Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 6(51)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33355129

RESUMEN

Mitochondria drive cellular adaptation to stress by retro-communicating with the nucleus. This process is known as mitochondrial retrograde response (MRR) and is induced by mitochondrial dysfunction. MRR results in the nuclear stabilization of prosurvival transcription factors such as the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Here, we demonstrate that MRR is facilitated by contact sites between mitochondria and the nucleus. The translocator protein (TSPO) by preventing the mitophagy-mediated segregation o mitochonria is required for this interaction. The complex formed by TSPO with the protein kinase A (PKA), via the A-kinase anchoring protein acyl-CoA binding domain containing 3 (ACBD3), established the tethering. The latter allows for cholesterol redistribution of cholesterol in the nucleus to sustain the prosurvival response by blocking NF-κB deacetylation. This work proposes a previously unidentified paradigm in MRR: the formation of contact sites between mitochondria and nucleus to aid communication.

2.
Br J Pharmacol ; 176(22): 4284-4292, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31077345

RESUMEN

The pharmacological targeting of cholesterol levels continues to generate interest due to the undoubted success of therapeutic agents, such as statins, in extending life expectancy by modifying the prognosis of diseases associated with the impairment of lipid metabolism. Advances in our understanding of mitochondrial dysfunction in chronic age-related diseases of the brain have disclosed an emerging role for mitochondrial cholesterol in their pathophysiology, thus delineating an opportunity to provide mechanistic insights and explore strategies of intervention. This review draws attention to novel signalling mechanisms in conditions linked with impaired metabolism associated with impaired handling of cholesterol and its oxidized forms (oxysterols) by mitochondria. By emphasizing the role of mitochondrial cholesterol in neurological diseases, we here call for novel approaches and new means of assessment. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.


Asunto(s)
Colesterol/metabolismo , Mitocondrias/metabolismo , Animales , ADN Mitocondrial , Humanos , Enfermedades del Sistema Nervioso , Transducción de Señal
3.
Cell Rep ; 25(13): 3573-3581.e4, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30590033

RESUMEN

Transglutaminase type 2 (TG2) is a multifunctional enzyme that plays a key role in mitochondria homeostasis under stressful cellular conditions. TG2 interactome analysis reveals an enzyme interaction with GRP75 (glucose-regulated protein 75). GRP75 localizes in mitochondria-associated membranes (MAMs) and acts as a bridging molecule between the two organelles by assembling the IP3R-GRP75-VDAC complex, which is involved in the transport of Ca2+ from the endoplasmic reticulum (ER) to mitochondria. We demonstrate that the TG2 and GRP75 interaction occurs in MAMs. The absence of the TG2-GRP75 interaction leads to an increase of the interaction between IP3R-3 and GRP75; a decrease of the number of ER-mitochondria contact sites; an impairment of the ER-mitochondrial Ca2+ flux; and an altered profile of the MAM proteome. These findings indicate TG2 is a key regulatory element of the MAMs.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Transglutaminasas/metabolismo , Animales , Calcio/metabolismo , Retículo Endoplásmico/ultraestructura , Fibroblastos/metabolismo , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Unión Proteica , Proteína Glutamina Gamma Glutamiltransferasa 2
4.
Mol Cell ; 71(1): 8-9, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29979970

RESUMEN

Mitochondrial protein import stress compromises functioning of the organelles, due to inadequate supply of inner mitochondrial proteins. Weidberg and Amon (2018) describe a new monitoring pathway in budding yeast, which restores mitochondrial function following the clearing of accumulated unfolded pre-transported mitochondrial proteins, by devising a molecular strategy of overexpressing bi-partite-containing mitochondrial proteins.


