Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(24): 31513-31523, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38840440

RESUMEN

Designing two-dimensional (2D) heterojunctions with rapid response and minimal energy consumption holds immense significance for the advancement of the next generation of electronic devices. Here, we construct a series of Schottky heterojunctions based on TiB4 monolayer and group-IV monochalcogenide monolayers MX (M = Ge, Sn; X = S, Se, Te). Using first-principles calculations, we investigate the structural stability, Schottky contact barrier, tunneling probability, and optical properties of MX/TiB4 heterojunctions. The calculated binding energies reveal that X-type MX/TiB4 heterojunctions exhibit more stable structures than M- and C-type stacking modes. Schottky barrier heights (SBHs) indicate that X-type GeSe/TiB4 and GeTe/TiB4 form n-type Schottky contacts with SBHs of 0.497 and 0.132 eV, respectively, while SnS/TiB4 and SnSe/TiB4 form p-type Schottky contacts with SBHs of 0.557 and 0.418 eV, respectively. Moreover, X-type MX/TiB4 heterojunctions exhibit high susceptibility to interlayer electron tunneling due to their large tunneling probability and strong interlayer interaction. Meanwhile, enhanced optical absorption capacity in MX/TiB4 heterojunctions is also observed compared with individual TiB4 and MX monolayers. By applying in-plane biaxial strain, the transformation of MX/TiB4 heterojunctions from a Schottky contact to an Ohmic contact can also be realized. Our findings could offer valuable candidate materials and guidance for the design of the next generation of nanodevices with high electronic and optical performances.

2.
J Phys Chem Lett ; 15(17): 4593-4601, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38639727

RESUMEN

Graphdiyne (GDY) is an appealing two-dimensional carbon material, but the on-surface synthesis of a single layer remains challenging. Demetalation of well-crystalline metal acetylide networks, though in its infancy, provides a new avenue to on-surface synthesized GDY substructures. In spite of the synthetic efforts and theoretical concerns, there are few reports steeped in elaborate characterization of the electronic influence of metalation. In this context, we focused on the surface supported Au-bis-acetylide network, which underwent demetalation after further annealing to form hydrogen-substituted GDY. We made a comprehensive study on the geometric structure and electronic structure and the corresponding demetalized structure on Au(111) through STM, noncontact atomic force microscopy (nc-AFM), scanning tunneling spectroscopy (STS), and density functional theory (DFT) simulations. The bandgap of the Au-bis-acetylide network on Au(111) is measured to be 2.7 eV, while the bandgap of a fully demetalized Au-bis-acetylide network is estimated to be about 4.1 eV. Our findings reveal that the intercalated Au adatoms are positioned closer to the metal surface compared with the organic skeletons, facilitating electronic hybridization between the surface state and unoccupied frontier molecular orbitals of organic components. This leads to an extended conjugation through Au-bis-acetylene bonds, resulting in a reduced bandgap.

3.
Nano Lett ; 24(7): 2345-2351, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38334460

RESUMEN

Nonvolatile multistate manipulation of two-dimensional (2D) magnetic materials holds promise for low dissipation, highly integrated, and versatile spintronic devices. Here, utilizing density functional theory calculations and Monte Carlo simulations, we report the realization of nonvolatile and multistate control of topological magnetism in monolayer CrI3 by constructing multiferroic heterojunctions with quadruple-well ferroelectric (FE) materials. The Pt2Sn2Te6/CrI3 heterojunction exhibits multiple magnetic phases upon modulating FE polarization states of FE layers and interlayer sliding. These magnetic phases include Bloch-type skyrmions and ferromagnetism, as well as a newly discovered topological magnetic structure. We reveal that the Dzyaloshinskii-Moriya interaction (DMI) induced by interfacial coupling plays a crucial role in magnetic skyrmion manipulation, which aligns with the Fert-Levy mechanism. Moreover, a regular magnetic skyrmion lattice survives when removing a magnetic field, demonstrating its robustness. The work sheds light on an effective approach to nonvolatile and multistate control of 2D magnetic materials.

