Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Cancer Surviv ; 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37922071

RESUMEN

PURPOSE: Cancer-related cognitive impairment (CRCI) has been associated with altered brain activation after chemotherapy in areas related to working memory. Hence, improving working memory capacity and associated brain activation might aid in the recovery of CRCI. In this study, we investigated the potential of a mindfulness-based intervention (MBI) to impact working memory-related brain activation. METHODS: Female breast cancer survivors reporting cognitive complaints (N=117) were randomized into a mindfulness (n=43; MBI), physical training (n=36; PT), or waitlist control condition (n=38; WL). Participants completed MRI scans before the intervention, immediately after, and three months post-intervention. Task-based functional MRI was used to measure differences between groups over time in working memory-related brain activation while performing a visual-verbal n-back task. RESULTS: Data of 83 participants (32/26/25 MBI/PT/WL) was included. Compared to the waitlist group, MBI participants showed reduced task-related activation in the right middle frontal and angular gyrus and increased activation in the right dorsal posterior cingulate cortex over time. Compared to the physical training group, MBI participants showed reduced brain activation in the bilateral superior parietal lobule and right dorsal anterior cingulate cortex over time. No differences between physical training and no intervention were identified. CONCLUSION: This study showed that an 8-week mindfulness-based intervention can significantly alter brain activation across brain regions involved in working memory, attentional control, and emotion processing during performance of a working memory task. This might aid in the recovery of CRCI. IMPLICATIONS FOR CANCER SURVIVORS: Mindfulness might alter brain activation patterns while performing a working memory task, which might ultimately aid in restoring higher order cognitive functions.

2.
Transl Oncol ; 37: 101769, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37651891

RESUMEN

BACKGROUND: Previous case studies have provided evidence for chemotherapy-induced leukoencephalopathy in patients with breast cancer. However, prospective research is lacking. Hence, we investigated leukoencephalopathy before and after chemotherapy and its association with a serum neuroaxonal damage marker. METHODS: This prospective cohort study included 40 patients receiving chemotherapy for breast cancer, and two age- and education-matched control groups, recruited between 2018 and 2021 (31-64 years of age). The latter control groups consisted of 39 chemotherapy-naïve patients and 40 healthy women. Fluid-attenuated inversion-recovery magnetic resonance imaging was used for lesion volumetry (total, juxtacortical, periventricular, infratentorial, and deep white matter) and blood serum to measure neurofilament light chain (NfL) levels. Acquisition took place pre-chemotherapy and three months and one-year post-chemotherapy, or at corresponding intervals. Within/between group differences were compared using robust mixed-effects modeling, and associations between total lesion volume and serum-NfL with linear regression. RESULTS: Stronger increases in deep white matter lesion volumes were observed shortly post-chemotherapy, compared with healthy women (ßstandardized=0.09, pFDR<0.001). Increases in total lesion volume could mainly be attributed to enlargement of existing lesions (mean±SD, 0.12±0.16 mL), rather than development of new lesions (0.02±0.02 mL). A stronger increase in serum-NfL concentration was observed shortly post-chemotherapy compared with both control groups (ß>0.70, p<0.004), neither of which showed any changes over time, whereas a decrease was observed compared with healthy women one-year post-chemotherapy (ß=-0.54, p = 0.002). Serum-NfL concentrations were associated with lesion volume one-year post-chemotherapy (or at matched timepoint; ß=0.36, p = 0.010), whereas baseline or short-term post-therapy levels or changes were not. CONCLUSION: These results underscore the possibility of chemotherapy-induced leukoencephalopathy months post-treatment, as well as the added value of serum-NfL as a prognostic marker for peripheral/central neurotoxicity. TRANSLATIONAL RELEVANCE: Previous case studies have provided evidence of chemotherapy-induced leukoencephalopathy in patients with breast cancer. However, prospective studies to estimate longitudinal changes are currently missing. In this study, we used longitudinal fluid-attenuated inversion-recovery magnetic resonance imaging to assess white matter lesion volumes in patients treated for non-metastatic breast cancer and healthy women. Our findings demonstrate that chemotherapy-treated patients exhibit stronger increases in lesion volumes compared with healthy women, specifically in deep white matter, at three months post-chemotherapy. Increases could mainly be attributed to enlargement of existing lesions, rather than development of new lesions. Last, serum concentrations of neurofilament light chain, a neuroaxonal damage marker, increased shortly after chemotherapy and long-term post-chemotherapy levels were associated with lesion volumes. These findings highlight the potential of this non-invasive serum marker as a prognostic marker for peripheral and/or central neurotoxicity. Implementation in clinical practice could aid in therapeutic decisions, assessing disease activity, or monitoring treatment response.