Asunto(s)
Mitocondrias , Proteostasis , Proteínas Mitocondriales , Transporte de Proteínas
5.
Nucleic Acids Res ; 45(22): 12808-12815, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29106596

RESUMEN

All DNA polymerases misincorporate ribonucleotides despite their preference for deoxyribonucleotides, and analysis of cultured cells indicates that mammalian mitochondrial DNA (mtDNA) tolerates such replication errors. However, it is not clear to what extent misincorporation occurs in tissues, or whether this plays a role in human disease. Here, we show that mtDNA of solid tissues contains many more embedded ribonucleotides than that of cultured cells, consistent with the high ratio of ribonucleotide to deoxynucleotide triphosphates in tissues, and that riboadenosines account for three-quarters of them. The pattern of embedded ribonucleotides changes in a mouse model of Mpv17 deficiency, which displays a marked increase in rGMPs in mtDNA. However, while the mitochondrial dGTP is low in the Mpv17-/- liver, the brain shows no change in the overall dGTP pool, leading us to suggest that Mpv17 determines the local concentration or quality of dGTP. Embedded rGMPs are expected to distort the mtDNA and impede its replication, and elevated rGMP incorporation is associated with early-onset mtDNA depletion in liver and late-onset multiple deletions in brain of Mpv17-/- mice. These findings suggest aberrant ribonucleotide incorporation is a primary mtDNA abnormality that can result in pathology.


Asunto(s)
ADN Mitocondrial/genética , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Ribonucleótidos/genética , Eliminación de Secuencia , Animales , Secuencia de Bases , Encéfalo/metabolismo , Línea Celular , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Hígado/metabolismo , Proteínas de la Membrana/deficiencia , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/deficiencia
6.
Brain ; 140(6): 1595-1610, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28549128

RESUMEN

Although mitochondrial disorders are clinically heterogeneous, they frequently involve the central nervous system and are among the most common neurogenetic disorders. Identifying the causal genes has benefited enormously from advances in high-throughput sequencing technologies; however, once the defect is known, researchers face the challenge of deciphering the underlying disease mechanism. Here we characterize large biallelic deletions in the region encoding the ATAD3C, ATAD3B and ATAD3A genes. Although high homology complicates genomic analysis of the ATAD3 defects, they can be identified by targeted analysis of standard single nucleotide polymorphism array and whole exome sequencing data. We report deletions that generate chimeric ATAD3B/ATAD3A fusion genes in individuals from four unrelated families with fatal congenital pontocerebellar hypoplasia, whereas a case with genomic rearrangements affecting the ATAD3C/ATAD3B genes on one allele and ATAD3B/ATAD3A genes on the other displays later-onset encephalopathy with cerebellar atrophy, ataxia and dystonia. Fibroblasts from affected individuals display mitochondrial DNA abnormalities, associated with multiple indicators of altered cholesterol metabolism. Moreover, drug-induced perturbations of cholesterol homeostasis cause mitochondrial DNA disorganization in control cells, while mitochondrial DNA aggregation in the genetic cholesterol trafficking disorder Niemann-Pick type C disease further corroborates the interdependence of mitochondrial DNA organization and cholesterol. These data demonstrate the integration of mitochondria in cellular cholesterol homeostasis, in which ATAD3 plays a critical role. The dual problem of perturbed cholesterol metabolism and mitochondrial dysfunction could be widespread in neurological and neurodegenerative diseases.


Asunto(s)
Adenosina Trifosfatasas/genética , Cerebelo/anomalías , ADN Mitocondrial/genética , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Malformaciones del Sistema Nervioso/genética , ATPasas Asociadas con Actividades Celulares Diversas , Adulto , Cerebelo/diagnóstico por imagen , Cerebelo/fisiopatología , Consanguinidad , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/fisiopatología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Enfermedades Mitocondriales/diagnóstico por imagen , Enfermedades Mitocondriales/fisiopatología , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Malformaciones del Sistema Nervioso/fisiopatología
7.
Proc Natl Acad Sci U S A ; 113(30): E4276-85, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27402764