4.
Small Methods ; 8(2): e2300223, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37330642

RESUMEN

Perovskite solar cells (PSCs) have shown rapid development recently, whereas nonideal stability remains the chief obstacle toward commercialization. Thus, it is of utmost importance to probe the degradation pathway for the entire device. Here, the extrinsic stability of inverted PSCs (IPSCs) is investigated by using standard shelf-life testing based on the International Summit on Organic Photovoltaic Stability protocols (ISOS-D-1). During the long-term assessment of 1700 h, the degraded power conversion efficiency is mainly caused by the fill factor (53% retention) and short-circuit current density (71% retention), while the open-circuit voltage still maintains 97% of the initial values. Further absorbance evolution and density functional theory calculations disclose that the perovskite rear-contact side, in particular for the perovskite/fullerene interface, is the predominant degradation pathway. This study contributes to understanding the aging mechanism and enhancing the durability of IPSCs for future applications.

5.
Commun Chem ; 6(1): 270, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38082090

RESUMEN

Adatom engineering represents a highly promising opportunity for enhancing electrochemical CO reduction reaction (CORR). However, the aggregation of adatoms under typical reaction conditions often leads to a decline in catalyst activity. Recent studies have revealed that N-heterocyclic carbene (NHC) can stabilize surface adatoms. Herein, based on density functional theory calculations, we reveal a significant enhancement in the catalytic activity of Cu adatoms decorated with NHC molecules for CORR. The NHC decoration strengthens the interaction between the dxy orbital of the Cu adatom and the px orbital of the C atom, reducing the energy barriers in both CO hydrogenation and C-C coupling steps. Moreover, the CORR catalytic activity of the NHC decorated adatom can be further improved by tuning the side groups of NHC molecules. These results provide insights for the design of efficient CORR catalysts and offer a theoretical framework that can be extended to other hydrogenation reactions.

6.
J Phys Chem B ; 127(44): 9543-9549, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37879071

RESUMEN

Bimetallic Janus nanoparticles (BJNPs) have gained more attention due to their unique catalytic and optical properties. The self-assembly of BJNPs is expected as an effective way to fabricate metamaterials suitable for different potential applications. However, the self-assembly dynamic process of BJNPs, which is key to achieving a controllable synthesis, is limited in both experimental and theoretical investigations. Herein, all-atom molecular dynamics (MD) simulations were employed to investigate the self-assembly process of 1-dodecanethiol (DDT)-decorated Au-Ag BJNPs at an oil-water interface. We demonstrate that DDT's van der Waals (vdW) interaction dominates the self-assembly process. BJNPs form close-packed structures at both fast and slow evaporation rates. Au-Ag BJNPs exhibit relatively larger rotations at a low evaporation rate than those at a high evaporation rate, suggesting that the evaporation rate influences the orientation of the Au-Ag BJNPs. BJNPs tend to orient their electric dipole moments toward the external electric field, according to the ab initio MD simulation results. Based on the energy comparison and model analysis, it is found that the parallel array is more stable than the antiparallel one for the Au-Ag BJNP arrays. The dipole-dipole interaction difference between the parallel and antiparallel BJNP arrays obtained according to dipole moment obtained from ab initio calculation is qualitatively consistent with that obtained from MD simulations, indicating that the dipole plays a decisive role in determining the orientation of the BJNP array. This work uncovers the self-assembly dynamic process of BJNPs, paving the way for future applications.

7.
J Phys Condens Matter ; 36(5)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37871601

RESUMEN

Copper selenide (Cu2Se) has attracted significant attention due to the extensive applications in thermoelectric and optoelectronic devices over the last few decades. Among various phase structures of Cu2Se, layered Cu2Se exhibits unique properties, such as purely thermal phase transition, high carrier mobility, high optical absorbance and high photoconductivity. Herein, we carry out a systematic investigation for the electronic structures of layered Cu2Se with several exchange-correlation functionals at different levels through first-principle calculations. It can be found that the electronic structures of layered Cu2Se are highly sensitive to the choice of functionals, and the correction of on-site Coulomb interaction also has a noticeable influence. Comparing with the results calculated with hybrid functional and G0W0method, it is found that the electronic structures calculated with LDA +Ufunctional are relatively accurate for layered Cu2Se. In addition, the in-plane biaxial strain can lead to the transition of electronic properties from metal to semiconductor in the layered Cu2Se, attributed to the change of atomic orbital hybridization. Furthermore, we explore the spin-orbit coupling (SOC) effect of Cu2Se and find that the weak SOC effect on electronic structures mainly results from spatial inversion symmetry of Cu2Se. These findings provide valuable insights for further investigation on this compound.