3.
Cancers (Basel) ; 15(14)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37509292

RESUMEN

BACKGROUND: Cancer-related cognitive impairment (CRCI) has been linked to functional brain changes and inflammatory processes. Hence, interventions targeting these underlying mechanisms are needed. In this study, we investigated the effects of a mindfulness-based intervention on brain function and inflammatory profiles in breast cancer survivors with CRCI. METHODS: Female breast cancer survivors reporting cognitive complaints (n = 117) were randomly assigned to a mindfulness-based intervention (n = 43), physical training (n = 36), or waitlist control condition (n = 38). Region-of-interest (ROI) and graph theory analyses of resting state functional MRI data were performed to study longitudinal group differences in functional connectivity and organization in the default mode, dorsal attention, salience, and frontoparietal network. Additionally, bead-based immunoassays were used to investigate the differences in inflammatory profiles on serum samples. Measures were collected before, immediately after and three months post-intervention. RESULTS: No ROI-to-ROI functional connectivity changes were identified. Compared to no intervention, graph analysis showed a larger decrease in clustering coefficient after mindfulness and physical training. Additionally, a larger increase in global efficiency after physical training was identified. Furthermore, the physical training group showed a larger decrease in an inflammatory profile compared to no intervention (IL-12p70, IFN-γ, IL-1ß, and IL-8). CONCLUSION: Both mindfulness and physical training induced changes in the functional organization of networks related to attention, emotion processing, and executive functioning. While both interventions reduced functional segregation, only physical training increased functional integration of the neural network. In conclusion, physical training had the most pronounced effects on functional network organization and biomarkers of inflammation, two mechanisms that might be involved in CRCI.

5.
Brain Imaging Behav ; 17(5): 507-518, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37256494

RESUMEN

Brain gray matter (GM) reductions have been reported after breast cancer chemotherapy, typically in small and/or cross-sectional cohorts, most commonly using voxel-based morphometry (VBM). There has been little examination of approaches such as deformation-based morphometry (DBM), machine-learning-based brain aging metrics, or the relationship of clinical and demographic risk factors to GM reduction. This international data pooling study begins to address these questions. Participants included breast cancer patients treated with (CT+, n = 183) and without (CT-, n = 155) chemotherapy and noncancer controls (NC, n = 145), scanned pre- and post-chemotherapy or comparable intervals. VBM and DBM examined GM volume. Estimated brain aging was compared to chronological aging. Correlation analyses examined associations between VBM, DBM, and brain age, and between neuroimaging outcomes, baseline age, and time since chemotherapy completion. CT+ showed longitudinal GM volume reductions, primarily in frontal regions, with a broader spatial extent on DBM than VBM. CT- showed smaller clusters of GM reduction using both methods. Predicted brain aging was significantly greater in CT+ than NC, and older baseline age correlated with greater brain aging. Time since chemotherapy negatively correlated with brain aging and annual GM loss. This large-scale data pooling analysis confirmed findings of frontal lobe GM reduction after breast cancer chemotherapy. Milder changes were evident in patients not receiving chemotherapy. CT+ also demonstrated premature brain aging relative to NC, particularly at older age, but showed evidence for at least partial GM recovery over time. When validated in future studies, such knowledge could assist in weighing the risks and benefits of treatment strategies.


Asunto(s)
Neoplasias de la Mama , Sustancia Gris , Humanos , Femenino , Sustancia Gris/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Estudios Transversales , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Envejecimiento
6.
Cancers (Basel) ; 15(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36831557

RESUMEN

As survival rates increase, more emphasis has gone to possible cognitive sequelae in older cancer patients, which could be explained by accelerated brain aging. In this review, we provide a complete overview of studies investigating neuroimaging, neurocognitive, and neurodegenerative disorders in older cancer survivors (>65 years), based on three databases (Pubmed, Web of Science and Medline). Ninety-six studies were included. Evidence was found for functional and structural brain changes (frontal regions, basal ganglia, gray and white matter), compared to healthy controls. Cognitive decline was mainly found in memory functioning. Anti-hormonal treatments were repeatedly associated with cognitive decline (tamoxifen) and sometimes with an increased risk of Alzheimer's disease (androgen deprivation therapy). Chemotherapy was inconsistently associated with later development of cognitive changes or dementia. Radiotherapy was not associated with cognition in patients with non-central nervous system cancer but can play a role in patients with central nervous system cancer, while neurosurgery seemed to improve their cognition in the short-term. Individual risk factors included cancer subtypes (e.g., brain cancer, hormone-related cancers), treatment (e.g., anti-hormonal therapy, chemotherapy, cranial radiation), genetic predisposition (e.g., APOE, COMT, BDNF), age, comorbidities (e.g., frailty, cognitive reserve), and psychological (e.g., depression, (post-traumatic) distress, sleep, fatigue) and social factors (e.g., loneliness, limited caregiver support, low SES). More research on accelerated aging is required to guide intervention studies.

7.
Cancer ; 129(7): 1105-1116, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36625501

RESUMEN

BACKGROUND: Interventions that target cancer-related cognitive impairment (CRCI) to improve the quality of life of cancer survivors are needed. In this study, the potential of a mindfulness-based intervention to reduce CRCI in breast cancer survivors, compared with physical training and a wait list control group, was investigated. METHODS: Breast cancer survivors with cognitive complaints (N = 117) were randomly allocated to a mindfulness (n = 43), physical training (n = 36), or wait list control condition (n = 38). Participants completed neuropsychological tests and questionnaires before the intervention, immediately after, and 3 months after intervention. The primary outcome measure was the change in cognitive complaints over time. Secondary outcomes were objective cognitive impairment and psychological well-being. All outcomes were compared between groups over time using linear mixed models, including participants with missing values. RESULTS: Of the 117 included participants, 96 completed the three assessments. Participants in the three groups reported decreased cognitive complaints after intervention, without group differences. There were no between-group differences in objective cognitive impairment after intervention compared with baseline. Compared with the wait list control group, participants reported increased mindfulness skills and reduced emotional distress after mindfulness and reduced emotional distress and fatigue after physical training. CONCLUSION: Contrary to the hypothesis, all groups reported an improvement in cognitive complaints over time. It is suggested that priming and acknowledgment of CRCI might alter the experience of cognitive impairment. Additionally, both mindfulness-based intervention and physical training can improve psychological well-being of breast cancer survivors with cognitive complaints.


Asunto(s)
Neoplasias de la Mama , Supervivientes de Cáncer , Disfunción Cognitiva , Atención Plena , Femenino , Humanos , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/terapia , Neoplasias de la Mama/psicología , Supervivientes de Cáncer/psicología , Cognición , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Calidad de Vida
8.
Neuro Oncol ; 25(1): 167-176, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35640975

RESUMEN

BACKGROUND: Reducing radiation dose to the hippocampus with hippocampal avoidance prophylactic cranial irradiation (HA-PCI) is proposed to prevent cognitive decline. It has, however, not been investigated whether hippocampal atrophy is actually mitigated by this approach. Here, we determined whether HA-PCI reduces hippocampal atrophy. Additionally, we evaluated neurotoxicity of (HA-)PCI to other brain regions. Finally, we evaluated associations of hippocampal atrophy and brain neurotoxicity with memory decline. METHODS: High-quality research MRI scans were acquired in the multicenter, randomized phase 3 trial NCT01780675. Hippocampal atrophy was evaluated for 4 months (57 HA-PCI patients and 46 PCI patients) and 12 months (28 HA-PCI patients and 27 PCI patients) after (HA-)PCI. We additionally studied multimodal indices of brain injury. Memory was assessed with the Hopkins Verbal Learning Test-Revised (HVLT-R). RESULTS: HA-PCI reduced hippocampal atrophy at 4 months (1.8% for HA-PCI and 3.0% for PCI) and at 12 months (3.0% for HA-PCI and 5.8% for PCI). Both HA-PCI and PCI were associated with considerable reductions in gray matter and normal-appearing white matter, increases in white matter hyperintensities, and brain aging. There were no significant associations between hippocampal atrophy and memory. CONCLUSIONS: HA-PCI reduces hippocampal atrophy at 4 and 12 months compared to regular PCI. Both types of radiotherapy are associated with considerable brain injury. We did not find evidence for excessive brain injury after HA-PCI relative to PCI. Hippocampal atrophy was not associated with memory decline in this population as measured with HVLT-R. The usefulness of HA-PCI is still subject to debate.


