Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38782870

RESUMEN

Transcriptional control of lipid metabolism uses a framework that parallels the control of lipid metabolism at the protein or enzyme level, via feedback and feed-forward mechanisms. Increasing the substrates for an enzyme often increases enzyme gene expression, for example. A paucity of product can likewise potentiate transcription or stability of the mRNA encoding the enzyme or enzymes needed to produce it. In addition, changes in second messengers or cellular energy charge can act as on/off switches for transcriptional regulators to control transcript (and protein) abundance. Insects use a wide range of DNA-binding transcription factors (TFs) that sense changes in the cell and its environment to produce the appropriate change in transcription at gene promoters. These TFs work together with histones, spliceosomes, and additional RNA processing factors to ultimately regulate lipid metabolism. In this chapter, we will first focus on the important TFs that control lipid metabolism in insects. Next, we will describe non-TF regulators of insect lipid metabolism such as enzymes that modify acetylation and methylation status, transcriptional coactivators, splicing factors, and microRNAs. To conclude, we consider future goals for studying the mechanisms underlying the control of lipid metabolism in insects.

2.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38495587

RESUMEN

Obesity reflects an imbalance in nutrient storage resulting in excess fat accumulation. The molecules that tissues use to regulate nutrient storage are not well understood. A previously published genetic screen using Drosophila melanogaster larvae identified Glut1 , a transmembrane glucose transporter, as a potential obesity gene. To identify the adipose-specific functions of this gene, Glut1 levels were decreased using RNAi targeted to fly fat tissue. Adult Glut1 RNAi flies have lower glycogen and triglyceride levels, as well as decreased FASN1 RNA expression. This suggests that Glut1 functions to promote glycogen and triglyceride storage and fatty acid synthesis in Drosophila adipose tissue.

3.
Biochem Biophys Rep ; 38: 101661, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38384389

RESUMEN

After a meal, excess nutrients are stored within adipose tissue as triglycerides in lipid droplets. Previous genome-wide RNAi screens in Drosophila cells have identified mRNA splicing factors as being important for lipid droplet formation. Our lab has previously shown that a class of mRNA splicing factors called serine/arginine-rich (SR) proteins, which help to identify intron/exon borders, are important for triglyceride storage in Drosophila fat tissue, partially by regulating the splicing of the gene for carnitine palmitoyltransferase 1 (CPT1), an enzyme important for mitochondrial ß-oxidation of fatty acids. The CPT1 gene in Drosophila generates two major isoforms, with transcripts that include exon 6A producing more active enzymes than ones made from transcripts containing exon 6B; however, whether nutrient availability regulates CPT1 splicing in fly fat tissue is not known. During ad libitum feeding, control flies produce more CPT1 transcripts containing exon 6B while fasting for 24 h results in a shift in CPT1 splicing to generate more transcripts containing exon 6A. The SR protein 9G8 is necessary for regulating nutrient responsive CPT1 splicing as decreasing 9G8 levels in fly fat tissue blocks the accumulation of CPT1 transcripts including exon 6A during starvation. Protein kinase A (PKA), a mediator of starvation-induced lipid breakdown, also regulates CPT1 splicing during starvation as transcripts including exon 6A did not accumulate when PKA was inhibited during starvation. Together, these results indicate that CPT1 splicing in adipose tissue responds to changes in nutrient availability contributing to the overall control of lipid homeostasis.

4.
MicroPubl Biol ; 20232023.
Artículo en Inglés | MEDLINE | ID: mdl-37675078

RESUMEN

Achieving metabolic homeostasis is necessary for survival, and many genes are required to control organismal metabolism. A genetic screen in Drosophila larvae identified putative fat storage genes including Arc1 . Arc1 has been shown to act in neurons to regulate larval lipid storage; however, whether Arc1 functions to regulate adult metabolism is unknown. Arc1 esm18 males store more fat than controls while both groups eat similar amounts. Arc1 esm18 flies express more brummer lipase and less of the glycolytic enzyme triose phosphate isomerase, which may contribute to excess fat observed in these mutants. These results suggest that Arc1 regulates adult Drosophila lipid homeostasis.