RESUMEN

The genetic information in mammalian mitochondrial DNA is densely packed; there are no introns and only one sizeable noncoding, or control, region containing key cis-elements for its replication and expression. Many molecules of mitochondrial DNA bear a third strand of DNA, known as "7S DNA," which forms a displacement (D-) loop in the control region. Here we show that many other molecules contain RNA as a third strand. The RNA of these R-loops maps to the control region of the mitochondrial DNA and is complementary to 7S DNA. Ribonuclease H1 is essential for mitochondrial DNA replication; it degrades RNA hybridized to DNA, so the R-loop is a potential substrate. In cells with a pathological variant of ribonuclease H1 associated with mitochondrial disease, R-loops are of low abundance, and there is mitochondrial DNA aggregation. These findings implicate ribonuclease H1 and RNA in the physical segregation of mitochondrial DNA, perturbation of which represents a previously unidentified disease mechanism.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/genética , Mutación , Ribonucleasa H/genética , Animales , Línea Celular Tumoral , Células Cultivadas , Replicación del ADN , ADN Mitocondrial/química , ADN Mitocondrial/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Conformación de Ácido Nucleico , Ribonucleasa H/metabolismo
8.
Eur J Med Chem ; 44(12): 5006-11, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19782440

RESUMEN

In this work, marketed drug compounds (or known drug space) were used as a metric to test the principles of eliminating parent structures of the nitrenium ion (aryl-amine/nitro compounds) as well as sulphur and halogen containing molecules from screening compound collections. Molecules containing such moieties and/or atoms have biological and physiochemical properties, which possibly make them less attractive as leads in drug development. It was found that precursors to the nitrenium ion were relatively abundant in known drug space at 14%. Thus, their simple elimination from drug-like chemical space is not advisable. Interestingly, the mutagenic potential of the nitrenium ions is linked to their stability and quantum mechanical calculations can be used to estimate it. Furthermore, 24% of drugs investigated contained sulphur atoms and around 28% were halogenated. As some sulphur containing moieties were abundant whilst others were scarce, it was deduced that it would be more effective to eliminate specific molecular scaffolds rather than all sulphur containing molecules. In conclusion, it has been shown that by statistically analysing known drug space a better understanding of the boundaries of drug-like chemical space was established which can help medicinal chemists in finding rewarding regions of chemical space.


Asunto(s)
Diseño de Fármacos , Preparaciones Farmacéuticas , Vías de Administración de Medicamentos , Estructura Molecular , Preparaciones Farmacéuticas/química
9.
Reproduction ; 135(5): 657-69, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18304982

RESUMEN

Serotonin is reported to be present in early embryos of many species and plays an important role in early patterning. Since it is a fluorophore, it can be directly visualized using fluorescence microscopy. Here, we use three-photon microscopy to image serotonin in live pre-implantation mouse embryos. We find that it is present as puncta averaging 1.3 square microns and in concentrations as high as 442 mM. The observed serotonin puncta were found to co-localize with mitochondria. Live embryos pre-incubated with serotonin showed a higher mitochondrial potential, indicating that it can modulate mitochondrial potential. Pre-implantation mouse embryos were also examined at various developmental stages for the presence of transcripts of the peripheral and neuronal forms of tryptophan hydroxylase (Tph1 and Tph2 respectively) and the classical serotonin transporter (Slc6a4). Transcripts of Tph2 were seen in oocytes and in two-cell stages, whereas transcripts of Tph1 were not detected at any stage. Transcripts of the transporter, Slc6a4, were present in all pre-implantation stages investigated. These results suggest that serotonin in embryos can arise from a combination of synthesis and uptake from the surrounding milieu.


Asunto(s)
Blastocisto/química , Mitocondrias/química , Serotonina/análisis , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos , Microscopía Fluorescente , Mórula/química , Oocitos/química , Embarazo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Transporte de Serotonina en la Membrana Plasmática/análisis , Triptófano Hidroxilasa/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA