Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(11): e0293879, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37943810

RESUMEN

Science, technology, engineering, mathematics, and medicine (STEMM) fields change rapidly and are increasingly interdisciplinary. Commonly, STEMM practitioners use short-format training (SFT) such as workshops and short courses for upskilling and reskilling, but unaddressed challenges limit SFT's effectiveness and inclusiveness. Education researchers, students in SFT courses, and organizations have called for research and strategies that can strengthen SFT in terms of effectiveness, inclusiveness, and accessibility across multiple dimensions. This paper describes the project that resulted in a consensus set of 14 actionable recommendations to systematically strengthen SFT. A diverse international group of 30 experts in education, accessibility, and life sciences came together from 10 countries to develop recommendations that can help strengthen SFT globally. Participants, including representation from some of the largest life science training programs globally, assembled findings in the educational sciences and encompassed the experiences of several of the largest life science SFT programs. The 14 recommendations were derived through a Delphi method, where consensus was achieved in real time as the group completed a series of meetings and tasks designed to elicit specific recommendations. Recommendations cover the breadth of SFT contexts and stakeholder groups and include actions for instructors (e.g., make equity and inclusion an ethical obligation), programs (e.g., centralize infrastructure for assessment and evaluation), as well as organizations and funders (e.g., professionalize training SFT instructors; deploy SFT to counter inequity). Recommendations are aligned with a purpose-built framework-"The Bicycle Principles"-that prioritizes evidenced-based teaching, inclusiveness, and equity, as well as the ability to scale, share, and sustain SFT. We also describe how the Bicycle Principles and recommendations are consistent with educational change theories and can overcome systemic barriers to delivering consistently effective, inclusive, and career-spanning SFT.


Asunto(s)
Estudiantes , Tecnología , Humanos , Consenso , Ingeniería
2.
Sci Rep ; 10(1): 4277, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152337

RESUMEN

The ε4 allele of apolipoprotein E (APOE) is the dominant genetic risk factor for late-onset Alzheimer's disease (AD). However, the reason for the association between APOE4 and AD remains unclear. While much of the research has focused on the ability of the apoE4 protein to increase the aggregation and decrease the clearance of Aß, there is also an abundance of data showing that APOE4 negatively impacts many additional processes in the brain, including bioenergetics. In order to gain a more comprehensive understanding of APOE4's role in AD pathogenesis, we performed a transcriptomics analysis of APOE4 vs. APOE3 expression in the entorhinal cortex (EC) and primary visual cortex (PVC) of aged APOE mice. This study revealed EC-specific upregulation of genes related to oxidative phosphorylation (OxPhos). Follow-up analysis utilizing the Seahorse platform showed decreased mitochondrial respiration with age in the hippocampus and cortex of APOE4 vs. APOE3 mice, but not in the EC of these mice. Additional studies, as well as the original transcriptomics data, suggest that multiple bioenergetic pathways are differentially regulated by APOE4 expression in the EC of aged APOE mice in order to increase the mitochondrial coupling efficiency in this region. Given the importance of the EC as one of the first regions to be affected by AD pathology in humans, the observation that the EC is susceptible to differential bioenergetic regulation in response to a metabolic stressor such as APOE4 may point to a causative factor in the pathogenesis of AD.


Asunto(s)
Apolipoproteína E4/genética , Encéfalo/metabolismo , Metabolismo Energético/genética , Metaboloma , Mitocondrias/patología , Transcriptoma , Animales , Masculino , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo
3.
iScience ; 19: 326-339, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31404833

RESUMEN

The mechanisms supporting dynamic regulation of CTCF-binding sites remain poorly understood. Here we describe the TET-catalyzed 5-methylcytosine derivative, 5-carboxylcytosine (5caC), as a factor driving new CTCF binding within genomic DNA. Through a combination of in vivo and in vitro approaches, we reveal that 5caC generally strengthens CTCF association with DNA and facilitates binding to suboptimal sequences. Dramatically, profiling of CTCF binding in a cellular model that accumulates genomic 5caC identified ~13,000 new CTCF sites. The new sites were enriched for overlapping 5caC and were marked by an overall reduction in CTCF motif strength. As CTCF has multiple roles in gene expression, these findings have wide-reaching implications and point to induced 5caC as a potential mechanism to achieve differential CTCF binding in cells.