5.
Biochem Biophys Res Commun ; 649: 10-15, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36738578

RESUMEN

The survival of animals during periods of limited nutrients is dependent on the organism's ability to store lipids during times of nutrient abundance. However, the increased availability of food in modern western society has led to an excess storage of lipids resulting in metabolic diseases. To better understand the genes involved in regulating lipid storage, genome-wide RNAi screens were performed in cultured Drosophila cells and one group of genes identified includes mRNA splicing factor genes. Our lab has previously shown that a group of splicing factors important for intron/exon border recognition known as SR proteins are involved in controlling lipid storage in Drosophila; however, how these SR proteins are regulated to control lipid storage is not fully understood. Here, we focus on two SR protein kinases (SRPKs) in Drosophila: SRPK and SRPK79D. Decreasing the expression of these genes specifically in the adult fat body using RNAi resulted in lower levels of triglycerides and this is due to a decrease in the amount of fat stored per cell, despite having more fat cells, when compared to control flies. Decreasing SRPK and SRPK79D levels in the fat body leads to altered splicing of the ß-oxidation gene, carnitine palmitoyltransferase 1 (CPT1), resulting in increased production of a more active enzyme, which would increase lipid breakdown and be consistent with the lean phenotype observed in these flies. In addition, flies with decreased SRPK and SRPK79D levels in their fat bodies eat less, which may also contribute to the decreased triglyceride phenotype. Together, these findings provide evidence to support that lipid storage is controlled by the phosphorylation of factors involved in mRNA splicing.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Cuerpo Adiposo/metabolismo , Proteínas Quinasas/metabolismo , Triglicéridos/metabolismo , Factores de Empalme de ARN/metabolismo , ARN Mensajero/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
6.
J Microbiol Biol Educ ; 23(2)2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36061313

RESUMEN

The Genomics Education Partnership (GEP) engages students in a course-based undergraduate research experience (CURE). To better understand the student attributes that support success in this CURE, we asked students about their attitudes using previously published scales that measure epistemic beliefs about work and science, interest in science, and grit. We found, in general, that the attitudes students bring with them into the classroom contribute to two outcome measures, namely, learning as assessed by a pre- and postquiz and perceived self-reported benefits. While the GEP CURE produces positive outcomes overall, the students with more positive attitudes toward science, particularly with respect to epistemic beliefs, showed greater gains. The findings indicate the importance of a student's epistemic beliefs to achieving positive learning outcomes.

7.
Med Sci (Basel) ; 10(3)2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36135830

RESUMEN

Polyamines are small organic cations that are essential for many biological processes such as cell proliferation and cell cycle progression. While the metabolism of polyamines has been well studied, the mechanisms by which polyamines are transported into and out of cells are poorly understood. Here, we describe a novel role of Chmp1, a vesicular trafficking protein, in the transport of polyamines using a well-defined leg imaginal disc assay in Drosophila melanogaster larvae. We show that Chmp1 overexpression had no effect on leg development in Drosophila, but does attenuate the negative impact on leg development of Ant44, a cytotoxic drug known to enter cells through the polyamine transport system (PTS), suggesting that the overexpression of Chmp1 downregulated the PTS. Moreover, we showed that the addition of spermine did not rescue the leg development in Chmp1-overexpressing leg discs treated with difluoromethylornithine (DFMO), an inhibitor of polyamine metabolism, while putrescine and spermidine did, suggesting that there may be unique mechanisms of import for individual polyamines. Thus, our data provide novel insight into the underlying mechanisms that are involved in polyamine transport and highlight the utility of the Drosophila imaginal disc assay as a fast and easy way to study potential players involved in the PTS.


