Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; 5(5): 101546, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38703766

RESUMEN

Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by motor neuron (MN) loss. We previously discovered that macrophage migration inhibitory factor (MIF), whose levels are extremely low in spinal MNs, inhibits mutant SOD1 misfolding and toxicity. In this study, we show that a single peripheral injection of adeno-associated virus (AAV) delivering MIF into adult SOD1G37R mice significantly improves their motor function, delays disease progression, and extends survival. Moreover, MIF treatment reduces neuroinflammation and misfolded SOD1 accumulation, rescues MNs, and corrects dysregulated pathways as observed by proteomics and transcriptomics. Furthermore, we reveal low MIF levels in human induced pluripotent stem cell-derived MNs from familial ALS patients with different genetic mutations, as well as in post mortem tissues of sporadic ALS patients. Our findings indicate that peripheral MIF administration may provide a potential therapeutic mechanism for modulating misfolded SOD1 in vivo and disease outcome in ALS patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Factores Inhibidores de la Migración de Macrófagos , Neuronas Motoras , Superóxido Dismutasa-1 , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Factores Inhibidores de la Migración de Macrófagos/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Esclerosis Amiotrófica Lateral/patología , Animales , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Ratones , Células Madre Pluripotentes Inducidas/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/genética , Ratones Transgénicos , Dependovirus/genética , Modelos Animales de Enfermedad , Masculino , Mutación/genética , Femenino , Pliegue de Proteína
2.
Methods Mol Biol ; 2681: 361-371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37405658

RESUMEN

Suspension cells derived from human embryonic kidney cells (HEK 293) are attractive cell lines for retroviral vector production in gene therapeutic development studies and applications. The low-affinity nerve growth factor receptor (NGFR) is a genetic marker frequently used as a reporter gene in transfer vectors to detect and enrich genetically modified cells. However, the HEK 293 cell line and its derivatives endogenously express the NGFR protein. To eradicate the high background NGFR expression in future retroviral vector packaging cells, we here employed the CRISPR/Cas9 system to generate human suspension 293-F NGFR knockout cells. The expression of a fluorescent protein coupled via a 2A peptide motif to the NGFR targeting Cas9 endonuclease enabled the simultaneous depletion of cells expressing Cas9 and remaining NGFR-positive cells. Thus, a pure population of NGFR-negative 293-F cells lacking persistent Cas9 expression was obtained in a simple and easily applicable procedure.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Receptor de Factor de Crecimiento Nervioso/genética , Células HEK293 , Vectores Genéticos/genética , Receptores de Factor de Crecimiento Nervioso/genética , Proteínas del Tejido Nervioso/genética
3.
Sci Rep ; 11(1): 22154, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34773059

RESUMEN

CRISPR prime-editors are emergent tools for genome editing and offer a versatile alternative approach to HDR-based genome engineering or DNA base-editors. However, sufficient prime-editor expression levels and availability of optimized transfection protocols may affect editing efficiencies, especially in hard-to-transfect cells like hiPSC. Here, we show that piggyBac prime-editing (PB-PE) allows for sustained expression of prime-editors. We demonstrate proof-of-concept for PB-PE in a newly designed lentiviral traffic light reporter, which allows for estimation of gene correction and defective editing resulting in indels, based on expression of two different fluorophores. PB-PE can prime-edit more than 50% of hiPSC cells after antibiotic selection. We also show that improper design of pegRNA cannot simply be overcome by extended expression, but PB-PE allows for estimation of effectiveness of selected pegRNAs after few days of cultivation time. Finally, we implemented PB-PE for efficient editing of an amyotrophic lateral sclerosis-associated mutation in the SOD1-gene of patient-derived hiPSC. Progress of genome editing can be monitored by Sanger-sequencing, whereas PB-PE vectors can be removed after editing and excised cells can be enriched by fialuridine selection. Together, we present an efficient prime-editing toolbox, which can be robustly used in a variety of cell lines even when non-optimized transfection-protocols are applied.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Transfección/métodos , Esclerosis Amiotrófica Lateral/genética , Línea Celular , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Superóxido Dismutasa-1/genética
4.
Stem Cell Res ; 56: 102535, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34607262

