Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(2): 125, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336839

RESUMEN

Anaplastic thyroid carcinoma (ATC) has a 100% disease-specific mortality rate. The JAK1/2-STAT3 pathway presents a promising target for treating hematologic and solid tumors. However, it is unknown whether the JAK1/2-STAT3 pathway is activated in ATC, and the anti-cancer effects and the mechanism of action of its inhibitor, ruxolitinib (Ruxo, a clinical JAK1/2 inhibitor), remain elusive. Our data indicated that the JAK1/2-STAT3 signaling pathway is significantly upregulated in ATC tumor tissues than in normal thyroid and papillary thyroid cancer tissues. Apoptosis and GSDME-pyroptosis were observed in ATC cells following the in vitro and in vivo administration of Ruxo. Mechanistically, Ruxo suppresses the phosphorylation of STAT3, resulting in the repression of DRP1 transactivation and causing mitochondrial fission deficiency. This deficiency is essential for activating caspase 9/3-dependent apoptosis and GSDME-mediated pyroptosis within ATC cells. In conclusion, our findings indicate DRP1 is directly regulated and transactivated by STAT3; this exhibits a novel and crucial aspect of JAK1/2-STAT3 on the regulation of mitochondrial dynamics. In ATC, the transcriptional inhibition of DRP1 by Ruxo hampered mitochondrial division and triggered apoptosis and GSDME-pyroptosis through caspase 9/3-dependent mechanisms. These results provide compelling evidence for the potential therapeutic effectiveness of Ruxo in treating ATC.


Asunto(s)
Nitrilos , Pirazoles , Pirimidinas , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Carcinoma Anaplásico de Tiroides/genética , Carcinoma Anaplásico de Tiroides/metabolismo , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Dinámicas Mitocondriales , Piroptosis , Caspasa 9/metabolismo , Proliferación Celular , Línea Celular Tumoral , Apoptosis
2.
Adv Sci (Weinh) ; 10(27): e2207394, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37485647

RESUMEN

The robust and stable expression of CD38 in T-cell acute lymphoblastic leukemia (T-ALL) blasts makes CD38 chimeric antigen receptor (CAR)-T/natural killer (NK) a potential therapy for T-ALL. However, CD38 expression in normal T/NK cells causes fratricide of CD38 CAR-T/NK cells. Here a "2-in-1" gene editing strategy is developed to generate fratricide-resistant locus-specific CAR-T/NK cells. CD38-specific CAR is integrated into the disrupted CD38 locus by CRISPR/Cas9, and CAR is placed under the control of either endogenous CD38 promoter (CD38KO/KI ) or exogenous EF1α promoter (CD38KO/KI EF1α). CD38 knockout reduces fratricide and allows the expansion of CAR-T cells. Meanwhile, CD38KO/KI EF1α results in higher CAR expression than CD38KO/KI in both CAR-T and CAR-NK cells. In a mouse T-ALL model, CD38KO/KI EF1α CAR-T cells eradicate tumors better than CD38KO/KI CAR-T cells. Surprisingly, CD38KO/KI CAR-NK cells show superior tumor control than CD38KO/KI EF1α CAR-NK cells. Further investigation reveals that endogenous regulatory elements in NK cells lead to higher expression of CD38 CAR than in T cells, and the expression levels of CAR affect the therapeutic outcome of CAR-T and CAR-NK cells differently. Therefore, these results support the efficacy of CD38 CAR-T/NK against T-ALL and demonstrate that the "2-in-1" strategy can resolve fratricide and enhance tumor eradication, paving the way for clinical translation.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores Quiméricos de Antígenos , Animales , Ratones , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Inmunoterapia Adoptiva/métodos , Línea Celular Tumoral , Células Asesinas Naturales
3.
Leukemia ; 37(8): 1660-1670, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37391486