Asunto(s)
Poliaminas , Espermidina , Animales , Drosophila melanogaster/metabolismo , Eflornitina/farmacología , Poliaminas/metabolismo , Poliaminas/farmacología , Putrescina/metabolismo , Putrescina/farmacología , Espermidina/metabolismo , Espermidina/farmacología , Espermina/metabolismo , Espermina/farmacología
8.
Biochem Biophys Res Commun ; 620: 92-97, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-35780586

RESUMEN

Excess nutrients are stored as triglycerides, mostly as lipid droplets found in adipose tissue. Previous studies have characterized a group of splicing factors called serine/arginine rich (SR) proteins that function to identify intron/exon borders in regulating metabolic homeostasis in the Drosophila fat body. Decreasing the function of one SR protein, 9G8, causes an increase in triglyceride storage; however, the full complement of genes regulated by 9G8 to control metabolism is unknown. To address this question, we performed RNA sequencing on Drosophila fat bodies with 9G8 levels reduced by RNAi. Differential expression and differential exon usage analyses revealed several genes involved in the immune response, xenobiotic biology, protein translation, sleep, and lipid and carbohydrate metabolism whose expression or splicing is altered in 9G8-RNAi fat bodies. One gene that was both downregulated and had altered splicing in 9G8-RNAi fat bodies was Zwischenferment (Zw), the Drosophila homolog of human glucose 6-phosphate dehydrogenase (G6PD). G6PD regulates flux of glucose 6-phosphate (G6P) into the pentose phosphate pathway, which generates NADPH, a coenzyme for lipid synthesis. Interestingly, the other NADPH-producing enzyme genes in Drosophila (phosphogluconate dehydrogenase, isocitrate dehydrogenase and malic enzyme) were also decreased in 9G8-RNAi flies. Together, these findings suggest that 9G8 regulates several classes of genes and may regulate NADPH-producing enzyme genes to maintain metabolic homeostasis.


Asunto(s)
Drosophila , Lípidos , Factores de Empalme Serina-Arginina/metabolismo , Animales , Drosophila/metabolismo , Glucosa , Glucosafosfato Deshidrogenasa/metabolismo , Humanos , NADP/metabolismo , Fosfatos/metabolismo , Factores de Empalme de ARN/metabolismo
9.
MicroPubl Biol ; 20222022.
Artículo en Inglés | MEDLINE | ID: mdl-35655607

RESUMEN

Excess triglycerides from the diet are stored in structures called lipid droplets in adipose tissue. Genome-wide RNAi screens have identified mRNA splicing factors as important for lipid droplet formation; however, the full complement of splicing factors that regulate lipid storage is not known. Here, we characterize the role of snRNP-U1-70K , the gene encoding for a splicing protein involved in recognizing the 5' splice site in introns, in regulating lipid and carbohydrate storage in the Drosophila fat body. Decreasing snRNP-U1-70K specifically in the fly fat body resulted in less triglyceride, glycogen, and glucose in each fat body cell. Consistent with these decreased nutrient storage phenotypes, snRNP-U1-70K-RNAi flies ate less, providing a potential cause for less lipid and carbohydrate storage in these flies. These data further support the role of mRNA processing in regulating metabolic homeostasis in Drosophila .

10.
Biochem Biophys Rep ; 30: 101280, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35600902

RESUMEN

The ability of organisms to sense their nutritional environment and adjust their behavior accordingly is critical for survival. Insulin-like peptides (ilps) play major roles in controlling behavior and metabolism; however, the tissues and cells that insulin acts on to regulate these processes are not fully understood. In the fruit fly, Drosophila melanogaster, insulin signaling has been shown to function in the fat body to regulate lipid storage, but whether ilps act on the fly brain to regulate nutrient storage is not known. In this study, we manipulate insulin signaling in defined populations of neurons in Drosophila and measure glycogen and triglyceride storage. Expressing a constitutively active form of the insulin receptor (dInR) in the insulin-producing cells had no effect on glycogen or triglyceride levels. However, activating insulin signaling in the Drosulfakinin (Dsk)-producing neurons led to triglyceride accumulation and increased food consumption. The expression of ilp2, ilp3 and ilp5 was increased in flies with activated insulin signaling in the Dsk neurons, which along with the feeding phenotype, may cause the triglyceride storage phenotypes observed in these flies. In addition, expressing a constitutively active dInR in Dsk neurons resulted in decreased sleep in the fed state and less starvation-induced sleep suppression suggesting a role for insulin signaling in regulating nutrient-responsive behaviors. Together, these data support a role for insulin signaling in the Dsk-producing neurons for regulating behavior and maintaining metabolic homeostasis.