RESUMEN

Somatosensory low threshold mechanoreceptors (LTMRs) sense innocuous mechanical forces, largely through specialized axon termini termed sensory nerve endings, where the mechanotransduction process initiates upon activation of mechanotransducers. In humans, a subset of sensory nerve endings is enlarged, forming bulb-like expansions, termed bulbous nerve endings. There is no in vitro human model to study these neuronal endings. Piezo2 is the main mechanotransducer found in LTMRs. Recent evidence shows that Piezo1, the other mechanotransducer considered absent in dorsal root ganglia (DRG), is expressed at low level in somatosensory neurons. We established a differentiation protocol to generate, from iPSC-derived neuronal precursor cells, human LTMR recapitulating bulbous sensory nerve endings and heterogeneous expression of Piezo1 and Piezo2. The derived neurons express LTMR-specific genes, convert mechanical stimuli into electrical signals and have specialized axon termini that morphologically resemble bulbous nerve endings. Piezo2 is concentrated within these enlarged axon termini. Some derived neurons express low level Piezo1, and a subset co-express both channels. Thus, we generated a unique, iPSCs-derived human model that can be used to investigate the physiology of bulbous sensory nerve endings, and the role of Piezo1 and 2 during mechanosensation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Mecanorreceptores/metabolismo , Mecanotransducción Celular , Terminaciones Nerviosas/metabolismo , Células Receptoras Sensoriales/metabolismo
5.
Sci Rep ; 11(1): 9334, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33927320

RESUMEN

The pig is an important model organism for biomedical research, mainly due to its extensive genetic, physiological and anatomical similarities with humans. Until date, direct conversion of somatic cells into hepatocyte-like cells (iHeps) has only been achieved in rodents and human cells. Here, we employed lentiviral vectors to screen a panel of 12 hepatic transcription factors (TF) for their potential to convert porcine fibroblasts into hepatocyte-like cells. We demonstrate for the first time, hepatic conversion of porcine somatic cells by over-expression of CEBPα, FOXA1 and HNF4α2 (3TF-piHeps). Reprogrammed 3TF-piHeps display a hepatocyte-like morphology and show functional characteristics of hepatic cells, including albumin secretion, Dil-AcLDL uptake, storage of lipids and glycogen and activity of cytochrome P450 enzymes CYP1A2 and CYP2C33 (CYP2C9 in humans). Moreover, we show that markers of mature hepatocytes are highly expressed in 3TF-piHeps, while fibroblastic markers are reduced. We envision piHeps as useful cell sources for future studies on drug metabolism and toxicity as well as in vitro models for investigation of pig-to-human infectious diseases.


Asunto(s)
Técnicas de Reprogramación Celular , Fibroblastos , Hepatocitos , Factores de Transcripción/genética , Animales , Biomarcadores/metabolismo , Técnicas de Transferencia de Gen , Lentivirus , Porcinos
6.
Cells ; 9(9)2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825374

RESUMEN

Synthetic receptor biology and genome editing are emerging techniques, both of which are currently beginning to be used in preclinical and clinical applications. We were interested in whether a combination of these techniques approaches would allow for the generation of a novel type of reporter cell that would recognize transient cellular events through specifically designed synthetic receptors and would permanently store information about these events via associated gene editing. Reporting cells could be used in the future to detect alterations in the cellular microenvironment, including degenerative processes or malignant transformation into cancer cells. Here, we explored synthetic Notch (synNotch) receptors expressed in human embryonic kidney cells to investigate the efficacy of antigen recognition events in a time- and dose-dependent manner. First, we evaluated the most suitable conditions for synNotch expression based on dsRed-Express fluorophore expression. Then, we used a synNotch receptor coupled to transcriptional activators to induce the expression of a Cas9 nuclease targeted to a specific genomic DNA site. Our data demonstrate that recognition of various specific antigens via synNotch receptors robustly induced Cas9 expression and resulted in an indel formation frequency of 34.5%-45.5% at the targeted CXCR4 locus. These results provide proof of concept that reporter cells can be designed to recognize a given event and to store transient information permanently in their genomes.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Receptores Notch/metabolismo , Humanos
7.
Sci Rep ; 9(1): 7486, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31097772

RESUMEN

Certain point-mutations in the human SERPINA1-gene can cause severe α1-antitrypsin-deficiency (A1AT-D). Affected individuals can suffer from loss-of-function lung-disease and from gain-of-function liver-disease phenotypes. However, age of onset and severity of clinical appearance is heterogeneous amongst carriers, suggesting involvement of additional genetic and environmental factors. The generation of authentic A1AT-D mouse-models has been hampered by the complexity of the mouse Serpina1-gene locus and a model with concurrent lung and liver-disease is still missing. Here, we investigate point-mutations in the mouse Serpina1a antitrypsin-orthologue, which are homolog-equivalent to ones known to cause severe A1AT-D in human. We combine in silico and in vitro methods and we find that analyzed mutations do introduce potential disease-causing properties into Serpina1a. Finally, we show that introduction of the King's-mutation causes inactivation of neutrophil elastase inhibitory-function in both, mouse and human antitrypsin, while the mouse Z-mutant retains activity. This work paves the path to generation of better A1AT-D mouse-models.