Asunto(s)
Lesiones Encefálicas , Neoplasias Encefálicas , Neoplasias Pulmonares , Intervención Coronaria Percutánea , Carcinoma Pulmonar de Células Pequeñas , Humanos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/prevención & control , Irradiación Craneana/efectos adversos , Hipocampo/efectos de la radiación , Trastornos de la Memoria
9.
Crit Rev Oncol Hematol ; 180: 103859, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36257539

RESUMEN

Cancer-related cognitive impairment (CRCI) has increasingly been identified over the last two decades in non-CNS system cancer patients. Across Europe, researchers have contributed to this effort by developing preclinical models, exploring underlying mechanisms and assessing cognitive and quality of life changes. The ultimate goal is to develop interventions to treat patients experiencing CRCI. To do so, new challenges need to be addressed requiring the implementation of multidisciplinary research groups. In this consensus paper, we summarize the state of the art in the field of CRCI combined with the future challenges and action plans in Europe. These challenges include data sharing/pooling, standardization of assessments as well as assessing additional biomarkers and neuroimaging investigations, notably through translational studies. We conclude this position paper with specific actions for Europe based on shared scientific expert opinion and stakeholders involved in the Innovative Partnership for Action Against Cancer, with a particular focus on cognitive intervention programs.


Asunto(s)
Disfunción Cognitiva , Neoplasias , Humanos , Calidad de Vida , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Biomarcadores , Europa (Continente)
10.
Front Oncol ; 12: 1021615, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313711

RESUMEN

Purpose: To investigate the short-term cerebral metabolic effects of intravenous chemotherapy and their association with long-term fatigue/cognitive complaints. Experimental design: Using [18F]-FDG-PET/CT whole-body scans, we retrospectively quantified relative cerebral glucose metabolism before and after neoadjuvant chemotherapy in a cohort of patients treated for non-metastatic breast cancer (2009-2019). Self-report of cognitive complaints and fatigue were prospectively assessed 7 ± 3 years after therapy. Metabolic changes were estimated with i) robust mixed-effects modelling in regions-of-interest (frontal, parietal, temporal, occipital, and insular cortex) and ii) general-linear modelling of whole-brain voxel-wise outcomes. iii) The association between metabolic changes and self-reported outcomes was evaluated using linear regression-analysis. Results: Of the 667 screened patients, 263 underwent PET/CT before and after chemotherapy and 183 (48 ± 9 years) met the inclusion criteria. After chemotherapy, decreased frontal and increased parietal and insular metabolism were observed (|ß|>0.273, pFDR <0.008). Separately, additional increased occipital metabolism after epiribucin+ cyclophosphamide (EC) and temporal metabolism after EC+ fluorouracil chemotherapy were observed (ß>0.244, pFDR ≤0.048). Voxel-based analysis (pcluster-FWE <0.001) showed decreased metabolism in the paracingulate gyrus (-3.2 ± 3.9%) and putamen (3.1 ± 4.1%) and increased metabolism in the lateral cortex (L=2.9 ± 3.1%) and pericentral gyri (3.0 ± 4.4%). Except for the central sulcus, the same regions showed changes in EC, but not in FEC patients. Of the 97 self-reported responders, 23% and 27% experienced extreme fatigue and long-term cognitive complaints, respectively, which were not associated with metabolic changes. Conclusion: Both hyper- and hypometabolism were observed after chemotherapy for breast cancer. Combined with earlier findings, this study could support inflammatory mechanisms resulting in relative hypermetabolism, mainly in the parietal/occipital cortices. As early metabolic changes did not precede long-term complaints, further research is necessary to identify vulnerable patients.

11.
Breast ; 62: 61-68, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35131644

RESUMEN

BACKGROUND: Although chemotherapy-induced leukoencephalopathy has been described in case and cohort studies, literature remains inconclusive about its prevalence and mechanisms. Therefore, we investigated the presence of leukoencephalopathy after multiagent chemotherapy in women treated for breast cancer and potential underlying neuroinflammatory processes. METHODS: In this exploratory study, 15 chemotherapy-treated and 15 age-matched chemotherapy-naïve patients with early-stage breast cancer, as well as 15 healthy controls underwent simultaneous PET-MR neuroimaging, including T1-weighted MPRAGE, T2-weighted FLAIR and dynamic PET with the 18-kDA translocator protein (TSPO) radioligand [18F]DPA-714. Total and regional (juxtacortical, periventricular, deep white matter and infratentorial) lesion burden were compared between the groups with one-way ANOVA. With paired t-tests, [18F]DPA-714 volume of distribution [VT, including partial volume correction (PVC)] in lesioned and normal appearing white matter (NAWM) were compared within subjects, to investigate inflammation. Finally, two general linear models were used to examine the predictive values of neurofilament light-chain (NfL) serum levels on (1) total lesion burden or (2) PVC [18F]DPA-714 VT of lesions showing elevated inflammation. RESULTS: No significant differences were found in total or localized lesion burden. However, significantly higher (20-45%) TSPO uptake was observed in juxtacortical lesions (p ≤ 0.008, t ≥ 3.90) compared to NAWM in both cancer groups, but only persisted for chemotherapy-treated patients after PVC (p = 0.005, t = 4.30). NfL serum levels were not associated with total lesion volume or tracer uptake in juxtacortical lesions. CONCLUSION: This multimodal neuroimaging study suggests that neuroinflammatory processes could be involved in the development of juxtacortical, but not periventricular or deep white matter, leukoencephalopathy shortly after chemotherapy for early-stage breast cancer.


Asunto(s)
Neoplasias de la Mama , Leucoencefalopatías , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Estudios Transversales , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Enfermedades Neuroinflamatorias , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/metabolismo
12.
Transl Oncol ; 16: 101297, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34896851

RESUMEN

Breast cancer treatment can induce alterations in blood- and neuroimaging-based markers. However, an overview of the predictive value of these markers for cognition is lacking for breast cancer survivors. This systematic review summarized studies of the last decade, using the PubMed database, evaluating blood markers, and the association between blood- or structural neuroimaging markers and cognition across the chemotherapy trajectory for primary breast cancer, following PRISMA guidelines. Forty-four studies were included. Differences were observed in all blood marker categories, from on-therapy until years post-chemotherapy. Associations were found between cognitive functioning and (1) blood markers (mainly inflammation-related) during, shortly-, or years post-chemotherapy and (2) white and gray matter metrics in frontal, temporal and parietal brain regions months up until years post-chemotherapy. Preliminary evidence exists for epigenetic and metabolic changes being associated with cognition, only after chemotherapy. This review demonstrated time-dependent associations between specific blood-based and structural neuroimaging markers with cognitive impairment in patients with breast cancer. Future studies are encouraged to include both neuroimaging- and blood markers (e.g. of neuronal integrity, epigenetics and metabolism) to predict long-term cognitive effects of chemotherapy.

13.
MAGMA ; 35(1): 163-186, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34919195

RESUMEN

Cancer therapy for both central nervous system (CNS) and non-CNS tumors has been previously associated with transient and long-term cognitive deterioration, commonly referred to as 'chemo fog'. This therapy-related damage to otherwise normal-appearing brain tissue is reported using post-mortem neuropathological analysis. Although the literature on monitoring therapy effects on structural magnetic resonance imaging (MRI) is well established, such macroscopic structural changes appear relatively late and irreversible. Early quantitative MRI biomarkers of therapy-induced damage would potentially permit taking these treatment side effects into account, paving the way towards a more personalized treatment planning.This systematic review (PROSPERO number 224196) provides an overview of quantitative tomographic imaging methods, potentially identifying the adverse side effects of cancer therapy in normal-appearing brain tissue. Seventy studies were obtained from the MEDLINE and Web of Science databases. Studies reporting changes in normal-appearing brain tissue using MRI, PET, or SPECT quantitative biomarkers, related to radio-, chemo-, immuno-, or hormone therapy for any kind of solid, cystic, or liquid tumor were included. The main findings of the reviewed studies were summarized, providing also the risk of bias of each study assessed using a modified QUADAS-2 tool. For each imaging method, this review provides the methodological background, and the benefits and shortcomings of each method from the imaging perspective. Finally, a set of recommendations is proposed to support future research.


Asunto(s)
Trastornos del Conocimiento , Neoplasias , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
14.
Cancers (Basel) ; 13(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34439351

RESUMEN

To uncover mechanisms underlying chemotherapy-induced cognitive impairment in breast cancer, we studied new biomarkers of neuroinflammation and neuronal survival. This cohort study included 74 women (47 ± 10 years) from 22 October 2017 until 20 August 2020. Nineteen chemotherapy-treated and 18 chemotherapy-naïve patients with breast cancer were assessed one month after the completion of surgery and/or chemotherapy, and 37 healthy controls were included. Assessments included neuropsychological testing, questionnaires, blood sampling for 17 inflammatory and two neuronal survival markers (neurofilament light-chain (NfL), and brain-derived neurotrophic factor (BDNF) and PET-MR neuroimaging. To investigate neuroinflammation, translocator protein (TSPO) [18F]DPA714-PET-MR was acquired for 15 participants per group, and evaluated by volume of distribution normalized to the cerebellum. Chemotherapy-treated patients showed higher TSPO expression, indicative for neuroinflammation, in the occipital and parietal lobe when compared to healthy controls or chemotherapy-naïve patients. After partial-volume correction, differences with healthy controls persisted (pFWE < 0.05). Additionally, compared to healthy- or chemotherapy-naïve controls, cognitive impairment (17-22%) and altered levels in blood markers (F ≥ 3.7, p ≤ 0.031) were found in chemotherapy-treated patients. NfL, an axonal damage marker, was particularly sensitive in differentiating groups (F = 105, p = 4.2 × 10 -21), with levels 20-fold higher in chemotherapy-treated patients. Lastly, in chemotherapy-treated patients alone, higher local TSPO expression was associated with worse cognitive performance, higher blood levels of BDNF/NfL, and decreased fiber cross-section in the corpus callosum (pFWE < 0.05). These findings suggest that increased neuroinflammation is associated with chemotherapy-related cognitive impairment in breast cancer. Additionally, NfL could be a useful biomarker to assess neurotoxic effects of anticancer chemotherapies.

16.
Radiother Oncol ; 161: 118-125, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34102233

RESUMEN

BACKGROUND: Childhood infratentorial tumor patients frequently suffer from long-term cognitive deficits. As each constituent of their treatment can lead to neurotoxicity, cascade effects can lead to profound reorganization of the underlying brain network, the so-called 'connectome'. However, to date, few studies have assessed the relationship between brain network topology, the functional role of network hubs (i.e. highly connected regions), and neurocognitive outcomes in adult survivors of childhood infratentorial tumors. METHODS: In this cross-sectional study, childhood infratentorial tumor survivors (n = 21: pilocytic astrocytoma (n = 8), ependymoma (n = 1) and medulloblastoma (n = 12)) and healthy controls (n = 21) were recruited. Using multishell diffusion-weighted MRI, microstructural organization and topology of supratentorial white matter was investigated; using a voxel-based approach, a fixel-based analysis, and a graph theoretical approach. In addition, neurocognitive subscales of the WAIS-IV intelligence test, and their relationship with nodal strength and network efficiency metrics were assessed. RESULTS: Similar to earlier studies, we observed widespread decreases in fractional anisotropy (FA) in patients compared to controls, based on voxel-based analyses. In addition, the fixel-based analyses dissociated macro- from microstructural changes, which were encountered in in infratentorial versus supratentorial brain areas, respectively. Finally, regional reorganization (i.e. differences in local efficiency) occurred mainly in hubs, which suggests a specific vulnerability of these areas. These hubs were not only mostly affected, but also most strongly correlated with the intelligence subscales. CONCLUSION: This study suggests that network hubs are functionally important for intellectual outcomes in infratentorial tumor survivors. Furthermore, these regions could be the primary targets of treatment toxicity. Validation of this specific hypothesis in larger samples is required.