11.
Biochem Biophys Res Commun ; 596: 1-5, 2022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-35104661

RESUMEN

After a meal, excess nutrients are stored within adipose tissue as triglycerides in structures called lipid droplets. Previous genome-wide RNAi screens have identified that mRNA splicing factor genes are required for normal lipid droplet formation in Drosophila cells. We have previously shown that mRNA splicing factors called serine/arginine-rich (SR) proteins are important for triglyceride storage in the Drosophila fat body. SR proteins shuttle in and out of the nucleus with the help of proteins called Transportins (Tnpo-SR); however, whether this transport is important for SR protein-mediated regulation of lipid storage is unknown. The purpose of this study is to characterize the role of Tnpo-SR proteins in regulating lipid storage in the Drosophila fat body. Decreasing Tnpo-SR in the adult fat body resulted in an increase in triglyceride storage and consistent with this phenotype, Tnpo-SR-RNAi flies also have increased starvation resistance. In addition, the lipid accumulation in Tnpo-SR-RNAi flies is the result of increased triglyceride stored in each fat body cell and not due to increased food consumption. Interestingly, the splicing of CPT1, an enzyme important for the ß-oxidation of fatty acids, is altered in Tnpo-SR-RNAi fat bodies. The isoform that produces the less catalytically active form of CPT1 accumulates in fat bodies where Tnpo-SR levels are decreased, suggesting a decrease in lipid breakdown, potentially causing the excess triglyceride storage observed in these flies. Together, these data suggest that the transport of splicing proteins in and out of the nucleus is important for proper triglyceride storage in the Drosophila fat body.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Cuerpo Adiposo/metabolismo , Metabolismo de los Lípidos , beta Carioferinas/metabolismo , Animales , Animales Modificados Genéticamente , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Cuerpo Adiposo/citología , Femenino , Glucógeno/metabolismo , Gotas Lipídicas/metabolismo , Interferencia de ARN , Empalme del ARN , Inanición/genética , Inanición/metabolismo , Triglicéridos/metabolismo , beta Carioferinas/genética
12.
Med Sci (Basel) ; 11(1)2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36649042

RESUMEN

Defects in how excess nutrients are stored as triglycerides can result in several diseases including obesity, heart disease, and diabetes. Understanding the genes responsible for normal lipid homeostasis will help understand the pathogenesis of these diseases. RNAi screens performed in Drosophila cells identified genes involved in vesicle formation and protein sorting as important for the formation of lipid droplets; however, all of the vesicular trafficking proteins that regulate lipid storage are unknown. Here, we characterize the function of the Drosophila Charged multivesicular protein 1 (Chmp1) gene in regulating fat storage. Chmp1 is a member of the ESCRT-III complex that targets membrane localized signaling receptors to intralumenal vesicles in the multivesicular body of the endosome and then ultimately to the lysosome for degradation. When Chmp1 levels are decreased specifically in the fly fat body, triglyceride accumulates while fat-body-specific Chmp1 overexpression decreases triglycerides. Chmp1 controls triglyceride storage by regulating the number and size of fat body cells produced and not by altering food consumption or lipid metabolic enzyme gene expression. Together, these data uncover a novel function for Chmp1 in controlling lipid storage in Drosophila and supports the role of the endomembrane system in regulating metabolic homeostasis.