Asunto(s)
Mutación con Pérdida de Función , Simulación de Dinámica Molecular , Deficiencia de alfa 1-Antitripsina/genética , alfa 1-Antitripsina/química , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Células Hep G2 , Humanos , Ratones , Dominios Proteicos , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
8.
Hum Mol Genet ; 28(17): 2835-2850, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31108504

RESUMEN

The fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) is characterized by a profound loss of motor neurons (MNs). Until now only riluzole minimally extends life expectancy in ALS, presumably by inhibiting glutamatergic neurotransmission and calcium overload of MNs. Therefore, the aim of this study was to investigate the glutamate receptor properties and key aspects of intracellular calcium dynamics in induced pluripotent stem cell (iPSC)-derived MNs from ALS patients with C9orf72 (n = 4 cell lines), fused in sarcoma (FUS) (n = 9), superoxide dismutase 1 (SOD1) (n = 3) or transactive response DNA-binding protein 43 (TDP43) (n = 3) mutations as well as healthy (n = 7 cell lines) and isogenic controls (n = 3). Using calcium imaging, we most frequently observed spontaneous transients in mutant C9orf72 MNs. Basal intracellular calcium levels and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-induced signal amplitudes were elevated in mutant TDP43 MNs. Besides, a majority of mutant TDP43 MNs responded to 3.5-dihydroxyphenylglycine as metabotropic glutamate receptor agonist. Quantitative real-time PCR demonstrated significantly increased expression levels of AMPA and kainate receptors in mutant FUS cells compared to healthy and isogenic controls. Furthermore, the expression of kainate receptors and voltage gated calcium channels in mutant C9orf72 MNs as well as metabotropic glutamate receptors in mutant SOD1 cells was markedly elevated compared to controls. Our data of iPSC-derived MNs from familial ALS patients revealed several mutation-specific alterations in glutamate receptor properties and calcium dynamics that could play a role in ALS pathogenesis and may lead to future translational strategies with individual stratification of neuroprotective ALS treatments.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Calcio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Mutación , Receptores de Glutamato/metabolismo , Esclerosis Amiotrófica Lateral/diagnóstico , Biomarcadores , Proteína C9orf72/genética , Señalización del Calcio , Proteínas de Unión al ADN/genética , Susceptibilidad a Enfermedades , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Proteína FUS de Unión a ARN/genética , Superóxido Dismutasa-1/genética
9.
Virology ; 531: 40-47, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30852270

RESUMEN

Viral vector particles derived from murine leukemia virus (MLV) mediate highly efficient stable gene transfer used in gene therapeutic approaches and in the generation of transgenic cell lines. However, the establishment of stable viral packaging cells (VPCs) is a time-consuming challenge. To overcome this limitation, we successfully generated novel Sleeping Beauty-derived transposon vectors entailing envelope and packaging expression cassettes as well as a transfer vector. Upon multiplexed transposition in human cells, VPC bulk populations yielding titers of over 1 × 106 transduction-competent vectors were established within three weeks. In contrast, conventional plasmid-based establishment of VPCs, conducted in parallel, took much longer and yielded significantly lower vector productivity and vector fitness. The generated MLV vectors decorated with the envelope proteins of ecotropic MLV PVC-211mc mediated efficient transduction of Chinese hamster ovary (CHO) cells. Cell susceptibility was further elevated upon recombinant expression of the murine ecotropic receptor mCAT employing a transposon vector.


Asunto(s)
Elementos Transponibles de ADN , Vectores Genéticos/genética , Virus de la Leucemia Murina/genética , Ensamble de Virus , Animales , Células CHO , Cricetulus , Terapia Genética/instrumentación , Vectores Genéticos/fisiología , Humanos , Virus de la Leucemia Murina/fisiología
10.
Biol Chem ; 399(6): 577-582, 2018 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-29498931

RESUMEN

The generation of authentic mouse-models for human α1-antitrypsin (A1AT)-deficiency is difficult due to the high complexity of the mouse Serpina1 gene locus. Depending on the exact mouse strain, three to five paralogs are expressed, with different proteinase inhibitory properties. Nowadays with CRISPR-technology, genome editing of complex genomic loci is feasible and could be employed for the generation of A1AT-deficiency mouse models. In preparation of a CRISPR/Cas9-based genome-engineering approach we identified cDNA clones with a functional CDS for the Serpina1-paralog DOM-7. Here, we show that DOM-7 functionally inhibits neutrophil elastase (ELANE) and chymotrypsin, and therefore needs to be considered when aiming at the generation of A1AT-deficient models.


