hemodynamic studies with mice. Isoflurane is a frequently used anesthetic with vasodilative properties. Here, the influence of three distinct isoflurane protocols was studied with pseudo-continuous ASL in two different mouse strains. The first protocol was a free-breathing set-up with medium concentrations, the second a free-breathing set-up with low induction and maintenance concentrations, and the third a set-up with medium concentrations and mechanical ventilation. A protocol with the vasoconstrictive anesthetic medetomidine was used as a comparison. As expected, medium isoflurane anesthesia resulted in significantly higher CBF and lower CVR values than medetomidine (median whole-brain CBF of 157.7 vs 84.4 mL/100 g/min and CVR of 0.54 vs 51.7% in C57BL/6 J mice). The other two isoflurane protocols lowered the CBF and increased the CVR values compared with medium isoflurane anesthesia, without obvious differences between them (median whole-brain CBF of 138.9 vs 131.7 mL/100 g/min and CVR of 10.0 vs 9.6%, in C57BL/6 J mice). Furthermore, CVR was shown to be dependent on baseline CBF, regardless of the anesthesia protocol used.


Asunto(s)
Anestesia , Encéfalo/fisiología , Arterias Cerebrales/fisiología , Hemodinámica/efectos de los fármacos , Isoflurano/farmacología , Marcadores de Spin , Animales , Encéfalo/efectos de los fármacos , Arterias Cerebrales/efectos de los fármacos , Circulación Cerebrovascular/efectos de los fármacos , Femenino , Masculino , Ratones Endogámicos C57BL
16.
Contrast Media Mol Imaging ; 2019: 2645928, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30956626

RESUMEN

In solid tumors, rapid local intravascular release of anticancer agents, e.g., doxorubicin (DOX), from thermosensitive liposomes (TSLs) can be an option to overcome poor extravasation of drug nanocarriers. The driving force of DOX penetration is the drug concentration gradient between the vascular compartment and the tumor interstitium. In this feasibility study, we used fibered confocal fluorescence microscopy (FCFM) to monitor in real-time DOX penetration in the interstitium of a subcutaneous tumor after its intravascular release from TSLs, Thermodox®. Cell uptake kinetics of the released DOX was quantified, along with an in-depth assessment of released-DOX penetration using an evolution model. A subcutaneous rat R1 rhabdomyosarcoma xenograft was used. The rodent was positioned in a setup including a water bath, and FCFM identification of functional vessels in the tumor tissue was applied based on AngioSense. The tumor-bearing leg was immersed in the 43°C water for preheating, and TSLs were injected intravenously. Real-time monitoring of intratumoral (i.t.) DOX penetration could be performed, and it showed the progressing DOX wave front via its native fluorescence, labeling successively all cell nuclei. Cell uptake rates (1/k) of 3 minutes were found (n=241 cells), and a released-DOX penetration in the range of 2500 µm2·s-1 was found in the tumor extravascular space. This study also showed that not all vessels, identified as functional based on AngioSense, gave rise to local DOX penetration.


Asunto(s)
Doxorrubicina/farmacocinética , Hipertermia Inducida , Liposomas/metabolismo , Animales , Núcleo Celular/metabolismo , Modelos Animales de Enfermedad , Cinética , Microscopía Confocal , Ratas , Rabdomiosarcoma/metabolismo
17.
Eur Radiol ; 28(7): 2801-2811, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29404766

RESUMEN

AIM: To assess regular MRI findings and tumour texture features on pre-CRT imaging as potential predictive factors of event-free survival (disease progression or death) after chemoradiotherapy (CRT) for anal squamous cell carcinoma (ASCC) without metastasis. MATERIALS AND METHODS: We retrospectively included 28 patients treated by CRT for pathologically proven ASCC with a pre-CRT MRI. Texture analysis was carried out with axial T2W images by delineating a 3D region of interest around the entire tumour volume. First-order analysis by quantification of the histogram was carried out. Second-order statistical texture features were derived from the calculation of the grey-level co-occurrence matrix using a distance of 1 (d1), 2 (d2) and 5 (d5) pixels. Prognostic factors were assessed by Cox regression and performance of the model by the Harrell C-index. RESULTS: Eight tumour progressions led to six tumour-specific deaths. After adjusting for age, gender and tumour grade, skewness (HR = 0.131, 95% CI = 0-0.447, p = 0.005) and cluster shade_d1 (HR = 0.601, 95% CI = 0-0.861, p = 0.027) were associated with event occurrence. The corresponding Harrell C-indices were 0.846, 95% CI = 0.697-0.993, and 0.851, 95% CI = 0.708-0.994. CONCLUSION: ASCC MR texture analysis provides prognostic factors of event occurrence and requires additional studies to assess its potential in an "individual dose" strategy for ASCC chemoradiation therapy. KEY POINTS: • MR texture features help to identify tumours with high progression risk. • Texture feature maps help to identify intra-tumoral heterogeneity. • Texture features are a better prognostic factor than regular MR findings.