4.
Neurochem Res ; 44(6): 1446-1459, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30291536

RESUMEN

Mutations in the Leucine-rich repeat kinase 2 (LRRK2) gene have been implicated in the pathogenesis of Parkinson's disease (PD). Identification of PD-associated LRRK2 mutations has led to the development of novel animal models, primarily in mice. However, the characteristics of human LRRK2 and mouse Lrrk2 protein have not previously been directly compared. Here we show that proteins from different species have different biochemical properties, with the mouse protein being more stable but having significantly lower kinase activity compared to the human orthologue. In examining the effects of PD-associated mutations and risk factors on protein function, we found that conserved substitutions such as G2019S affect human and mouse LRRK2 proteins similarly, but variation around position 2385, which is not fully conserved between humans and mice, induces divergent in vitro behavior. Overall our results indicate that structural differences between human and mouse LRRK2 are likely responsible for the different properties we have observed for these two species of LRRK2 protein. These results have implications for disease modelling of LRRK2 mutations in mice and on the testing of pharmacological therapies in animals.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Animales , Técnicas de Sustitución del Gen , Células HEK293 , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones , Mutación , Fosforilación/fisiología , Estabilidad Proteica , Proteínas de Unión al GTP rab , Proteínas de Unión al GTP rab1/metabolismo
5.
Cell ; 175(7): 1872-1886.e24, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30449621

RESUMEN

Generation of the "epitranscriptome" through post-transcriptional ribonucleoside modification embeds a layer of regulatory complexity into RNA structure and function. Here, we describe N4-acetylcytidine (ac4C) as an mRNA modification that is catalyzed by the acetyltransferase NAT10. Transcriptome-wide mapping of ac4C revealed discretely acetylated regions that were enriched within coding sequences. Ablation of NAT10 reduced ac4C detection at the mapped mRNA sites and was globally associated with target mRNA downregulation. Analysis of mRNA half-lives revealed a NAT10-dependent increase in stability in the cohort of acetylated mRNAs. mRNA acetylation was further demonstrated to enhance substrate translation in vitro and in vivo. Codon content analysis within ac4C peaks uncovered a biased representation of cytidine within wobble sites that was empirically determined to influence mRNA decoding efficiency. These findings expand the repertoire of mRNA modifications to include an acetylated residue and establish a role for ac4C in the regulation of mRNA translation.


Asunto(s)
Citidina/análogos & derivados , Acetiltransferasa E N-Terminal/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Acetilación , Citidina/genética , Citidina/metabolismo , Células HeLa , Humanos , Acetiltransferasa E N-Terminal/genética , Acetiltransferasas N-Terminal , ARN Mensajero/genética
6.
Sci Rep ; 7(1): 16890, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29203886

RESUMEN

Aging is a biologically universal event, and yet the key events that drive aging are still poorly understood. One approach to generate new hypotheses about aging is to use unbiased methods to look at change across lifespan. Here, we have examined gene expression in the human dorsolateral frontal cortex using RNA- Seq to populate a whole gene co-expression network analysis. We show that modules of co-expressed genes enriched for those encoding synaptic proteins are liable to change with age. We extensively validate these age-dependent changes in gene expression across several datasets including the publically available GTEx resource which demonstrated that gene expression associations with aging vary between brain regions. We also estimated the extent to which changes in cellular composition account for age associations and find that there are independent signals for cellularity and aging. Overall, these results demonstrate that there are robust age-related alterations in gene expression in the human brain and that genes encoding for neuronal synaptic function may be particularly sensitive to the aging process.


Asunto(s)
Envejecimiento , Regulación de la Expresión Génica , Corteza Prefrontal/metabolismo , Sinapsis/metabolismo , Perfilación de la Expresión Génica , Humanos , Longevidad/genética , ARN/química , ARN/aislamiento & purificación , ARN/metabolismo , Análisis de Secuencia de ARN
7.
Mol Neurodegener ; 12(1): 70, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28962651

RESUMEN

BACKGROUND: Early onset Parkinson's disease is caused by variants in PINK1, parkin, and DJ-1. PINK1 and parkin operate in pathways that preserve mitochondrial integrity, but the function of DJ-1 and how it relates to PINK1 and parkin is poorly understood. METHODS: A series of unbiased high-content screens were used to analyze changes at the protein, RNA, and metabolite level in rodent brains lacking DJ-1. Results were validated using targeted approaches, and cellular assays were performed to probe the mechanisms involved. RESULTS: We find that in both rat and mouse brains, DJ-1 knockout results in an age-dependent accumulation of hexokinase 1 in the cytosol, away from its usual location at the mitochondria, with subsequent activation of the polyol pathway of glucose metabolism in vivo. Both in the brain and in cultured cells, DJ-1 deficiency is associated with accumulation of the phosphatase PTEN that antagonizes the kinase AKT. In cells, addition of an inhibitor of AKT (MK2206) or addition of a peptide to dissociate association of hexokinases from mitochondria both inhibit the PINK1/parkin pathway, which works to maintain mitochondrial integrity. CONCLUSION: Hexokinases are an important link between three major genetic causes of early onset Parkinson's disease. Because aging is associated with deregulated nutrient sensing, these results help explain why DJ-1 is associated with age-dependent disease.