RESUMEN

CAR-T therapies to treat T-cell malignancies face unique hurdles. Normal and malignant T cells usually express the same target for CAR, leading to fratricide. CAR-T cells targeting CD7, which is expressed in various malignant T cells, have limited expansion due to fratricide. Using CRISPR/Cas9 to knockout CD7 can reduce the fratricide. Here we developed a 2-in-1 strategy to insert EF1α-driven CD7-specific CAR at the disrupted CD7 locus and compared it to two other known strategies: one was random integration of CAR by a retrovirus and the other was site-specific integration at T-cell receptor alpha constant (TRAC) locus, both in the context of CD7 disruption. All three types of CD7 CAR-T cells with reduced fratricide could expand well and displayed potent cytotoxicity to both CD7+ tumor cell lines and patient-derived primary tumors. Moreover, EF1α-driven CAR expressed at the CD7 locus enhances tumor rejection in a mouse xenograft model of T-cell acute lymphoblastic leukemia (T-ALL), suggesting great clinical application potential. Additionally, this 2-in-1 strategy was adopted to generate CD7-specific CAR-NK cells as NK also expresses CD7, which would prevent contamination from malignant cells. Thus, our synchronized antigen-knockout CAR-knockin strategy could reduce the fratricide and enhance anti-tumor activity, advancing clinical CAR-T treatment of T-cell malignancies.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/metabolismo , Inmunoterapia Adoptiva , Células Asesinas Naturales/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Línea Celular Tumoral
4.
Mol Ther ; 31(1): 35-47, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36045585

RESUMEN

CD19-targeting chimeric antigen receptors (CARs) with CD28 and CD3ζ signaling domains have been approved by the US FDA for treating B cell malignancies. Mutation of immunoreceptor tyrosine-based activation motifs (ITAMs) in CD3ζ generated a single-ITAM containing 1XX CAR, which displayed superior antitumor activity in a leukemia mouse model. Here, we investigated whether the 1XX design could enhance therapeutic potency against solid tumors. We constructed both CD19- and AXL-specific 1XX CARs and compared their in vitro and in vivo functions with their wild-type (WT) counterparts. 1XX CARs showed better antitumor efficacy in both pancreatic and melanoma mouse models. Detailed analysis revealed that 1XX CAR-T cells persisted longer in vivo and had a higher percentage of central memory cells. With fluorescence resonance energy transfer (FRET)-based biosensors, we found that decreased ITAM numbers in 1XX resulted in similar 70-kDa zeta chain-associated protein (ZAP70) activation, while 1XX induced higher Ca2+ elevation and faster extracellular signal-regulated kinase (Erk) activation than WT CAR. Thus, our results confirmed the superiority of 1XX against two targets in different solid tumor models and shed light on the underlying molecular mechanism of CAR signaling, paving the way for the clinical applications of 1XX CARs against solid tumors.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Linfocitos T , Animales , Ratones , Antígenos CD28/genética , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/antagonistas & inhibidores , Receptores Quiméricos de Antígenos/química , Receptores Quiméricos de Antígenos/genética , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias/terapia
5.
Comput Math Organ Theory ; 28(4): 352-389, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211194

RESUMEN

The 2019 coronavirus disease (COVID-19) epidemic has caused serious disruptions in food supply networks. Based on the case of the remerging epidemic in China, this paper aims to investigate food supply network disruption and its mitigation from technical and structural perspectives. To solve the optimal policy choice problem that how to improve mitigation capability of food supply networks by using traceability technology and adjusting network structure, the occurrence mechanism of food supply network disruptions is revealed through a case study of the remerging COVID-19 outbreak in Beijing's Xinfadi market. Five typical traceability solutions are proposed to mitigate network disruptions and their technical attributes are analyzed to establish disruption mitigation models. The structure of food supply networks is also controlled to mitigate disruptions. The structural attributes of three fundamental networks are extracted to adjust the network connections pattern in disruption mitigation models. Next, simulation experiments involving the disruption mitigation models are carried out to explore the independent and joint effects of traceability technology and network structure on mitigation capability. The findings suggest that accuracy makes a more positive effect on the mitigation capability of food supply networks than timeliness due to the various technical compositions behind them; the difference between these effects determines the choice decision of supply networks on traceability solution types. Likewise, betweenness centralization makes a positive effect but degree centralization makes a negative effect on mitigation capability because intermediary firms and focal firms in food supply networks have different behavior characteristics; these effects are both regulated by supply network types and exhibit different sensitivities. As for the joint effect of technical and structural attributes on mitigation capability, the joint effect of accuracy and betweenness centralization is bigger than the independent effects but smaller than their sum; the joint effect of timeliness and betweenness centralization depends on networks type; while the positive effect of accuracy or timeliness on mitigation capability is greater than the negative effect of degree centralization; theses joint effects are caused by the complicated interactive effects between technical composition and behaviors of intermediary firms or focal firms. These findings contribute to disruption management and decision-making theories and practices.