Asunto(s)
Neoplasias Cerebelosas , Neoplasias Infratentoriales , Adulto , Encéfalo , Neoplasias Cerebelosas/diagnóstico por imagen , Cognición , Estudios Transversales , Humanos , Neoplasias Infratentoriales/diagnóstico por imagen , Sobrevivientes
19.
Cancers (Basel) ; 13(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923795

RESUMEN

Methotrexate (MTX) is associated with leukoencephalopathy (LE) in children treated for lymphoblastic leukemia/lymphoma (ALL/LBL). However, large-scale studies with systematic MR acquisition and quantitative volumetric lesion information remain limited. Hence, the prevalence of lesion burdens and the potential risk factors of LE in this population are still inconclusive. FLAIR-MRI scans were acquired at the end of treatment in children who were treated for ALL/LBL, which were quantitatively analyzed for LE. Voxels were assigned to the lesion segmentation if indicated by two raters. Logistic and linear regression models were used to test whether lesion presence and size were predicted by risk factors such as age at diagnosis, gender, intrathecal (IT-) or intravenous (IV-)MTX dose, CNS invasion, and acute neurological events. Patients with a pre-existing neurological condition or low-quality MR scan were excluded from the analyses. Of the 129 patients, ten (8%) suffered from CNS invasion. Chemotherapy-associated neurological events were observed in 13 patients (10%) during therapy, and 68 patients (53%) showed LE post-treatment. LE was more frequent in cases of lower age and higher cumulative IV-MTX doses, while the extent of LE and neurological symptoms were associated only with IV-MTX doses. Neurological events were not significantly associated with LE, even though symptomatic patients demonstrated a higher ratio of LE (n = 9/13) than asymptomatic patients (n = 59/116). This study suggests leukoencephalopathy frequently occurs in both symptomatic and asymptomatic leukemia patients. Younger children and patients treated with higher cumulative IV-MTX doses might need more regular screening for early detection and follow-up of associated sequelae.

20.
PLoS One ; 16(4): e0250228, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33930029

RESUMEN

This retrospective correlation study investigated the putative link between methylene tetrahydrofolate reductase (MTHFR) A1298C mutations and chemotherapy-related brain function changes in adult childhood-leukemia survivors. To this end, we determined the relationship between the particular MTHFR1298 genotype (AA, AC or CC) of 31 adult childhood-leukemia survivors, and (1) their CSF Tau and phosphorylated Tau (pTau) levels at the time of treatment, (2) their adult performance intelligence quotient (PIQ), and (3) their regional brain connectivity using diffusion magnetic resonance imaging (dMRI) and resting-state functional MRI (rsfMRI). We confirmed that neuropathology markers Tau and pTau significantly increased in CSF of children after intrathecal methotrexate administration. Highest concentrations of these toxicity markers were found during the induction phase of the therapy. Moreover, CSF concentrations of Tau and pTau during treatment were influenced by the children's particular MTHFR1298 genotype. CSF Tau (but not pTau) levels significantly dropped after folinic acid supplementation. At adult age (on average 13.1 years since the end of their treatment), their particular MTHFR1298 genotype (AA, AC or CC) influenced the changes in PIQ and cortical connectivity that we found to be related to their childhood exposure to chemotherapeutics. In summary, we suggest that homozygous MTHFR1298CC individuals are more vulnerable to the adult sequelae of antifolate chemotherapy.


Asunto(s)
Cognición/efectos de los fármacos , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Adulto , Encéfalo/patología , Supervivientes de Cáncer , Niño , Preescolar , Imagen de Difusión por Resonancia Magnética/métodos , Progresión de la Enfermedad , Quimioterapia/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Femenino , Antagonistas del Ácido Fólico/uso terapéutico , Genotipo , Humanos , Pruebas de Inteligencia , Imagen por Resonancia Magnética/métodos , Masculino , Metotrexato/uso terapéutico , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , Polimorfismo de Nucleótido Simple/genética , Descanso/fisiología , Estudios Retrospectivos , Adulto Joven , Proteínas tau/análisis , Proteínas tau/líquido cefalorraquídeo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...