Asunto(s)
alfa 1-Antitripsina/metabolismo , Animales , Ratones , Ratones Endogámicos BALB C
11.
Stem Cells Int ; 2017: 7316354, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28163724

RESUMEN

Kindlin-2 is a multidomain intracellular protein that can be recruited to ß-integrin domains to activate signaling, initiate transcriptional programs, and bind to E-cadherin. To explore its involvement in cell fate decisions in mesenchymal cells, we studied the effects of Kindlin-2 modification (overexpression/knockdown) in induced pluripotent cell-derived mesenchymal stromal cells (iPSC-MSCs). Kindlin-2 overexpression resulted in increased proliferation and reduced apoptosis of iPSC-MSCs, as well as inhibition of their differentiation towards osteocytes, adipocytes, and chondrocytes. In contrast, siRNA-mediated Kindlin-2 knockdown induced increased apoptosis and increased differentiation response in iPSC-MSCs. The ability of iPSC-MSCs to adhere to VCAM-1/SDF-1α under shear stress and to migrate in a wound scratch assay was significantly increased after Kindlin-2 overexpression. In contrast, inhibition of mixed lymphocyte reaction (MLR) was generally independent of Kindlin-2 modulation in iPSC-MSCs, except for decreased production of interleukin-2 (IL-2) after Kindlin-2 overexpression in iPS-MSCs. Thus, Kindlin-2 upregulates survival, proliferation, stemness, and migration potential in iPSC-MSCs and may therefore be beneficial in optimizing performance of iPSC-MSC in therapies.

12.
Stem Cell Res ; 19: 21-30, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28038351

RESUMEN

Somatic cell reprogramming by transcription factors and other modifiers such as microRNAs has opened broad avenues for the study of developmental processes, cell fate determination, and interplay of molecular mechanisms in signaling pathways. However, many of the mechanisms that drive nuclear reprogramming itself remain yet to be elucidated. Here, we analyzed the role of miR-29 during reprogramming in more detail. Therefore, we evaluated miR-29 expression during reprogramming of fibroblasts transduced with lentiviral OKS and OKSM vectors and we show that addition of c-MYC to the reprogramming factor cocktail decreases miR-29 expression levels. Moreover, we found that transfection of pre-miR-29a strongly decreased OKS-induced formation of GFP+-colonies in MEF-cells from Oct4-eGFP reporter mouse, whereas anti-miR-29a showed the opposite effect. Furthermore, we studied components of two pathways which are important for reprogramming and which involve miR-29 targets: active DNA-demethylation and Wnt-signaling. We show that inhibition of Tet1, Tet2 and Tet3 as well as activation of Wnt-signaling leads to decreased reprogramming efficiency. Moreover, transfection of pre-miR-29 resulted in elevated expression of ß-Catenin transcriptional target sFRP2 and increased TCF/LEF-promoter activity. Finally, we report that Gsk3-ß is a direct target of miR-29 in MEF-cells. Together, our findings contribute to the understanding of the molecular mechanisms by which miR-29 influences reprogramming.


Asunto(s)
Reprogramación Celular , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Vía de Señalización Wnt/fisiología , Regiones no Traducidas 3' , Animales , Antagomirs/metabolismo , Secuencia de Bases , Línea Celular , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Fibroblastos/citología , Fibroblastos/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células HEK293 , Humanos , Lentivirus/genética , Ratones , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Alineación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Sci Rep ; 6: 38198, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27910942

RESUMEN

Homology directed repair (HDR)-based genome editing via selectable long flanking arm donors can be hampered by local transgene silencing at transcriptionally silent loci. Here, we report efficient bi-allelic modification of a silent locus in patient-derived hiPSC by using Cas9 nickase and a silencing-resistant donor construct that contains an excisable selection/counter-selection cassette. To identify the most active single guide RNA (sgRNA)/nickase combinations, we employed a lentiviral vector-based reporter assay to determine the HDR efficiencies in cella. Next, we used the most efficient pair of sgRNAs for targeted integration of an improved, silencing-resistant plasmid donor harboring a piggyBac-flanked puroΔtk cassette. Moreover, we took advantage of a dual-fluorescence selection strategy for bi-allelic targeting and achieved 100% counter-selection efficiency after bi-allelic excision of the selection/counter-selection cassette. Together, we present an improved system for efficient bi-allelic modification of transcriptionally silent loci in human pluripotent stem cells.