6.
ACS Synth Biol ; 11(8): 2726-2740, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35877551

RESUMEN

The ribosome binding site (RBS) is a crucial element regulating translation. However, the activity of RBS is poorly predictable, because it is strongly affected by the local possible secondary structure, that is, context dependence. By the Flowseq technique, over 20 000 RBS variants were sorted and sequenced, and the translation of multiple genes under the same RBS was quantitatively characterized to evaluate the context dependence of each RBS variant in E. coli. Two regions, (-7 to -2) and (-17 to -12), of RBS were predicted with a higher possibility to pair with each other to slow down the translation initiation. Associations between phenotypes and the intrinsic factors suspected to affect translation efficiency and context dependence of the RBS, including nucleotide bias at each position, free energy, and conservation, were disentangled. The results showed that translation efficiency was influenced more significantly by conservation of the SD region (-16 to -8), while an AC-rich spacer region (-7 to -1) was associated with low context dependence. We confirmed these characteristics using a series of synthesized RBSs. The average correlation between multiple reporters was significantly higher for RBSs with an AC-rich spacer (0.714) compared with a GU-rich spacer (0.286). Overall, we proposed general design criteria to improve programmability and minimize context dependence of RBS. The characteristics unraveled here can be adapted to other bacteria for fine-tuning target-gene expression.


Asunto(s)
Escherichia coli , Ribosomas , Bacterias/genética , Secuencia de Bases , Sitios de Unión/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Biosíntesis de Proteínas/genética , Ribosomas/metabolismo
7.
Synth Syst Biotechnol ; 7(4): 1046-1055, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35845313

RESUMEN

The intrinsic terminator in prokaryotic forms secondary RNA structure and terminates the transcription. However, leaking transcription is common due to varied terminator strength. Besides of the representative hairpin and U-tract structure, detailed sequence and thermodynamic features of terminators were not completely clear, and the effect of terminator on the upstream gene expression was unclearly. Thus, it is still challenging to use terminator to control expression with higher precision. Here, in E. Coli, we firstly determined the effect of the 3'-end sequences including spacer sequences and terminator sequences on the expression of upstream and downstream genes. Secondly, terminator mutation library was constructed, and the thermodynamic and sequence features differing in the termination efficiency were analyzed using the FlowSeq technique. The result showed that under the regulation of terminators, a negative correlation was presented between the expression of upstream and downstream genes (r=-0.60), and the terminators with lower free energy corelated with higher upstream gene expression. Meanwhile, the terminator with longer stem length, more compact loop and perfect U-tract structure was benefit to the transcription termination. Finally, a terminator strength classification model was established, and the verification experiment based on 20 synthetic terminators indicated that the model can distinguish strong and weak terminators to certain extent. The results help to elucidate the role of terminators in gene expression, and the key factors identified are crucial for rational design of terminators, and the model provided a method for terminator strength prediction.

8.
Cell Mol Life Sci ; 79(1): 14, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34966954

RESUMEN

How single-chain variable fragments (scFvs) affect the functions of chimeric antigen receptors (CARs) has not been well studied. Here, the components of CAR with an emphasis on scFv were described, and then several methods to measure scFv affinity were discussed. Next, scFv optimization studies for CD19, CD38, HER2, GD2 or EGFR were overviewed, showing that tuning the affinity of scFv could alleviate the on-target/off-tumor toxicity. The affinities of scFvs for different antigens were also summarized to designate a relatively optimal working range for CAR design. Last, a synthetic biology approach utilizing a low-affinity synthetic Notch (synNotch) receptor to achieve ultrasensitivity of antigen-density discrimination and murine models to assay the on-target/off-tumor toxicity of CARs were highlighted. Thus, this review provides preliminary guidelines of choosing the right scFvs for CARs.