8.
Nat Commun ; 14(1): 6689, 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865633

RESUMEN

Interlayer decoupling plays an essential role in realizing unprecedented properties in atomically thin materials, but it remains relatively unexplored in the bulk. It is unclear how to realize a large crystal that behaves as its monolayer counterpart by artificial manipulation. Here, we construct a superlattice consisting of alternating layers of NbSe2 and highly porous hydroxide, as a proof of principle for realizing interlayer decoupling in bulk materials. In (NaOH)0.5NbSe2, the electric decoupling is manifested by an ideal 1D insulating state along the interlayer direction. Vibration decoupling is demonstrated through the absence of interlayer models in the Raman spectrum, dominant local modes in heat capacity, low interlayer coupling energy and out-of-plane thermal conductivity (0.28 W/mK at RT) that are reduced to a few percent of NbSe2's. Consequently, a drastic enhancement of CDW transition temperature (>110 K) and Pauling-breaking 2D superconductivity is observed, suggesting that the bulk crystal behaves similarly to an exfoliated NbSe2 monolayer. Our findings provide a route to achieve intrinsic 2D properties on a large-scale without exfoliation.

10.
Science ; 381(6657): 558-563, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37535726

RESUMEN

Hafnium oxide-based ferroelectric materials are promising candidates for next-generation nanoscale devices because of their ability to integrate into silicon electronics. However, the intrinsic high coercive field of the fluorite-structure oxide ferroelectric devices leads to incompatible operating voltage and limited endurance performance. We discovered a complementary metal-oxide semiconductor (CMOS)-compatible rhombohedral ferroelectric Hf(Zr)1+xO2 material rich in hafnium-zirconium [Hf(Zr)]. X-ray diffraction combined with scanning transmission electron microscopy reveals that the excess Hf(Zr) atoms intercalate within the hollow sites. We found that the intercalated atoms expand the lattice and increase the in-plane and out-of-plane stresses, which stabilize both the rhombohedral phase (r-phase) and its ferroelectric properties. Our ferroelectric devices, which are based on the r-phase Hf(Zr)1+xO2, exhibit an ultralow coercive field (~0.65 megavolts per centimeter). Moreover, we achieved a high endurance of more than 1012 cycles at saturation polarization. This material discovery may help to realize low-cost and long-life memory chips.

11.
Chem Commun (Camb) ; 59(70): 10556-10559, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37578117

RESUMEN

Transition metal dichalcogenides (TMDs) have attracted intensive research interest due to their diverse properties. However, ferromagnetism is not observed in layered TMDs, except for monolayer VSe2. In this study, we report the synthesis of a bulk ferromagnetic material (LiOH)0.1VS2 based on topochemical reactions. The results demonstrate that the (LiOH)0.1VS2 crystal exhibits strong anisotropic ferromagnetism below a critical temperature of 40 K. Calculations uncover that the in-plane strains in a VS2 superlattice can induce large magnetic anisotropic energy, which stabilizes the long-range ferromagnetic order. The findings provide a new approach to induce ferromagnetism in bulk TMD materials.

12.
Phys Rev Lett ; 131(1): 016201, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37478456

RESUMEN

In twisted h-BN/graphene heterostructures, the complex electronic properties of the fast-traveling electron gas in graphene are usually considered to be fully revealed. However, the randomly twisted heterostructures may also have unexpected transition behaviors, which may influence the device performance. Here, we study the twist-angle-dependent coupling effects of h-BN/graphene heterostructures using monochromatic electron energy loss spectroscopy. We find that the moiré potentials alter the band structure of graphene, resulting in a redshift of the intralayer transition at the M point, which becomes more pronounced up to 0.22 eV with increasing twist angle. Furthermore, the twisting of the Brillouin zone of h-BN relative to the graphene M point leads to tunable vertical transition energies in the range of 5.1-5.6 eV. Our findings indicate that twist-coupling effects of van der Waals heterostructures should be carefully considered in device fabrications, and the continuously tunable interband transitions through the twist angle can serve as a new degree of freedom to design optoelectrical devices.

13.
J Am Chem Soc ; 145(31): 17435-17442, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37524115

RESUMEN

All two-dimensional (2D) materials of group IV elements from Si to Pb are stabilized by carrier doping and interface bonding from substrates except graphene which can be free-standing. The involvement of strong hybrid of bonds, adsorption of exotic atomic species, and the high concentration of crystalline defects are often unavoidable, complicating the measurement of the intrinsic properties. In this work, we report the discovery of seven kinds of hitherto unreported bulk compounds (RO)nPb (R = rare earth metals, n = 1,2), which consist of quasi-2D Pb square nets that are spatially and electronically detached from the [RO]δ+ blocking layers. The band structures of these compounds near Fermi levels are relatively clean and dominantly contributed by Pb, resembling the electron-doped free-standing Pb monolayer. The R2O2Pb compounds are metallic at ambient pressure and become superconductors under high pressures with much enhanced critical fields. In particular, Gd2O2Pb (9.1 µB/Gd) exhibits an interesting bulk response of lattice distortion in conjunction with the emergence of superconductivity and magnetic anomalies at a critical pressure of 10 GPa. Our findings reveal the unexpected facets of 2D Pb sheets that are considerably different from their bulk counterparts and provide an alternative route for exploring 2D properties in bulk materials.