Asunto(s)
Sistemas CRISPR-Cas , Silenciador del Gen , Células Madre Pluripotentes Inducidas/metabolismo , Transcripción Genética , Alelos , Humanos
14.
Tissue Eng Part A ; 21(3-4): 669-82, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25316003

RESUMEN

Respiratory progenitors can be efficiently generated from pluripotent stem cells (PSCs). However, further targeted differentiation into bronchoalveolar sublineages is still in its infancy, and distinct specifying effects of key differentiation factors are not well explored. Focusing on airway epithelial Clara cell generation, we analyzed the effect of the glucocorticoid dexamethasone plus cAMP-elevating agents (DCI) on the differentiation of murine embryonic and induced pluripotent stem cells (iPSCs) into bronchoalveolar epithelial lineages, and whether keratinocyte growth factor (KGF) might further influence lineage decisions. We demonstrate that DCI strongly induce expression of the Clara cell marker Clara cell secretory protein (CCSP). While KGF synergistically supports the inducing effect of DCI on alveolar markers with increased expression of surfactant protein (SP)-C and SP-B, an inhibitory effect on CCSP expression was shown. In contrast, neither KGF nor DCI seem to have an inducing effect on ciliated cell markers. Furthermore, the use of iPSCs from transgenic mice with CCSP promoter-dependent lacZ expression or a knockin of a YFP reporter cassette in the CCSP locus enabled detection of derivatives with Clara cell typical features. Collectively, DCI was shown to support bronchoalveolar specification of mouse PSCs, in particular Clara-like cells, and KGF to inhibit bronchial epithelial differentiation. The targeted in vitro generation of Clara cells with their important function in airway protection and regeneration will enable the evaluation of innovative cellular therapies in animal models of lung diseases.


Asunto(s)
AMP Cíclico/metabolismo , Dexametasona/administración & dosificación , Factor 7 de Crecimiento de Fibroblastos/administración & dosificación , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Mucosa Respiratoria/citología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular , Estudios de Factibilidad , Ratones , Células Madre Pluripotentes/efectos de los fármacos , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Ingeniería de Tejidos/métodos
15.
Biomaterials ; 35(5): 1531-42, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24290698

RESUMEN

Epigenetic silencing of retroviral transgene expression in pluripotent stem cells (PSC) and their differentiated progeny constitutes a major roadblock for PSC-based gene therapy. As ubiquitous chromatin opening elements (UCOEs) have been successfully employed to stabilize transgene expression in murine hematopoietic and pluripotent stem cells as well as their differentiated progeny, we here investigated UCOE activity in their human counterparts to establish a basis for future clinical application of the element. To this end, we demonstrate profound anti-silencing activity of the A2UCOE in several human iPS and ES cell lines including their progeny obtained upon directed cardiac or hematopoietic differentiation. We also provide evidence for A2UCOE activity in murine iPSC-derived hepatocyte-like cells, thus establishing efficacy of the element in cells of different germ layers. Finally, we investigated combinations of the A2UCOE with viral promoter/enhancer elements again demonstrating profound stabilization of transgene expression. In all these settings the effect of the A2UCOE was associated with strongly reduced promoter DNA-methylation. Thus, our data clearly support the concept of the A2UCOE as a generalized strategy to prevent epigenetic silencing in PSC and their differentiated progeny and strongly favors its application to stabilize transgene expression in PSC-based cell and gene therapy approaches.


Asunto(s)
Cromatina/metabolismo , Silenciador del Gen , Terapia Genética , Células Madre Pluripotentes Inducidas/metabolismo , Regiones Promotoras Genéticas , Animales , Diferenciación Celular , Linaje de la Célula , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transgenes
16.
Stem Cells Transl Med ; 2(9): 641-54, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23926210