Asunto(s)
Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos/metabolismo , Anticuerpos de Cadena Única/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Receptores Quiméricos de Antígenos/química , Anticuerpos de Cadena Única/química , Biología Sintética
9.
Small Methods ; 5(7): e2100071, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34927998

RESUMEN

T cell genome editing holds great promise to advance a range of immunotherapies but is encumbered by the dependence on difficult-to-produce and expensive viral vectors. Here, small double-stranded plasmid DNA modified to mediate high-efficiency homologous recombination is designed. The resulting chimeric antigen receptor (CAR)-T cells display a similar phenotype, transcriptional profile, and in vivo potency to CAR-T cells generated using adeno-associated viral vector. This method should simplify and accelerate the use of precision engineering to produce edited T cells for research and clinical purposes.


Asunto(s)
Sistemas CRISPR-Cas , Inmunoterapia Adoptiva/métodos , Plásmidos , Linfocitos T/inmunología , Animales , ADN , Edición Génica/métodos , Marcación de Gen , Vectores Genéticos , Recombinación Homóloga , Humanos , Inmunoterapia/métodos , Ratones , Células 3T3 NIH
10.
Oncol Lett ; 21(5): 397, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33777220

RESUMEN

AXL receptor tyrosine kinase (AXL) upregulation mediates drug resistance in several types of human cancer and has become a therapeutic target worthy of exploration. The present study investigated AXL antigen expression and the effects of novel AXL-targeted agents in acute myeloid leukemia (AML) cells. AXL antigen expression in drug-sensitive and drug-resistant human AML cell lines, and AML blast cells from 57 patients with different clinical characteristics, was analyzed by flow cytometry and compared. Furthermore, the effects of the novel AXL antibody DAXL-88, antibody-drug conjugate DAXL-88-monomethyl auristatin E (MMAE), AXL small molecule inhibitor R428 and their combination with FMS-like tyrosine kinase 3 (FLT3) inhibitor quizartinib (AC220) in AML cells were analyzed by Cell Counting Kit-8 assay, flow cytometry and western blotting. The present study revealed that AXL antigen expression was upregulated in FLT3-internal tandem duplication (ITD)/tyrosine kinase domain mutation-positive (TKD)+ AML blast cells compared with FLT3-ITD/TKD- AML cells. Additionally, AXL antigen expression was markedly upregulated in the AC220-resistant FLT3-ITD+ MV4-11 cell line (MV4-11/AC220) and in FLT3 inhibitor-resistant blast cells from a patient with FLT3-ITD+ AML compared with parental sensitive cells. The AXL-targeted agents DAXL-88, DAXL-88-MMAE and R428 exhibited dose-dependent cytotoxic effects on FLT3-mutant AML cell lines (THP-1, MV4-11 and MV4-11/AC220) and blast cells from patients with FLT3-ITD+ AML. Combinations of AXL-targeted agents with AC220 exerted synergistic cytotoxic effects and induced apoptosis in MV4-11/AC220 cells and FLT3 inhibitor-resistant blast cells. The antileukemic effect of DAXL-88 and DAXL-88-MMAE may rely on their ability to block AXL, FLT3 and their downstream signaling pathways. The present study demonstrated the association between AXL antigen expression upregulation and drug resistance in FLT3-ITD+ AML, and proposed a method for overcoming FLT3 inhibitor resistance of FLT3-ITD+ AML using novel AXL-targeted agents.