Asunto(s)
Neoplasias del Ano/terapia , Carcinoma de Células Escamosas/terapia , Quimioradioterapia/métodos , Anciano , Neoplasias del Ano/mortalidad , Neoplasias del Ano/patología , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/patología , Quimioradioterapia/mortalidad , Supervivencia sin Enfermedad , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento , Carga Tumoral
18.
Int J Hyperthermia ; 34(8): 1225-1235, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29378441

RESUMEN

INTRODUCTION: Magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) treatments of mobile organs require locking the HIFU beam on the targeted tissue to maximise heating efficiency. We propose to use a standalone 3 D ultrasound (US)-based motion correction technique using the HIFU transducer in pulse-echo mode. Validation of the method was performed in vitro and in vivo in the liver of pig under MR-thermometry. METHODS: 3 D-motion estimation was implemented using ultrasonic speckle-tracking between consecutive acquisitions. Displacement was estimated along four sub-apertures of the HIFU transducer by computing the normalised cross-correlation of backscattered signals followed by a triangulation algorithm. The HIFU beam was steered accordingly and energy was delivered under real-time MR-thermometry (using the proton resonance frequency shift method with online motion compensation and correction of associated susceptibility artefacts). An MR-navigator echo was used to assess the quality of the US-based motion correction. RESULTS: Displacement estimations from US measurements were in good agreement with 1 D MR-navigator echo readings. In vitro, the maximum temperature increase was improved by 37% as compared to experiments performed without motion correction and temperature distribution remained much more focussed. Similar results were reported in vivo, with an increase of 35% on the maximum temperature using this US-based HIFU target locking. CONCLUSION: This standalone 3D US-based motion correction technique is robust and allows maintaining the HIFU focal spot in the presence of motion without adding any burden or complexity to MR thermal imaging. In vitro and in vivo results showed about 35% improvement in heating efficiency when focus position was locked on the target using the proposed technique.


Asunto(s)
Hígado/diagnóstico por imagen , Hígado/cirugía , Animales , Ultrasonido Enfocado de Alta Intensidad de Ablación , Imagen por Resonancia Magnética , Porcinos , Ultrasonografía/métodos
19.
IEEE Trans Med Imaging ; 37(2): 372-383, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28858788

RESUMEN

Contrast-enhanced ultrasound (CEUS) is a non-invasive imaging technique extensively used for blood perfusion imaging of various organs. This modality is based on the acoustic detection of gas-filled microbubble contrast agents used as intravascular flow tracers. Recent efforts aim at quantifying parameters related to the enhancement in the vascular compartment using time-intensity curve (TIC), and at using these latter as indicators for several pathological conditions. However, this quantification is mainly hampered by two reasons: first, the quantification intrinsically solely relies on temporal intensity variation, the explicit spatial transport of the contrast agent being left out. Second, the exact relationship between the acquired US-signal and the local microbubble concentration is hardly accessible. This paper introduces the use of a fluid dynamic model for the analysis of dynamic CEUS (DCEUS), in order to circumvent the two above-mentioned limitations. A new kinetic analysis is proposed in order to quantify the velocity amplitude of the bolus arrival. The efficiency of proposed methodology is evaluated both in-vitro, for the quantitative estimation of microbubble flow rates, and in-vivo, for the classification of placental insufficiency (control versus ligature) of pregnant rats from DCEUS. Besides, for the in-vivo experimental setup, we demonstrated that the proposed approach outperforms the performance of existing TIC-based methods.


Asunto(s)
Medios de Contraste/química , Interpretación de Imagen Asistida por Computador/métodos , Microburbujas , Ultrasonografía/métodos , Animales , Medios de Contraste/análisis , Medios de Contraste/farmacocinética , Femenino , Hidrodinámica , Modelos Biológicos , Embarazo , Ratas , Ratas Sprague-Dawley
20.
J Magn Reson Imaging ; 47(3): 692-701, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28646608

RESUMEN

PURPOSE: To demonstrate that fluid filling of the digestive tract improves the performance of respiratory motion-compensated proton resonance frequency shift (PRFS)-based magnetic resonance (MR) thermometry in the pancreas. MATERIALS AND METHODS: In seven volunteers (without heating), we evaluated PRFS thermometry in the pancreas with and without filling of the surrounding digestive tract. All data acquisition was performed at 1.5T, then all datasets were analyzed and compared with three different PRFS respiratory motion-compensated thermometry methods: gating, multibaseline, and referenceless. The temperature precision of the different methods was evaluated by assessing temperature standard deviation over time, while a simulation experiment was used to study the accuracy of the methods. RESULTS: Without fluid intake, errors in temperature precision in the pancreas up to 10°C were observed for all evaluated methods. After liquid intake, temperature precision improved to median values between 1.8 and 2.9°C. The simulations showed that gating had the lowest accuracy, with errors up to 7°C. Multibaseline and referenceless thermometry performed better, with a median error in the pancreas between -3 and +3°C after fluid intake, for all volunteers. CONCLUSION: Preparation of the digestive tract near the pancreas by filling it with fluid improved MR thermometry precision and accuracy for all common respiratory motion-compensated methods evaluated. These improvements are attributed to reducing field inhomogeneity in the pancreas. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:692-701.


Asunto(s)
Jugos de Frutas y Vegetales , Tracto Gastrointestinal , Imagen por Resonancia Magnética/métodos , Páncreas/diagnóstico por imagen , Termometría/métodos , Adulto , Humanos , Masculino , Valores de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...