14.
Nanoscale ; 15(21): 9365-9371, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37170619

RESUMEN

The auxetic effect in two-dimensional (2D) materials can not only enhance their mechanical properties but also brings additional tunability of their physical properties. Here, we employ density-functional-theory calculations to report on a class of auxetic 2D magnets, namely, the squarely packed transition metal dichlorides MCl2 (M = Ti, V, Mn, Fe, Co, Ni). These magnets are dynamically stable and exhibit an intrinsic in-plane auxetic effect. Meanwhile, the transition metal disulfides MS2 (M = V, Cr, Mn) with the same crystal structure exhibit a positive Poisson's ratio. This indicates that the auxetic effect in MCl2 is not merely dominated by the crystal structure. We attribute the occurrence of such auxetic behavior to the weak bond stiffness governed by electronic coupling between nearest-neighboring atoms. We find that magnetic ordering of 2D magnets with an auxetic effect is robust under external strain due to the protection of super-exchange interaction coming from the auxetic effect. Super-exchange interaction is sensitive to the symmetry of the crystal structure while the auxetic effect can mitigate the variation of such symmetry. The abundant magnetic properties in combination with the auxetic effect exhibit potential for novel nanodevice applications.

15.
Nano Lett ; 23(10): 4634-4641, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37146245

RESUMEN

Databases for charge-neutral two-dimensional (2D) building blocks (BBs), i.e., 2D materials, have been built for years due to their applications in nanoelectronics. Though lots of solids are constructed from charged 2DBBs, a database for them is still missing. Here, we identify 1028 charged 2DBBs from Materials Project database using a topological-scaling algorithm. These BBs host versatile functionalities including superconductivity, magnetism, and topological properties. We construct layered materials by assembling these BBs considering valence state and lattice mismatch and predict 353 stable layered materials by high-throughput density functional theory calculations. These materials can not only inherit their functionalities but also show enhanced/emergent properties compared with their parent materials: CaAlSiF displays superconducting transition temperature higher than NaAlSi; Na2CuIO6 shows bipolar ferromagnetic semiconductivity and anomalous valley Hall effect that are absent in KCuIO6; LaRhGeO possesses nontrivial band topology. This database expands the design space of functional materials for fundamental research and potential applications.

16.
J Phys Chem B ; 127(10): 2258-2266, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36864775

RESUMEN

The self-assembly of nanoparticles (NPs) into ordered superlattices is a powerful strategy to fabricate functional nanomaterials. Subtle variations in the interactions between NPs will influence the self-assembled superlattices. Using all-atom molecular dynamics simulations, we explore the self-assembly of 16 gold NPs, 4 nm in diameter, capped with ligands at the oil-water interface, and quantify the interactions between NPs at the atomic scale. We demonstrate that the interaction between capping ligands rather than that between NPs is dominant during the assembly process. For dodecanethiol (DDT)-capped Au NPs, the assembled superlattice is highly ordered in a close-packed configuration at a slow evaporation rate, while it is disordered at a fast evaporation rate. When replacing the capping ligands with stronger polarization than DDT molecules, the NPs form a robust ordered configuration at different evaporation rates due to the stronger electrostatic attraction between capping ligands from different NPs. Moreover, Au-Ag binary clusters exhibit similar assembly behavior with Au NPs. Our work uncovers the nonequilibrium nature of NP assembly at the atomic scale and would be helpful in rationally controlling NPs superlattice by changing passivating ligands, solvent evaporation rate, or both.