RESUMEN

Patient-specific induced pluripotent stem cells (iPSCs) hold great promise for studies on disease-related developmental processes and may serve as an autologous cell source for future treatment of many hereditary diseases. New genetic engineering tools such as zinc finger nucleases and transcription activator-like effector nuclease allow targeted correction of monogenetic disorders but are very cumbersome to establish. Aiming at studies on the knockdown of a disease-causing gene, lentiviral vector-mediated expression of short hairpin RNAs (shRNAs) is a valuable option, but it is limited by silencing of the knockdown construct upon epigenetic remodeling during differentiation. Here, we propose an approach for the expression of a therapeutic shRNA in disease-specific iPSCs using third-generation lentiviral vectors. Targeting severe α-1-antitrypsin (A1AT) deficiency, we overexpressed a human microRNA 30 (miR30)-styled shRNA directed against the PiZ variant of A1AT, which is known to cause chronic liver damage in affected patients. This knockdown cassette is traceable from clonal iPSC lines to differentiated hepatic progeny via an enhanced green fluorescence protein reporter expressed from the same RNA-polymerase II promoter. Importantly, the cytomegalovirus i/e enhancer chicken ß actin (CAG) promoter-driven expression of this construct is sustained without transgene silencing during hepatic differentiation in vitro and in vivo. At low lentiviral copy numbers per genome we confirmed a functional relevant reduction (-66%) of intracellular PiZ protein in hepatic cells after differentiation of patient-specific iPSCs. In conclusion, we have demonstrated that lentiviral vector-mediated expression of shRNAs can be efficiently used to knock down and functionally evaluate disease-related genes in patient-specific iPSCs.


Asunto(s)
Técnicas de Silenciamiento del Gen/métodos , Terapia Genética/métodos , Hepatocitos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Lentivirus/genética , MicroARNs/genética , Deficiencia de alfa 1-Antitripsina/terapia , Animales , Diferenciación Celular , Células Cultivadas , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Hepatocitos/citología , Hepatocitos/virología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/virología , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Interferente Pequeño/genética , Transgenes , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Deficiencia de alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/metabolismo
17.
Stem Cells Int ; 2011: 924782, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21977043

RESUMEN

Direct reprogramming of somatic cells into pluripotent cells by retrovirus-mediated expression of OCT4, SOX2, KLF4, and C-MYC is a promising approach to derive disease-specific induced pluripotent stem cells (iPSCs). In this study, we focused on three murine models for metabolic liver disorders: the copper storage disorder Wilson's disease (toxic-milk mice), tyrosinemia type 1 (fumarylacetoacetate-hydrolase deficiency, FAH(-/-) mice), and alpha1-antitrypsin deficiency (PiZ mice). Colonies of iPSCs emerged 2-3 weeks after transduction of fibroblasts, prepared from each mouse strain, and were maintained as individual iPSC lines. RT-PCR and immunofluorescence analyses demonstrated the expression of endogenous pluripotency markers. Hepatic precursor cells could be derived from these disease-specific iPSCs applying an in vitro differentiation protocol and could be visualized after transduction of a lentiviral albumin-GFP reporter construct. Functional characterization of these cells allowed the recapitulation of the disease phenotype for further studies of underlying molecular mechanisms of the respective disease.

18.
Biol Chem ; 390(10): 1047-55, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19642877

RESUMEN

In regenerative medicine pluripotent stem cells are considered to be a valuable self-renewing source for therapeutic cell transplantations, given that a functional organ-specific phenotype can be acquired by in vitro differentiation protocols. Furthermore, derivatives of pluripotent stem cells that mimic fetal progenitor stages could serve as an important tool to analyze organ development with in vitro approaches. Because of ethical issues regarding the generation of human embryonic stem (ES) cells, other sources for pluripotent stem cells are intensively studied. Like in less developed vertebrates, pluripotent stem cells can be generated from the female germline even in mammals, via parthenogenetic activation of oocytes. Recently, testis-derived pluripotent stem cells were derived from the male germline. Therefore, we compared two different hepatic differentiation approaches and analyzed the generation of definitive endoderm progenitor cells and their further maturation into a hepatic phenotype using murine parthenogenetic ES cells, germline-derived pluripotent stem cells, and ES cells. Applying quantitative RT-PCR, both germline-derived pluripotent cell lines show similar differentiation capabilities as normal murine ES cells and can be considered an alternative source for pluripotent stem cells in regenerative medicine.


Asunto(s)
Diferenciación Celular/fisiología , Hepatocitos/citología , Células Madre Pluripotentes/citología , Medicina Regenerativa , Animales , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Endodermo/citología , Endodermo/metabolismo , Femenino , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Oocitos/citología , Oocitos/metabolismo , Células Madre Pluripotentes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Hepatology ; 49(3): 1048-9, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19242974
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...