Asunto(s)
Drosophila , Cuerpo Adiposo , Animales , Tejido Adiposo/metabolismo , Drosophila/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cuerpo Adiposo/metabolismo , Triglicéridos/metabolismo
13.
Med Sci (Basel) ; 9(2)2021 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-34063217

RESUMEN

Polyamines are small organic cations that are important for several biological processes such as cell proliferation, cell cycle progression, and apoptosis. The dysregulation of intracellular polyamines is often associated with diseases such as cancer, diabetes, and developmental disorders. Although polyamine metabolism has been well studied, the effects of key enzymes in the polyamine pathway on lipid metabolism are not well understood. Here, we determined metabolic effects resulting from the absence of spermidine synthase (SpdS) and spermine synthase (Sms) in Drosophila. While SpdS mutants developed normally and accumulated triglycerides, Sms mutants had reduced viability and stored less triglyceride than the controls. Interestingly, when decreasing SpdS and Sms, specifically in the fat body, triglyceride storage increased. While there was no difference in triglycerides stored in heads, thoraxes and abdomen fat bodies, abdomen fat body DNA content increased, and protein/DNA decreased in both SpdS- and Sms-RNAi flies, suggesting that fat body-specific knockdown of SpdS and Sms causes the production of smaller fat body cells and triglycerides to accumulate in non-fat body tissues of the abdomen. Together, these data provide support for the role that polyamines play in the regulation of metabolism and can help enhance our understanding of polyamine function in metabolic diseases.


Asunto(s)
Fenómenos Biológicos , Proteínas de Drosophila/genética , Drosophila/fisiología , Espermidina Sintasa , Espermina Sintasa/metabolismo , Triglicéridos/metabolismo , Animales , ADN , Drosophila/genética , Poliaminas , Espermidina Sintasa/genética , Espermidina Sintasa/metabolismo , Espermina Sintasa/genética
14.
Biochem Biophys Rep ; 25: 100919, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33537463

RESUMEN

The availability of excess nutrients in Western diets has led to the overaccumulation of these nutrients as triglycerides, a condition known as obesity. The full complement of genes important for regulating triglyceride storage is not completely understood. Genome-wide RNAi screens in Drosophila cells have identified genes involved in mRNA splicing as important lipid storage regulators. Our lab has shown that a group of splicing factors called heterogeneous nuclear ribonucleoproteins (hnRNPs) regulate lipid metabolism in the fly fat body; however, the identities of all the hnRNPs that function to control triglyceride storage are not known. Here, we used the GAL4/UAS system to induce RNAi to the hnRNP glorund (glo) in the Drosophila fat body to assess whether this hnRNP has any metabolic functions. Decreasing glo levels resulted in less triglycerides being stored throughout the fly. Interestingly, decreasing fat body glo expression resulted in increased triglyceride storage in the fat body, but blunted triglyceride storage in non-fat body tissues, suggesting a defect in lipid transport. Consistent with this hypothesis, the expression of apolipophorin (apolpp), microsomal triglyceride transfer protein (mtp), and apolipoprotein lipid transfer particle (apoltp), apolipoprotein genes important for lipid transport through the fly hemolymph, was decreased in glo-RNAi flies, suggesting that glo regulates the transport of lipids from the fly fat body to surrounding tissues. Together, these results indicate that glorund plays a role in controlling lipid transport and storage and provide additional evidence of the link between gene expression and the regulation of lipid metabolism.

15.
Artículo en Inglés | MEDLINE | ID: mdl-32148609

RESUMEN

A hallmark of the research experience is encountering difficulty and working through those challenges to achieve success. This ability is essential to being a successful scientist, but replicating such challenges in a teaching setting can be difficult. The Genomics Education Partnership (GEP) is a consortium of faculty who engage their students in a genomics Course-Based Undergraduate Research Experience (CURE). Students participate in genome annotation, generating gene models using multiple lines of experimental evidence. Our observations suggested that the students' learning experience is continuous and recursive, frequently beginning with frustration but eventually leading to success as they come up with defendable gene models. In order to explore our "formative frustration" hypothesis, we gathered data from faculty via a survey, and from students via both a general survey and a set of student focus groups. Upon analyzing these data, we found that all three datasets mentioned frustration and struggle, as well as learning and better understanding of the scientific process. Bioinformatics projects are particularly well suited to the process of iteration and refinement because iterations can be performed quickly and are inexpensive in both time and money. Based on these findings, we suggest that a dynamic of "formative frustration" is an important aspect for a successful CURE.