17.
Nat Mater ; 22(5): 612-618, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36928385

RESUMEN

Correlation of lattice vibrational properties with local atomic configurations in materials is essential for elucidating functionalities that involve phonon transport in solids. Recent developments in vibrational spectroscopy in a scanning transmission electron microscope have enabled direct measurements of local phonon modes at defects and interfaces by combining high spatial and energy resolution. However, pushing the ultimate limit of vibrational spectroscopy in a scanning transmission electron microscope to reveal the impact of chemical bonding on local phonon modes requires extreme sensitivity of the experiment at the chemical-bond level. Here we demonstrate that, with improved instrument stability and sensitivity, the specific vibrational signals of the same substitutional impurity and the neighbouring carbon atoms in monolayer graphene with different chemical-bonding configurations are clearly resolved, complementary with density functional theory calculations. The present work opens the door to the direct observation of local phonon modes with chemical-bonding sensitivity, and provides more insights into the defect-induced physics in graphene.

18.
J Am Chem Soc ; 145(13): 7113-7122, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36951270

RESUMEN

Cobalt-based catalysts have been widely used for Fischer-Tropsch synthesis (FTS) in industry; however, achieving rational catalyst design at the atomic level and thereby a higher activity and more long-chain-hydrocarbon products simultaneously remain an attractive and difficult challenge. The dual-atomic-site catalysts with unique electronic and geometric interface interactions offer a great opportunity for exploiting advanced FTS catalysts with improved performance. Herein, we designed a Ru1Zr1/Co catalyst with Ru and Zr dual atomic sites on the Co nanoparticle (NP) surface through a metal-organic-framework-mediated synthesis strategy which presents greatly enhanced FTS activity (high turnover frequency of 3.8 × 10-2 s-1 at 200 °C) and C5+ selectivity (80.7%). Control experiments presented a synergic effect between Ru and Zr single-atom site on Co NPs. Further density functional theory calculations of the chain growth process from C1 to C5 revealed that the designed Ru/Zr dual sites remarkably lower the rate-limiting barriers due to the significantly weakened C-O bond and promote the chain growth processes, resulting in the greatly boosted FTS performance. Therefore, our work demonstrates the effectiveness of dual-atomic-site design in promoting the FTS performance and provides new opportunities for developing efficient industrial catalysts.

19.
Nat Commun ; 14(1): 1018, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823140

RESUMEN

Stacking two-dimensional layered materials such as graphene and transitional metal dichalcogenides with nonzero interlayer twist angles has recently become attractive because of the emergence of novel physical properties. Stacking of one-dimensional nanomaterials offers the lateral stacking offset as an additional parameter for modulating the resulting material properties. Here, we report that the edge states of twisted bilayer zigzag graphene nanoribbons (TBZGNRs) can be tuned with both the twist angle and the stacking offset. Strong edge state variations in the stacking region are first revealed by density functional theory (DFT) calculations. We construct and characterize twisted bilayer zigzag graphene nanoribbon (TBZGNR) systems on a Au(111) surface using scanning tunneling microscopy. A detailed analysis of three prototypical orthogonal TBZGNR junctions exhibiting different stacking offsets by means of scanning tunneling spectroscopy reveals emergent near-zero-energy states. From a comparison with DFT calculations, we conclude that the emergent edge states originate from the formation of flat bands whose energy and spin degeneracy are highly tunable with the stacking offset. Our work highlights fundamental differences between 2D and 1D twistronics and spurs further investigation of twisted one-dimensional systems.

20.
ACS Nano ; 17(3): 2450-2459, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36716185

RESUMEN

Self-intercalation of native magnetic atoms within the van der Waals (vdW) gap of layered two-dimensional (2D) materials provides a degree of freedom to manipulate magnetism in low-dimensional systems. Among various vdW magnets, the vanadium telluride is an interesting system to explore the interlayer order-disorder transition of magnetic impurities due to its flexibility in taking nonstoichiometric compositions. In this work, we combine high-resolution scanning transmission electron microscopy (STEM) analysis with density functional theory (DFT) calculations and magnetometry measurements, to unveil the local atomic structure and magnetic behavior of V-rich V1+xTe2 nanoplates with embedded V3Te4 nanoclusters grown by chemical vapor deposition (CVD). The segregation of V intercalations locally stabilizes the self-intercalated V3Te4 magnetic phase, which possesses a distorted 1T'-like monoclinic structure. This phase transition is controlled by the electron doping from the intercalant V ions. The magnetic hysteresis loops show that the nanoplates exhibit superparamagnetism, while the temperature-dependent magnetization curves evidence a collective superspin-glass magnetic behavior of the nanoclusters at low temperature. Using four-dimensional (4D) STEM diffraction imaging, we reveal the formation of collective diffuse magnetic domain structures within the sample under the high magnetic fields inside the electron microscope. Our results shed light on the studies of dilute magnetism at the 2D limit and on strategies for the manipulation of magnetism for spintronic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...