11.
ACS Synth Biol ; 10(1): 38-48, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33382575

RESUMEN

Promoters and ribosome binding sites (RBSs) are routinely applied in gene expression regulation, but their orthogonality and combinatorial effects have not yet been systematically studied in Corynebacterium glutamicum. Here, 17 core promoters and 29 RBSs in C. glutamicum were characterized, which exhibited 470-fold and 430-fold in transcriptional and translational activity, respectively. By comparing the expression of two reporter genes regulated by multiple RBSs, the RBS efficacy showed significant dependence on the gene context, besides the RBSs' strength, reflecting the poor orthogonality of RBSs. Bicistron-modified RBS (referred as bc-RBS) was adapted to C. glutamicum, which improved RBS reliability. By coupling a series of promoters with RBSs/bc-RBSs, a much broader regulation range that spanned 4 orders of magnitude was observed compared with that of a sole element, and the contribution to gene expression of RBS was more than that of promoter. Finally, promoters and RBSs were applied as built-in elements to fine-tune the gene cluster in the arginine synthesis pathway in C. glutamicum. Compared with the original strain, more arginine (1.61-fold) or citrulline (2.35-fold) was accumulated in a 7 L bioreactor by strains with the gene expression regulation system rationally engineered. We demonstrated that, via combination of well-characterized gene elements, and overall consideration for both transcription and translation, the biosynthesis pathway can be effectively balanced, and the yield of a target metabolite can be further improved.


Asunto(s)
Arginina/biosíntesis , Corynebacterium glutamicum/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Sitios de Unión , Reactores Biológicos , Citrulina/biosíntesis , ARN Polimerasas Dirigidas por ADN/metabolismo , Ingeniería Metabólica , Familia de Multigenes/genética , Regiones Promotoras Genéticas , Ribosomas/metabolismo
12.
Chembiochem ; 21(14): 2067-2072, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32180310

RESUMEN

Transcription terminators play a role in terminating the progress of gene transcription, and are thus essential elements in the gene circuit. Terminators have two main functions: terminating gene transcription and improving the stability of gene transcripts during translation. We therefore considered the detailed characteristics of terminators in relation to their different roles in gene transcription and translation, including transcription shut-down degree (α) and upstream mRNA protection capacity (ß), and apparent termination efficiency (η) reflecting the overall regulatory effect of the terminator. Based on a dual-reporter gene system, we constructed three terminator-probe plasmids to investigate each characteristic in Escherichia coli. According to multiple regression analysis, the transcription shut-down degree and the upstream mRNA protection capacity contributed almost equally to the apparent termination efficiency. Sequence analysis of 12 terminators demonstrated that the terminator sequence was dominated by GC bases, and that a high ratio of GC bases in the stem structure of terminators might be associated with a high degree of transcription shut-down. This comprehensive characterization of terminators furthers our understanding of the role of terminators in gene expression and provides a guide for synthetic terminator design.


Asunto(s)
Escherichia coli/genética , Regiones Terminadoras Genéticas/genética , Transcripción Genética/genética
13.
Oncol Lett ; 17(6): 5784-5792, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31186805

RESUMEN

AXL receptor tyrosine kinase ligand (AXL), a tyrosine kinase receptor that is commonly overexpressed in numerous types of cancer, significantly promotes drug resistance and metastasis in tumor cells. Inhibition of the AXL/growth arrest-specific 6 (Gas6) signaling pathway is emerging as a potential anticancer therapeutic strategy. In the present study, on the basis of the three-dimensional complex structure of AXL/Gas6, the critical residues (E56, E59 and T77) in AXL binding to Gas6 were determined using computer graphics analysis and the distance geometry method. Subsequently, four-variant AXL-ECD-Fc-M1 (G32S, D87G, V92A and G127R) and AXL-ECD-Fc-M2 (G32A, D87A, V92A and G127A) were predicted as high-affinity mutants; AXL-ECD-Fc-M3 (E56R and T77R) and AXL-ECD-Fc-M4 (E59R and T77R) were predicted as low-affinity mutants. The results of the present study revealed that the half-maximal effect concentrations of AXL-ECD-Fc-M1 and AXL-ECD-Fc-M2 were ~0.141 and 0.375 µg/ml, respectively, whereas that of the wild-type protein (AXL-ECD-Fc-WT) was 0.514 µg/ml. Furthermore, adding the high-affinity mutants into culture medium to capture free Gas6 significantly inhibited AXL/Gas6 binding and thus blocked the downstream signaling pathway. In addition, the high-affinity mutants effectively suppressed the migration and metastasis of SKOV3 and A549 cells. Conversely, compared with AXL-ECD-Fc-WT, the low-affinity AXL mutants AXL-ECD-Fc-M3 and AXL-ECD-Fc-M4 lost all inhibitory activities. These findings highlight AXL as a potential therapeutic target and demonstrated that the key residues E56, E59 and T77 may be crucial sites for abolishing the activity of the AXL/Gas6 pathway in cancer therapy.