16.
Biochem Biophys Res Commun ; 524(1): 178-183, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-31982137

RESUMEN

The storage of excess nutrients as triglycerides is essential for all organisms to survive when food is scarce; however, the mechanisms by which triglycerides are stored are not completely understood. Genome-wide RNAi screens in Drosophila cells have identified genes involved in mRNA splicing that are important in the regulation of triglyceride storage. Our lab has identified a number of splicing factors important for regulating lipid metabolism; however, the full complement of splicing proteins involved in achieving metabolic homeostasis is unknown. Heterogeneous nuclear ribonucleoproteins (hnRNPs), RNA binding proteins that inhibit the splicing of introns by preventing the assembly of splicing complexes, have no established metabolic functions. To assess any metabolic functions of hnRNPs, we used the GAL4/UAS system to induce RNAi to six hnRNP's: hnRNP-K, rumpelstiltskin (rump), smooth (sm), Hrb27C (also referred to as Hrp48), Hrb98DE, and Hrb87F in the Drosophila fat body. Decreasing the levels of hnRNP-K and rump resulted in a decrease in triglyceride storage, whereas decreasing the levels of sm, Hrb27C, and Hrb98DE resulted in an increase in triglyceride storage. The excess triglyceride phenotype in Hrb27C-RNAi flies resulted from both an increase in the number of fat body cells and the amount of fat stored per cell. In addition, both the splicing of the ß-oxidation gene, CPT1, and the expression of the lipase brummer (bmm) was altered in flies with decreased Hrb27C, providing insight into the lipid storage phenotype in these flies. Together, these results suggest that the hnRNP family of splicing factors have varying metabolic functions and may act on specific metabolic genes to control their expression and processing.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Cuerpo Adiposo/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Lípidos/química , Animales , Recuento de Células , Drosophila melanogaster/citología , Cuerpo Adiposo/citología , Conducta Alimentaria , Glucógeno/metabolismo , Lipasa/metabolismo , Empalme del ARN/genética , Inanición/metabolismo , Triglicéridos/metabolismo
17.
Biochem Biophys Res Commun ; 523(2): 429-433, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31870547

RESUMEN

Polyamines are low molecular weight, organic cations that play a critical role in many major cellular processes including cell cycle regulation and apoptosis, cellular division, tissue proliferation, and cellular differentiation; however, the functions of polyamines in regulating the storage of metabolic fuels such as triglycerides and glycogen is poorly understood. To address this question, we focused on the Drosophila homolog of ornithine decarboxylase (Odc1), the first rate-limiting enzyme in the synthesis of polyamines. Mutants in Odc1 are lethal, but heterozygotes were viable to adulthood. Odc1 heterozygotes appeared larger than their genetic background control flies and consistent with this observation, weighed more than the controls. However, the increased weight was not due to increased food consumption as heterozygotes ate less than the controls. Interestingly, Odc1 heterozygous flies had augmented triglyceride storage, and this lipid phenotype was due to increased triglyceride storage per cell and an increase in the number of fat cells produced. Odc1 heterozygous flies also displayed increased expression of the lipid synthesis genes fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC), suggesting increased lipid synthesis was the cause of the augmented triglyceride phenotype. These results provide a link between the expression of Odc1 and triglyceride storage suggesting that the polyamine pathway plays a role in regulating lipid metabolism.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Ornitina Descarboxilasa/genética , Triglicéridos/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Femenino , Regulación de la Expresión Génica , Heterocigoto , Mutación , Ornitina Descarboxilasa/metabolismo , Triglicéridos/genética
18.
Biochem Biophys Res Commun ; 516(3): 928-933, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31277943