Asunto(s)
Hexoquinasa/metabolismo , Enfermedad de Parkinson/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Long-Evans , Transducción de Señal/fisiología
8.
Biochem J ; 474(9): 1547-1558, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28320779

RESUMEN

Autosomal dominant mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with Parkinson's disease (PD). Most pathogenic LRRK2 mutations result in amino acid substitutions in the central ROC (Ras of complex proteins)-C-terminus of ROC-kinase triple domain and affect enzymatic functions of the protein. However, there are several variants in LRRK2, including the risk factor G2385R, that affect PD pathogenesis by unknown mechanisms. Previously, we have shown that G2385R LRRK2 has decreased kinase activity in vitro and altered affinity to LRRK2 interactors. Specifically, we found an increased binding to the chaperone Hsp90 (heat shock protein 90 kDa) that is known to stabilize LRRK2, suggesting that G2385R may have structural effects on LRRK2. In the present study, we further explored the effects of G2385R on LRRK2 in cells. We found that G2385R LRRK2 has lower steady-state intracellular protein levels compared with wild-type LRRK2 due to increased protein turnover of the mutant protein. Mechanistically, this is a consequence of a higher affinity of G2385R compared with the wild-type protein for two proteins involved in proteasomal degradation, Hsc70 and carboxyl-terminus of Hsc70-interacting protein (CHIP). Overexpression of CHIP decreased intracellular protein levels of both G2385R mutant and wild-type LRRK2, while short interfering RNA CHIP knockdown had the opposite effect. We suggest that the G2385R substitution tilts the equilibrium between refolding and proteasomal degradation toward intracellular degradation. The observation of lower steady-state protein levels may explain why G2385R is a risk factor rather than a penetrant variant for inherited PD.


Asunto(s)
Predisposición Genética a la Enfermedad , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación , Enfermedad de Parkinson/genética , Ubiquitina-Proteína Ligasas/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Factores de Riesgo , Ubiquitina-Proteína Ligasas/genética
9.
Front Neurosci ; 11: 702, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29311783

RESUMEN

Possession of the ε4 allele of apolipoprotein E (APOE) is the major genetic risk factor for late-onset Alzheimer's disease (AD). Although numerous hypotheses have been proposed, the precise cause of this increased AD risk is not yet known. In order to gain a more comprehensive understanding of APOE4's role in AD, we performed RNA-sequencing on an AD-vulnerable vs. an AD-resistant brain region from aged APOE targeted replacement mice. This transcriptomics analysis revealed a significant enrichment of genes involved in endosomal-lysosomal processing, suggesting an APOE4-specific endosomal-lysosomal pathway dysregulation in the brains of APOE4 mice. Further analysis revealed clear differences in the morphology of endosomal-lysosomal compartments, including an age-dependent increase in the number and size of early endosomes in APOE4 mice. These findings directly link the APOE4 genotype to endosomal-lysosomal dysregulation in an in vivo, AD pathology-free setting, which may play a causative role in the increased incidence of AD among APOE4 carriers.

10.
Genome Med ; 8(1): 65, 2016 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-27287230

RESUMEN

BACKGROUND: Expression quantitative trait loci (eQTL) analysis is a powerful method to detect correlations between gene expression and genomic variants and is widely used to interpret the biological mechanism underlying identified genome wide association studies (GWAS) risk loci. Numerous eQTL studies have been performed on different cell types and tissues of which the majority has been based on microarray technology. METHODS: We present here an eQTL analysis based on cap analysis gene expression sequencing (CAGEseq) data created from human postmortem frontal lobe tissue combined with genotypes obtained through genotyping arrays, exome sequencing, and CAGEseq. Using CAGEseq as an expression profiling technique combined with these different genotyping techniques allows measurement of the molecular effect of variants on individual transcription start sites and increases the resolution of eQTL analysis by also including the non-annotated parts of the genome. RESULTS: We identified 2410 eQTLs and show that non-coding transcripts are more likely to contain an eQTL than coding transcripts, in particular antisense transcripts. We provide evidence for how previously identified GWAS loci for schizophrenia (NRGN), Parkinson's disease, and Alzheimer's disease (PARK16 and MAPT loci) could increase the risk for disease at a molecular level. Furthermore, we demonstrate that CAGEseq improves eQTL analysis because variants obtained from CAGEseq are highly enriched for having a functional effect and thus are an efficient method towards the identification of causal variants. CONCLUSION: Our data contain both coding and non-coding transcripts and has the added value that we have identified eQTLs for variants directly adjacent to TSS. Future eQTL studies would benefit from combining CAGEseq with RNA sequencing for a more complete interpretation of the transcriptome and increased understanding of eQTL signals.