14.
Scand J Immunol ; 90(2): e12777, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31075180

RESUMEN

TAM family members (TYRO3, AXL and MERTK) play essential roles in the resolution of inflammation and in infectious diseases and cancer. AXL, a tyrosine kinase receptor, is commonly overexpressed in several solid tumours and numerous hematopoietic malignancies including acute myeloid leukaemia, acute lymphocytic leukaemia, chronic myeloid leukaemia, chronic lymphocytic leukaemia and multiple myeloma. AXL significantly promotes tumour cell migration, invasion and metastasis, as well as angiogenesis. AXL also plays an important role in inflammation and macrophage ontogeny. Recent studies have revealed that AXL contributes to leukaemic phenotypes through activation of oncogenic signalling pathways that lead to increased cell migration and proliferation. To evaluate the mechanisms underlying the role of AXL signalling in tumour metastasis, we screened a phage display library to generate a novel human monoclonal antibody, named DAXL-88, that recognizes both human and murine AXL. The concentrations of DAXL-88 required for 50% maximal binding to human and murine AXL were 0.118 and 0.164 µg/mL, respectively. Furthermore, DAXL-88 bound to human AXL with high affinity (KD  ~ 370 pM). DAXL-88 blocked the interaction between AXL and its ligand, growth arrest-specific gene 6 (GAS6), with a half maximal inhibitory concentration of 2.16 µg/mL. Moreover, DAXL-88 inhibited AXL/GAS6-dependent cell signalling, which is implicated in cell migration and invasion. In conclusion, the novel anti-AXL DAXL-88 high-affinity antibody blocks the interaction between AXL and GAS6 and inhibits tumour cell migration and invasion induced by GAS6. Thus, DAXL-88 offers promise for the development of targeted therapeutic strategies in solid tumours, leukaemias and other lymphoid neoplasms.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias Ováricas/patología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Células A549 , Anticuerpos Monoclonales/inmunología , Línea Celular Tumoral , Movimiento Celular , Femenino , Humanos , Simulación del Acoplamiento Molecular , Invasividad Neoplásica/patología , Invasividad Neoplásica/prevención & control , Metástasis de la Neoplasia/prevención & control , Unión Proteica , Proteínas Proto-Oncogénicas/inmunología , Proteínas Tirosina Quinasas Receptoras/inmunología , Transducción de Señal , Tirosina Quinasa del Receptor Axl
15.
Cell Stress Chaperones ; 24(1): 91-104, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30374881

RESUMEN

Olfactory ensheathing glia (OEG) play an important role in regulating the regeneration of an injured nervous system. However, chronic inflammation damage reduces the viability of OEG via poorly understood mechanisms. We aimed to investigate the pathological responses of OEG in response to LPS-mediated inflammation stress in vitro. The results indicated that lipopolysaccharide (LPS) treatment significantly reduced the viability of OEG in a dose-dependent fashion. Mechanistically, LPS stimuli induced mitochondrial oxidative damage, mitochondrial fragmentation, mitochondrial metabolism disruption, and mitochondrial apoptosis activation. Furthermore, we verified that LPS modulated mitochondrial apoptosis by promoting Bax upregulation, and this process was regulated by the JNK-Bnip3 pathway. Inhibition of the JNK-Bnip3 pathway prevented LPS-mediated Bax activation, thus attenuating OEG apoptosis. Altogether, our data illustrated that LPS-mediated inflammation injury evoked mitochondrial abnormalities in OEG damage via the JNK-Bnip3-Bax pathway. This finding provides a potential target to protect OEG against chronic inflammation stress.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/farmacología , Proteínas de la Membrana/metabolismo , Mitocondrias/patología , Neuroglía/patología , Bulbo Olfatorio/patología , Proteínas Proto-Oncogénicas/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Supervivencia Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Serina Peptidasa A2 que Requiere Temperaturas Altas/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuroglía/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
16.
Cell Immunol ; 331: 49-58, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29935762