RESUMEN

In Western societies where food is abundant, these excess nutrients are stored as fats mainly in adipose tissue. Fats are stored in structures known as lipid droplets, and a genome-wide screen performed in Drosophila cells has identified several genes that are important for the formation of these droplets. One group of genes found during this screen included those that regulate mRNA splicing. Previous work from our lab has identified some splicing factors that play a role in regulating fat storage; however, the full complement of splicing proteins that regulate lipid metabolism is still unknown. In this study, the levels of a number of serine-arginine (SR) domain containing splicing factors (RSF1, RBP1, RBP1-like, SF2 and Srp-54) were decreased using RNAi in the adult fat body to assess their role in the control of Drosophila metabolism. Decreasing SF2 and RBP1 showed increased triglycerides, while inducing RNAi towards RSF1, RBP1-Like and Srp-54 had no effect on triglycerides. Interestingly, the increased triglyceride phenotype in the SF2-RNAi flies was due to an increase in the amount of fat stored per cell while the RBP1-RNAi flies have more fat cells. In addition, the splicing of the ß-oxidation enzyme, CPT1, was altered in the SF2-RNAi flies potentially promoting the increased triglycerides in these animals. Together, this study identifies novel splicing factors responsible for the regulation of lipid storage in the Drosophila fat body and contributes to our understanding of the mechanisms, which influence the regulation of fat storage in adipose-like cells.


Asunto(s)
Empalme Alternativo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Cuerpo Adiposo/metabolismo , Factores de Empalme de ARN/genética , Tejido Adiposo/metabolismo , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/genética , Longevidad/genética , Factores de Empalme de ARN/antagonistas & inhibidores , Factores de Empalme de ARN/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Triglicéridos/metabolismo
19.
G3 (Bethesda) ; 8(11): 3385-3395, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30249751

RESUMEN

Metabolic state is a potent modulator of sleep and circadian behavior, and animals acutely modulate their sleep in accordance with internal energy stores and food availability. Across phyla, hormones secreted from adipose tissue act in the brain to control neural physiology and behavior to modulate sleep and metabolic state. Growing evidence suggests the fat body is a critical regulator of complex behaviors, but little is known about the genes that function within the fat body to regulate sleep. To identify molecular factors functioning in non-neuronal tissues to regulate sleep, we performed an RNAi screen selectively knocking down genes in the fat body. We found that knockdown of Phosphoribosylformylglycinamidine synthase/Pfas (Ade2), a highly conserved gene involved the biosynthesis of purines, sleep regulation and energy stores. Flies heterozygous for multiple Ade2 mutations are also short sleepers and this effect is partially rescued by restoring Ade2 to the Drosophila fat body. Targeted knockdown of Ade2 in the fat body does not alter arousal threshold or the homeostatic response to sleep deprivation, suggesting a specific role in modulating baseline sleep duration. Together, these findings suggest Ade2 functions within the fat body to promote both sleep and energy storage, providing a functional link between these processes.


Asunto(s)
Ligasas de Carbono-Nitrógeno/fisiología , Drosophila/fisiología , Cuerpo Adiposo/fisiología , Sueño/fisiología , Animales , Femenino , Glucosa/metabolismo , Triglicéridos/metabolismo
20.
Ecol Evol ; 8(8): 4084-4097, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29721282

RESUMEN

Regulation of sleep and metabolic homeostasis is critical to an animal's survival and under stringent evolutionary pressure. Animals display remarkable diversity in sleep and metabolic phenotypes; however, an understanding of the ecological forces that select for, and maintain, these phenotypic differences remains poorly understood. The fruit fly, Drosophila melanogaster, is a powerful model for investigating the genetic regulation of sleep and metabolic function, and screening in inbred fly lines has led to the identification of novel genetic regulators of sleep. Nevertheless, little is known about the contributions of naturally occurring genetic differences to sleep, metabolic phenotypes, and their relationship with geographic or environmental gradients. Here, we quantified sleep and metabolic phenotypes in 24 D. melanogaster populations collected from diverse geographic localities. These studies reveal remarkable variation in sleep, starvation resistance, and energy stores. We found that increased sleep duration is associated with proximity to the equator and elevated average annual temperature, suggesting that environmental gradients strongly influence natural variation in sleep. Further, we found variation in metabolic regulation of sleep to be associated with free glucose levels, while starvation resistance associates with glycogen and triglyceride stores. Taken together, these findings reveal robust naturally occurring variation in sleep and metabolic traits in D. melanogaster, providing a model to investigate how evolutionary and ecological history modulate these complex traits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...