Asunto(s)
Lóbulo Frontal/química , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Sitios de Carácter Cuantitativo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Bases de Datos Genéticas , Femenino , Variación Genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas , Adulto Joven
11.
RNA Biol ; 13(1): 15-24, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26669816

RESUMEN

Adenosine deaminases bind double stranded RNA and convert adenosine to inosine. Editing creates multiple isoforms of neurotransmitter receptors, such as with Gria2. Adar2 KO mice die of seizures shortly after birth, but if the Gria2 Q/R editing site is mutated to mimic the edited version then the animals are viable. We performed RNA-Seq on frontal cortices of Adar2(-/-) Gria2(R/R) mice and littermates. We found 56 editing sites with significantly diminished editing levels in Adar2 deficient animals with the majority in coding regions. Only two genes and 3 exons showed statistically significant differences in expression levels. This work illustrates that ADAR2 is important in site-specific changes of protein coding sequences but has relatively modest effects on gene expression and splicing in the adult mouse frontal cortex.


Asunto(s)
Adenosina Desaminasa/metabolismo , Expresión Génica , Empalme del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ARN/métodos , Adenosina Desaminasa/genética , Animales , Lóbulo Frontal/metabolismo , Técnicas de Inactivación de Genes , Ratones , Mutación , Edición de ARN , Proteínas de Unión al ARN/genética
12.
Int Rev Neurobiol ; 116: 233-50, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25172477

RESUMEN

The transcriptome changes hugely during development of the brain. Whole genes, alternate exons, and single base pair changes related to RNA editing all show differences between embryonic and mature brain. Collectively, these changes control proteomic diversity as the brain develops. Additionally, there are many changes in noncoding RNAs (miRNA and lncRNA) that interact with mRNA to influence the overall transcriptional landscape. Here, we will discuss what is known about such changes in brain development, particularly focusing on high-throughput approaches and how those can be used to infer mechanisms by which gene expression is controlled in the brain as it matures.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Transcriptoma/fisiología , Animales , Secuencia de Bases , Expresión Génica/fisiología , Humanos , Empalme del ARN
13.
PLoS One ; 9(4): e94646, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24722488

RESUMEN

Mitochondrial DNA damage is thought to be a causal contributor to aging as mice with inactivating mutations in polymerase gamma (Polg) develop a progeroid phenotype. To further understand the molecular mechanisms underlying this phenotype, we used iTRAQ and RNA-Seq to determine differences in protein and mRNA abundance respectively in the brains of one year old Polg mutator mice compared to control animals. We found that mitochondrial respiratory chain proteins are specifically decreased in abundance in the brains of the mutator mice, including several nuclear encoded mitochondrial components. However, we found no evidence that the changes we observed in protein levels were the result of decreases in mRNA expression. These results show that there are post-translational effects associated with mutations in Polg.


Asunto(s)
Encéfalo/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Transporte de Electrón/genética , Biosíntesis de Proteínas/fisiología , Animales , ADN Polimerasa gamma , ADN Mitocondrial/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Fenotipo
14.
Nat Neurosci ; 16(4): 499-506, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23416452

RESUMEN

The complexity of the adult brain is a result of both developmental processes and experience-dependent circuit formation. One way to look at the differences between embryonic and adult brain is to examine gene expression. Previous studies have used microarrays to address this in a global manner. However, the transcriptome is more complex than gene expression levels alone, as alternative splicing and RNA editing generate a diverse set of mature transcripts. Here we report a high-resolution transcriptome data set of mouse cerebral cortex at embryonic and adult stages using RNA sequencing (RNA-Seq). We found many differences in gene expression, splicing and RNA editing between embryonic and adult cerebral cortex. Each data set was validated technically and biologically, and in each case we found our RNA-Seq observations to have predictive validity. We provide this data set and analysis as a resource for understanding gene expression in the embryonic and adult cerebral cortex.


Asunto(s)
Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Edición de ARN/fisiología , Empalme del ARN/fisiología , ARN Mensajero/biosíntesis , Factores de Edad , Animales , Corteza Cerebral/fisiología , Femenino , Ratones , Ratones Endogámicos C57BL , Embarazo , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...