RESUMEN

Identifying targets for chimeric antigen receptor-modulated T lymphocyte (CAR-T) therapy against solid tumors is an urgent problem to solve. In this study, we showed for the first time that the receptor tyrosine kinase, AXL, is overexpressed in various tumor cell lines and patient tumor tissues including triple negative breast cancer (TNBC) cell lines and patient samples, making AXL a potent novel target for cancer therapy, specifically for TNBC treatment. We also engineered T cells with a CAR consisting of a novel single-chain variable fragment against AXL and revealed its antigen-specific cytotoxicity and ability to release cytokines in a TNBC cell line and other AXL-positive tumors in vitro. Furthermore, AXL-CAR-T cells displayed a significant anti-tumor effect and in vivo persistence in a TNBC xenograft model. Taken together, our findings indicate that AXL-CAR-T cells can represent a promising therapeutic strategy against TNBC.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Proteínas Proto-Oncogénicas/inmunología , Proteínas Tirosina Quinasas Receptoras/inmunología , Receptores Quiméricos de Antígenos/inmunología , Neoplasias de la Mama Triple Negativas/terapia , Animales , Línea Celular Tumoral , Células Cultivadas , Femenino , Humanos , Células MCF-7 , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Neoplasias de la Mama Triple Negativas/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa del Receptor Axl
17.
Biochem J ; 475(1): 319-328, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29187520

RESUMEN

The specific recognition and binding of promoter and RNA polymerase is the first step of transcription initiation in bacteria and largely determines transcription activity. Therefore, direct analysis of the interaction between promoter and RNA polymerase in vitro may be a new strategy for promoter characterization, to avoid interference due to the cell's biophysical condition and other regulatory elements. In the present study, the specific interaction between T7 promoter and T7 RNA polymerase was studied as a model system using force spectroscopy based on atomic force microscope (AFM). The specific interaction between T7 promoter and T7 RNA polymerase was verified by control experiments, and the rupture force in this system was measured as 307.2 ± 6.7 pN. The binding between T7 promoter mutants with various promoter activities and T7 RNA polymerase was analyzed. Interaction information including rupture force, rupture distance and binding percentage were obtained in vitro, and reporter gene expression regulated by these promoters was also measured according to a traditional promoter activity characterization method in vivo Using correlation analysis, it was found that the promoter strength characterized by reporter gene expression was closely correlated with rupture force and the binding percentage by force spectroscopy. These results indicated that the analysis of the interaction between promoter and RNA polymerase using AFM-based force spectroscopy was an effective and valid approach for the quantitative characterization of promoters.


Asunto(s)
Bacteriófago T7/genética , ADN de Cadena Simple/genética , ARN Polimerasas Dirigidas por ADN/genética , Iniciación de la Transcripción Genética , Proteínas Virales/genética , Bacteriófago T7/metabolismo , Fenómenos Biomecánicos , Cloranfenicol O-Acetiltransferasa/genética , Cloranfenicol O-Acetiltransferasa/metabolismo , ADN de Cadena Simple/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Genes Reporteros , Microscopía de Fuerza Atómica , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Virales/metabolismo
18.
Technol Cancer Res Treat ; 15(4): 573-82, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26041400

RESUMEN

BACKGROUND: Antibody resistance, both de novo and acquired, is usually related to high risk of recurrence and lower survival rate in gynecologic cancers. Prevention or reversal of the resistance often yields beneficial clinical results. It was reported that anti-human epidermal growth factor receptor 3 monoclonal antibody was effective against trastuzumab-resistant breast cancer cells. Here in our laboratory, an acquired trastuzumab-resistant ovarian cancer cell line, SKOV3-T, was established previously. Further, human epidermal growth factor receptor 3 was observed to be upregulated in this cell line by microarray detection, suggesting that the antagonist against human epidermal growth factor receptor 3 might be effective to inhibit the resistant cells. METHODS: We developed an anti-human epidermal growth factor receptor 3 monoclonal antibody, LMAb3, and its affinity to bind human epidermal growth factor receptor 3 was calculated by the Biacore method. Preliminarily, LMAb3's antitumor activity was evaluated in vitro using cell growth/proliferation and clone formation assays in the breast cancer cell line MCF-7. Furthermore, LMAb3 was also evaluated for its inhibitory effect on the carcinogenicity of the SKOV3-T cells, which were induced to overexpress human epidermal growth factor receptor 3, both in vitro and in vivo. The possible underlying signal transduction mechanisms were also identified by Western blot in the MCF-7 and SKOV3-T cells. RESULTS: LMAb3 was able to inhibit the cell growth/proliferation, clone, and tumor formation both in vitro (in the MCF-7 and SKOV3-T cells) and in vivo. The underlying mechanism of LMAb3 possibly involves inactivation of the HER family proteins (human epidermal growth factor receptor 1, human epidermal growth factor receptor 2, and especially human epidermal growth factor receptor 3) as well as the downstream mitogen-activated protein kinase and protein kinase B pathways. CONCLUSION: Our work suggests that satisfactory curative effects might be achieved with LMAb3 to treat the trastuzumab-resistant, human epidermal growth factor receptor 3-positive cases of gynecologic cancers.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Receptor ErbB-3/antagonistas & inhibidores , Trastuzumab/farmacología , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Receptores ErbB/antagonistas & inhibidores , Femenino , Expresión Génica , Humanos , Células MCF-7 , Ratones , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Virus Genes ; 50(2): 238-44, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25645906

RESUMEN

Non-structural protein 1 (NS1) is an important virulence factor encoded by influenza A virus. NS1 can interact with a variety of host cell proteins to interfere with the host innate immune response and to promote effective viral replication. Our previous work has shown that only the effector domain of NS1 (amino acid residues 74-230/237) is sufficient to interact with nucleolar and coiled-body phosphoprotein 1 (NOLC1). To investigate the exact region of NS1 that interacts with NOLC1, we used only the effector domain of NS1 and constructed various mutants having different deletions, and then tested their ability to interact with NOLC1 via pull-down assay. Only the mutant containing amino acid residues 104-200 showed positive interaction with NOLC1. To further determine the key amino acids of the NS1 effector domain which are crucial for interaction with NOLC1, several mutants containing a single amino acid substitution were made and their interaction with NOLC1 was tested. Only the mutant D120A or R195A showed reduced binding with NOLC1, suggesting that D120 and R195 were crucial to the binding of NS1 to NOLC1. This study lays the foundation for further research aiming at furthering our understanding of the interaction between NS1 and host cells.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/metabolismo , Gripe Humana/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Humanos , Subtipo H5N1 del Virus de la Influenza A/química , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Humana/genética , Gripe Humana/virología , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Fosfoproteínas/genética , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Proteínas no Estructurales Virales/genética , Virulencia
20.
Virus Genes ; 46(2): 287-92, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23188192

RESUMEN

Nonstructural protein 1 (NS1) is a non-structural protein of avian influenza virus. It can interact with a variety of proteins of the host cells, enhancing the expression of viral proteins and changing the growth and metabolism of the host cells, thereby enhancing the virus' pathogenicity and virulence. To investigate whether there are more host proteins that can interact with NS1 during viral infection, T7-phage display system was used to screen human lung cell cDNA library for proteins that could interact with NS1. One positive and specific clone was obtained and identified as nucleolar and coiled-body phosphoprotein 1(NOLC1). The interaction between these two proteins was further demonstrated by His-pull-down and co-immunoprecipitation experiments. Co-expression of both proteins in HeLa cell showed that NS1 and NOLC1 were co-localized in the cell's nucleus. Gene truncation experiments revealed that the effector domain of NS1 was sufficient to interact with NOLC1. The results demonstrated a positive interaction between a viral NS1 and NOLC1 of the host cells, and provided a new target for drug screening.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/metabolismo , Gripe Humana/metabolismo , Gripe Humana/virología , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Células HeLa , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Humana/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Unión Proteica , Proteínas no Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...